On parallel data structuring:

A parallel priority queue

S.T. Fischer, M. Veldhorst

RUU-CS-92-19
April 1992

Utrecht University

Wik :

< - Department of Computer Science
4

5 g Padualaan 14, P.O. Box 80.089,

47'" '3\& 3508 TB Utrecht, The Netherlands,
Tel. : ... +31-30-531454

On parallel data structuring:

A parallel priority queue

S.T. Fischer, M. Veldhorst

Technical Report RUU-CS-92-19
' April 1992

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 09243275

On Parallel Data Structuring;
A Parallel Priority Queue *

S.T. Fischertand M. Veldhorst
Departement of Computer Science, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

Abstract

In this paper we design a priority queue that is suitable for parallel access on an
EREW PRAM. To delete p elements with lowest priority from the priority queue
takes O(logp + loglogp + l—°f;2) time. The insertion of p elements in the priority

queue takes O(logn + logp) time. To decrease the priority of p elements in the
priority queue also takes O(logn + log p) time.

1 Introduction

In the design of sequential algorithms often better time bounds have been obtained
by the use of sofisticated data structures, from which intermediate results could be
obtained easily (i.e. in short time). It seems reasonable to expect that time bounds
of algorithms for the PRAM can be improved by using advanced data structures, that
allow for parallel access. Veldhorst [Vel87] gave an implementation of a stack and a
queue for an EREW PRAM. Pinotti and Pucci [PP91] gave an implementation of a
priority queue for a CREW PRAM.

In this paper we will give an implementation of a priority queue for an EREW PRAM.
Formally, a priority queue PQ stores a set of n elements e, each with a priority pr(e).
A processor PE;, 1 < i < p, can perform one of the following operations on PQ.

1. ParEcztractmin(PQ)
Processor PE; deletes an element from PQ, with a priority as low as possible
that no processor PF; deletes from PQ, 1 < j < i.

*This work was supported by the ESPRIT II Basic Research Actions program of the EC under
contract No 3075 (project ALCOLM)

tcurrent address: Faculteit Wiskunde en Informatica, Plantage Muidergracht 24, 1018 TV Amster-
dam, The Netherlands. This work has been partly supported by the Foundation for Computer Science
in the Netherlands (SION) with financial support from the Netherlands Organization for Scientific
Research (NWO)

2. ParInsert(PQ,{e,pr(e)))
Processor PE; inserts element e with priority pr(e) in PQ.

3. ParDecreasekey(PQ,{q,pr))
Processor PE; decreases the priority of the element g to pr.

In our implementation, the ParExtractmin operation takes O(log p + loglog p + l—°§3)
time. The ParInsert and the ParDecreasekey operation take O(logn) time. The
elements of PQ are stored in the leaves of a weight-balanced tree. To achieve the time
bound for ParEztractmin, we use the property of weight-balanced trees that the bal-
ance of a vertex v does not depend on the balances of its children, but only on the
number of elements stored in its left and right subtree.
There are many sequential implementations of the priority queue. The figures 1 and
2 show results for different sequential implementations. In figure 1 worst-case time
bounds are given, in figure 2 amortized time bounds. The binomial heap and fibonnacci
heap are described in [CLR90]. Driscoll, Gabow, Shrairman and Tarjan, [DGSTS$S],
described a relaxed heap and a variant of the relaxed heap. Sleator and Tarjan, [ST86],
described how to implement a priority queue using skew heaps.

Our time bounds for the parallel priority queue operations are low when compared

Priority queue Eztractmin | Insert | Decreasekey
" implementation

a stack or queue 0o(1) O(n) O(n)

a binary heap O(logn) | O(logn) O(log n)

a balanced tree O(logn) | O(logn) O(logn)

a binomial heap O(log n) O(log n) O(log n)

a variant of a O(logn) 0(1) o(1)
relaxed heap

Figure 1: Worst-case time bounds of operations for different priority queue implemen-
tations

with the time bounds of the first five implementations of figure 1. We achieve an opti-
mal speed up for the ParInsert and ParDecreasekey operation. If p = ©(logn), we
achieve efficient speedup for the ParExtractmin operation. Our time bounds for the
Insert and Decreasekey operations are high when compared with the time bounds of
the last implementation of figure 1 and with the amortized time bounds of figure 2. But
if p = O(log n), we achieve a very fast time bound for the Par Extractmin operation.

There are two major differences between the implementation given in this paper and
the implementation given by Pinotti and Pucci. First, their implementation is for

a CREW PRAM, while our implementation is for an EREW PRAM. Second, our
time bounds are at least as good as those of Pinotti and Pucci, and our time bound
for the ParEztractmin operation is better when p = O(log n). In that case the
ParEztractmin operation of our implementation runs in O(loglogn), while their
ParExztractmin operation runs in O(logn) time. When comparing the time bounds,
we accounted time for distributing the elements among all processors. This time is not
included in the time bounds Pinotti and Pucci give in their paper.

The remainder of this paper is divided in 3 sections. Section 2 contains definitions, re-
sults and algorithms used throughout the paper. In section 3 we investigate the special
properties of balancing a weight-balanced tree. Section 4 contains the implementation
of the priority operations. We give two insert algorithms. The first is very easy to
understand. The second is more difficult, but minimizes the communication between
the processors.

2 Preliminaries

2.1 Definitions

The computational model

In this paper the computational model used is an EREW PRAM. A PRAM consists
of p processors PFy, ..., PE,. Every processor has its own local memory. Furthermore,
all processors have access to a global memory. Figure 3 shows a PRAM.

At a certain time step some processors are off, and do nothing during that time step
and some processors are on. The processors that are on perform all the same operation,
possibly on different data.

In an Exclusive Read Exclusive Write PRAM only one processor is allowed to read or
write a global memory location at a certain time step.

Abstract Data Structures
An abstract data structure is a tuple (S, OP), where S is a set of elements and OP is
a set of operations, that can be applied on the set.

Priority queue Eztractmin | Insert | Decreasekey
implementation

a fibonnacci heap O(logn) 0(1) o(1)

a relaxed heap O(logn) o) o(1)

a skew heap O(log n) o(1) o(1)
(bottom-up)

Figure 2: Amortized time bounds of operations for different priority queue implemen-
tations

GLOBAL MEMORY

Figure 3: A PRAM

An abstract data structure is implemented using data structures (or standard data
structures). For instance, the abstract data structure STACK can be defined as
(S,OP) where S is the set of stack elements STACK and the set OP contains the

operations CREATE, ISEMPTY, POP, PUSH and TOP. A stack can be imple-
mented using an array, a linked list, a binary tree etc.

Parallel access and parallel operation

Let DS be a data structure. Then different processors in an EREW PRAM can read
information stored in DS as long as processors do not read the same memory location.
Also different processors can update information stored in DS, as long as processors
do not write the same memory location.

When different processors perform each an application of the same operation on the
same data structure parallel access occurs. It is not a priori clear what the result
must be when all processors have finished their operation. If the result of the simul-
tanious actions is not clear, it should be specified explicitely.

To define the result of a parallel operation, sometimes the sequentializing principle is
used. Here the effect of simultanious actions by the processors is as if the actions oc-
curred in some (unspecified) serial order.

In the priority queue we develop in this paper, the sequentializing principle is obeyed
when the effect of simultanious actions on the abstract data structure is considered.
The sequentializing principle is not neccesarily obeyed when we consider the effect
of the simultanious actions on the weight-balanced tree that implements the priority
queue.

Access trees

An access tree for p processors is a complete binary tree AT with leaves I1,12, ...y lopog 51 -
Processor PE; is associated with l;. Suppose for instance that processors PE; ,PFE,,,..,PE;,
all want to read the same memory location. By letting the processors walking up and

down in AT it is possible to decide which processor is going to read the memory loca-
tion and to inform all processors of its information in O(log p) time using s processors.
Access trees are sometimes called partial sums trees, or PS-TREES. See for details
[SV82]. It is easy to see that the depth of an access tree is O(log p).

2.2 Results

Walking up in trees

In the algorithms of the next sections, processors walk up from leaves to the root of a
binary tree. We use several techniques of walking up a binary tree, because we need
different sorts of processor cooperation.

Let T be a binary tree of depth h. Suppose T has root r and suppose that processor
PE; is associated with leaf /;. Not with every leaf necessarily a processor is associated.
Let v be an internal vertex of T'. Suppose a processor is associated with a leaf in Thest(v)
and another processor is associated with a leaf in T ight(v)- When these processors walk
up from there associated leaves to r, they do not have to arrive at the same time at v.
This gives rise to three walking up techniques.

1. The processors walk up in T. They avoid concurrent reads and writes when they
arrive at the same time at a vertex v in the following way.
Let v have children v; and v,. When a processor PE; is associated with v; and
at that time no processor is associated with v, PE; associates itself with v.
When a processor PE; is associated with vy, and at the same time a processor PE;
is associated with ve, PE; is associated with v and stores index 7 in a broadcast
queue. If necessary PF; can inform PE; later about some information. Processor
PEj; has finished the walking up in T.
It is possible that a vertex is visited by more than one processor. A difficulty
of the technique is to decide when all processors have finished walking up in T'.
Notice that every path in T contains at most h vertices. So a processor has
finished the walking up after it has visited at most h vertices.

2. In the second walking up technique again processors do not need to arrive at
the same time at a vertex. But during the walking up at most one processor
is associated with a vertex v. To achieve this each vertex v has a mark field
visited(v). The first processor associated with v sets visited(v) to true. When
later a processor PE); visits v, it finishes the walking up. If necessary, PE; waits
at v to get informed by PE; about certain data.

To decide when all processors have finished their walking up, again the fact is
used that every tree path contains at most A vertices.

3. In the third walking up technique processors are forced to arrive at the same
time at a vertex v. Let v be an internal vertex of T. Suppose a processor PE; is
associated with a leaf in T}, ft(v) and another processor PE; is associated with a

leaf in T} ps(v). Suppose that during the walking up PE; will once be associated
with left(v) and PE; with right(v). Then PE; or PE; will be associated with
v only when PE; is associated with left(v) and PE; is associated with right(v).
The other processor has finished walking up and waits, if necessary, at v to get
informed about certain data.

As soon as a processor is associated with the root of T, all processors have finished
walking up in T. To achieve this a vertex v contains two mark fields arrived(v)
and information(v). The field information(v) indicates whether there will ever
be a processor associated with v. The field arrived(v) is set to true when a
processor is associated with v. The information fields are set using the first
walking up technique. There will be a processor associated with v only if the
fields arrived(left(v)) and information(left(v)) have the same value and the
fields arrived(right(v)) and information(right(v)) have the same value. When
a processor is associated with v arrived(v) is set to true.

Theorem 2.1 Let T be a binary tree of height h. Suppose that with every leaf in T a
processor is associated. When the processors walk up in T using any of the walking up
techniques described above, every processor visits at most h vertices.

Pointer jumping

Let L be a linked list of cp vertices, ¢ a constant. With every ¢ (consecutive) vertices
in L a processor is associated. With a processor at most ¢ vertices are associated. It is
possible to determine the rank of every vertex in L using p processors in O(log p) time.
Furthermore, suppose that every vertex v in L contains an element e,. Then also the
minimum element stored in L or the sum of all elements stored in L can be computed
in time O(log p), using p processors.

The information is computed using pointer jumping, see for instance [CLR90].

Memory space management

To avoid concurrent reads and writes memory space is stored in a stack. Processors
can ask for memory using the operation allocate. They can put memory on the stack
using the operation free. p Processors can get a new memory unit or return a memory
unit in O(log p) time using p processors, [Vel87]. We will assume that units of memory
space, for instance empty vertices, are stored in the stack.

Distribution and help indices of processors
We will give two results concerning the distribution of processors. We start this section
with a result concerning the computing of help indices for processors.

Result 1 Let PE,,..., PE, be the processors of an EREW PRAM, where every proces-
sor knows its indez. Consider any sequence of processors PE; , ..., PE; of the EREW
PRAM, where i; € {1,..,k} and i; < ir iff j < k. Then in O(logp) time every
processor PE;; can compute j.

Now the results concerning the distribution of processors.

Result 2 Let T' be a binary tree of height h with at least p leaves. Suppose that in
every vertez v the number of leaves of T, is stored.
Then p processors can be distributed among the p leftmost leaves in O(h) time.

Result 3 Let L be a linked list with at most cp vertices, c a constant.

Suppose that with every vertez in L a processor is associated. Suppose that every
processor is associated with at most c, not necessarily consecutive, vertices in L.

It 1s possible to associate every processor with at most ¢ consecutive vertices in O(log p)
time using the p processors.

ParRebuild

Let L be a linked list containing cp elements, ¢ a constant. With every c elements a
different processor is associated. During the ParRebuild operation a BB[1/3] tree T
is constructed. A BB[1/3] tree is a balanced binary tree. In section 3 we will give
a definition of a BB[1/3] tree. The leaves of T contain the elements of L. Suppose
processor PF; is associated with vy, ...,v.. The algorithm ParRebuild consists of the
following steps:

1. Every processor is associated with at most ¢ consecutive vertices. Using Result
3, this can be accomplished in O(logp) time.

2. Every processor PE; asks ¢ empty vertices. With ¢ — 1 vertices PE; builds
sequentially a BB[1/3]-tree T;. For details, see [Ove83]. Afterwards it associates
itself with the root of T;. Notice that PE; has one empty vertex more.

3. Now the whole BB[1/3]-tree is built by constructing the tree level after level. To
construct a level every processor PE; maintains a value ind(). Initially ind(i) =
i. Suppose PE; is associated with root v;, 1 < i < p. If for PE; ind(7) is odd,
PE; uses its empty vertex to create a parent node for v; and v;, 1, if such a vertex
vi+1 exists. The processor PE; is associated with this new parent vertex. Now
the ind value of PE;;; is divided by two and a new level can be constructed.
Let j be an index such that at a certain layer the vertex associated with PE; did
not get a new parent. Then PE; gets a new ind-value |j/2].

It is easy to associate with every vertex on the leftmost path of the newly built BB[1/3]-
tree a different processor in O(log p) time.
The ParRebuild algorithm runs in O(log p) time using p processors.

ParSearch

Searching p values a1,a2...a; in a binary search tree of depth A using p processors
can be done in O(h + logp) time, using techniques discussed by Wagner, Paul and
Vishkin, [PVW83]. Since sorting p values on an EREW PRAM with p processors can
be done in O(log p) time, [Col88], we will assume that a; < az... < a,. Figure 4 gives
a detailed description of an algorithm for parallel search in a binary search tree using

Input

Chain C = (a3,02,...,0p), a1 S ap < ... < ap, and binary search tree of depth h. Processor
PE; is associated with «;.

Output

A set of pointers p; and a set of indices ind;. Suppose C';: arrives at leaf I;. Then p;i points to
l; and py = nil for i<k < j and indg =i fori < k < j.

Chain C} = (a4, ...,;) is associated with internal node w. Node w has search value I(w).
Processor PE; is active and knows a; and index j. All processors PE}, i<k < j are off.

The PE; compares o; and a; with I(w).

if I(w)<a; then Cj} is sent to w’s right child.

if {(w)>a; then Cj is sent to w’s left child.

if a; < l(w) < o

then C; is divided in two chains Ciy, CM*, where M = [£1].
if I(w)>a then Cj; is sent to w’s left child.

if l(w)<apm41 then Cf“l is sent to w’s right child.

Initial
= C’ll, and w is the root of 7.

Figure 4: Algorithm ParSearch

these techniques.
Let processor PE}, be associated with value aj. During every step of the search algo-
rithm PE; tries to insert subchain C’i (@i, iy 1, ..., ;) in subtree T,, where v is an
internal vertex of T'. It is said that subcha.m C‘ (@i, az, ...,a;) is associated with v,
PE; is active and PEy is off, i<k < j. Imtla.lly 01 is associated with the root of T.
The insertion of a subchain in a subtree is done as follows
Suppose that v has search value I(v). During the step PE; determines whether o; <
l(v) < @, l(v)<a; or I(v)>a;. In the last two cases the whole subchain C" can be sent
to the right- or left child of v, respectively. Otherwise C' is divided in two subchains
Y and CM+1, where M = I_—J-J One of the two subcha.ms is sent to a child of v.
The vertlces visited during a parallel search constitute search paths.

Definition 2.1 Let T be a weight-balanced tree. Suppose a value a is searched in T
during a parallel search. Suppose subchains containing a are associated with the vertices
V1,...;Um tn T during the parallel search . It is said that vy, ..., v, constitute the search
path of o in T.

Notice that the search paths for a; and a;, 1 < 7,5 < p, need not to be vertex disjoint.
Lemma 2.2 states that during any step of the algorithm at most three subchains can be
associated with a vertex. To prove lemma 2.2, we first need to prove another lemma. In

the lemma’s, C;, C2 and Cj3 are subchains. Let X be a real value then X < C; means
that X is smaller than or equal to the smallest element in C; and C; < C; means that
every element in C; is smaller than or equal to every element in C;.

Lemma 2.1 Suppose that at a certain step i the subchains C;, Cy and Cs are associated
with a vertez v and C1 < C3 < C3. Then at step i — 1 Co was already associated with v
as part of another subchain. During step i — 1 the subchains C; and C3 were sent from
v’s parent to v. '

Proof

The subchains Cy, C; and Cj; are associated with v at step :. During stage 1 there was
a chain C = (...,,C},...,Cs, ...,Cs,...) associated with the root of T. Notice that the
values in the subchains C;,Cs and Cj followed the same search path in T' from the root
to vertex v, possibly as part of other subchains. This means that the fact, that C has
been split, is caused by search values X on the search path with X < C; or C3 < X.
Suppose that at a certain time C is split between chains C; and C, by a search value
X with X < C;. Then the subchain C' = (..., Cs, ..., Cj, ...) is sent to the right child of
v. Later on C’ is splitted between C; and C3 by a label Y with ¥ > C;. Afterwards
(..., C3,...) goes straight to vertex v. The subchain (..., C3,...) will arrive at v at an ear-
lier step than the subchain (...,Cj3,...). Since Cp and Cj are associated with v at step
i (...,Cy,...) is stopped at v by search value {(v). Notice that I(v)>C; and I(v)< Cs.
Therefore C; and C3 cannot be stopped at v. Thus they arrive at step i at v.

The cases when C is split first between C2 and C3 by a search value X <C} or C is split
first between C; and C3 or C; and C3 by a search value Y >C3 are proved similarly.
End Proof

Lemma 2.2 Let T be a binary search tree of depth h. During each step of the search
algorithm at most three subchains are associated with a vertez in T.

Proof

Suppose that during the first : — 1 steps, ¢ > 1, of the ParSearch algorithm at most
two subchains are associated with a vertex in T. Then the lemma holds for the first
i — 1 steps.

The lemma for s > ¢ can be proved easily with induction. The argument used in the
induction is the following. Suppose that at a stage 7 + 1 the subchains C;,C5 and Cj
are associated with a vertex v. Then C; < I(v) < C3. To see this, notice that according
to lemma 2.1, C2 was already associated with v during stage ¢ as part of a subchain C,”.
The subchain CF has been split by the value I(v), thus a) < I(v) < oy. The argument
follows now from the fact that C; < C',k < Cs.

End Proof

Theorem 2.2 The algorithm ParSearch has a time bound of O(h+logp) on a EREW
PRAM.

Proof

The lemmas imply that each step lasts O(1) time, since during a step only a constant
number of subchains is associated with a vertex.

Let a; be some key in the initial chain C. Notice that C can be halved at most [log p]
times. So «; arrives at a leaf in O(h + log p) time.

End Proof

3 Weight-balanced Trees
3.1 Definition of Weight-balanced Trees

To implement the parallel priority queue we will use a special kind of binary search
tree, a BB[a] or weight-balanced tree. Let T be a binary search tree. Data is stored
in the leaves of T' and all leaves are connected in a linked list. In the internal vertices
of T a search value is stored. Every internal vertex v in T also contains the pointers
parent, left and right to respectively the parent, left- and right child of v. The root of
T has a parent pointer with value nil. Every internal vertex v has an additional value
size(v) which contains the number of elements stored in T,,. Throughout this paper T},
denotes the subtree of T rooted at v.

Definition 3.1 [BM80] Let o €]0,1] and let v be an internal vertez in a binary search
tree T. The balance of v, denoted by B(v), is defined by

B(v) = size(left(v))

size(v)

A vertez v is called balanced ifa < B(v) < 1—a. Otherwise a vertez v is unbalanced.
Tree T is o BBfa]-tree iff every internal vertez v is balanced. Tree T' is a weight-
balanced tree if there is an o €]0,1], such that T is a BBfa] tree.

It is easy to see that the depth of a BB[a]-tree is bounded by O(logn), [CLR90).
Vertices in a weight-balanced tree can become unbalanced, when an element is inserted
or deleted. Notice that only vertices on the search path can become unbalanced. So
after a single insert or delete operation O(log n) vertices are unbalanced. In this chapter
we will only consider the problem of balancing an unbalanced vertex v with 8(v)<a.
The case when 3(v)>1 — « is treated symmetrically.

An unbalanced vertex v can be balanced by a rotation at v or by rebuilding T, where
% = v or u is an ancestor of v. The figures 5 and 6 show two rotations, the single and
the double rotation.

Let ; be a vertex with right child §; and let 6 have left child §3. Denote the balance
of §;, 1 < i < 3, after a rotation by 5'(5;). Then after a single rotation

B(61)
B(61) + (1 — B(81))B(62)

B'(61) =

10

Single rotation

g

Figure 5: The single rotation

DOUBLE ROTATION \

/

Figure 6: The double rotation

B'(62) = P(61) + (1~ B(61))B(52)
B'(83) = pB(63)

And, after a double rotation

, _ B(81)
P) = &+ (= BEIBEIEG)

’ _ B(62)(1 - B(83))
B = I BEAes)
B(81) + (1 — B(61))B(62)B(83)

' (8s)

For details, see [BM80].
Blum and Melhorn prove the following theorem, [BM80].

Theorem 3.1 Let a € [Tzl"l - %ﬁ[and let 81, 62 and 83 be as before. Let B(6,)<a
and a < B(682), B(83) <1 — a. Suppose

size(left(61))
—_—— >
size(61)—1 ~ *
t.e. T is obiained by insertion of a leaf in Ty, , or
size(left(61)) +1
size(61)+1 ~

11

i.e. T is obtained by deletion of a leaf from T, zys,)-
Then if B(62) < 2—3;, 61 can be balanced using a single rotation at ;.
If ﬂ(62)>—2—§; , then 61 can be balanced using a double rotation at 6.

Rebuilding T, is done by building a BB[1/3]-tree on the leaves of T},. The algorithm
ParRebuild described in section 2 can be used to rebuild 7},.

3.2 Rotations

In the previous section we stated a result of Blum and Melhorn. Now we will prove
some stronger results concerning rotations. Let 61, §; and 63 be as before. In the first
theorem we show when 6; can be balanced using one rotation assuming that §; and 63
are balanced.

Theorem 3.2 Let o €]2/11,1 — 1v/2[, 61, 62 and 63 as before. Suppose B(61)<a,
alfb)<l-aanda<fB(3)<l—a.lf

a a(l — a)
A 2 ma{ g S Tha =)
Then

1. 6y can be balanced using a single rotation if B(63) < ﬁ After the single rotation
62 and b3 are still balanced.

2. 61 can be balanced using a double rotation if ﬂ(62)>ﬁ. After the double rotation
62 and b3 are still balanced.
Proof
Suppose that 3(62) < 5—_1;
Then after a single rotation at §;

. _ B(61)
A A EY AT EY(A)
. &
T ata(l-a)
< 1—a,sincel—3a+a?2>0
And
! _ ,3(61)
Pl = e TBE)=FE)
> T=a)(=a)
T e T e -)
o1
> a

12

Also after the single rotation é; is balanced, since

B'(62) = B(é1) +B(62)(1 - B(61))

IA A

1- a,since 1 —4a +2a2 >0
And
B'(62) = PB(61) +B(62)(1 - (b))
> a’+a(l-a?)
> o

Now, suppose 3(62)> 51— then for §'(6;):

) B B(61)
B(é) = B(81) + B(83)B(82)(1 ~ B(61))
_ 2-a
T 3_-2
< 1l-a,sincel —4a+2a2>0
and,
, B B(81)
PO = e+ ARG =B
T) 4 (- 020 - ()
a
T at(-a

= a
For the new balance of 6,
' _ (1-p(%3))8(52)
P& = T 5G)80)
(1-a)?
l1-a(l—-a)
"

IN A

and,

(1 — B(83))B(52)
1 — B(62)B(53)

B (82)

2—a
l-a
1- 2—a

v

13

At last, the new balance of 63
B'(6s) B(61) + B(83)B(62)(1 — B(61))
a+(1-a)d

1-a,sincel —3a+a2>0

IA IA

and,

I

' (83) B(61) + B(83)B(62)(1 — B(61))
> %a + ———a(; ~ 79)

End Proof

In the next theorem we consider the situation when a rotation takes place at §; and &,
and 63 are not necessarily balanced.

Theorem 3.3 Leta € [1—21-, 1- %\/190]. Let 61, 62 and 83 be as before.
Suppose that 0.9a < B(61) < a and that 0.9a < B(62) <1 —0.9¢.
Then

1. The vertices §; and 62 can be balanced using a single rotation at 6y, if B(62) < i—l_a .

2. The vertices §; and 63 can be balanced using a double rotation at 6, if B(82) > ﬁ
and 0.9a < 3(63) < 1—0.9a. After the doubdle rotation 0.9a < 8'(62) < 1—0.9a.

Proof
Suppose that 8(62) < 5.
For the vertex §;, after a single rotation

, _ B(61)
p(6) = B(61) + B(62)(1 — B(51))

a+0.9a(1 - a)
1 — o, since 0.9 — 2.8a + 0.902 > 0

IA

IA

and,

B(61)

B(81) + B(82)(1 — B(61))
0.9a

1-0.9
0.9a + —2:a—a
1.8a — 0.9a2

1+ 0.9a — 0.9a2
a, since 0.8 — 1.8« + 0.902 > 0

B'(61)

v

v

14

for vertex 62, after the single rotation

B'(62) = P(61) +P(62)(1 - B(61))
l—-a
< a+ "~
_ l14+a- a?
- 2 —-a
< 1-—aq,sincel —4a+2a%>0
and,
B'(62) = B(61) + B(62)(1 — B(61))
> 0.9a+ 0.9a(1 — 0.9a)
> o

Suppose that B(63) > ﬁ- and that 0.9a < 5(63) <1 —0.9a.
For vertex §; after a double rotation at §;,

B(61)
B(61) + B(83)B(62)(1 — B(61))

a+ -g'_—*_’—z-(l—a)
2—-a
2.9 - 19a

1-— a, since 0.9 — 3.8a +1.9a2 > 0

g) =

IA

IA

and,

,3’ (61) ﬂ(al)
B(61) + B(63)B(82)(1 — B(61))
0.9«
0.9a + (1 — 0.9a)3
0.9a
1 - 1.8a + 2.43a2 — 0.7290°
> @, since 0.1 — 1.8a + 2.4302 — 0.7290° < 0

v

For vertex 4 after a double rotation at &1,

_ B(62)(1 - B(%s))
1 - B(52)8(8s)
(1-0.9a)2
1—-0.9a + 0.81a2
1—0.9a, since « > 0

B (82)

IAN A

15

and,

B(62)(1 — B(83))
1 — B(62)B(83)

0.9a
2-a
= _ 1-0.9«
1 2—a

> 0.9«

' (82)

For vertex 83 after a double rotation at 6;,

B’ (63) B(61) + B(83)B(62)(1 — B(61))
a+(1-0.90)*(1-a)

1 - 180+ 2.61a% — 0.81a°

1— a, since 0.8 — 2.61a + 0.81a% > 0

IN

I

IN

and,

p'(63)

I

B(81) + B(83)B(62)(1 — B(61))
0.9a + 0.9a§i—a(1 —0.9a)
a, since 0.7 — 0.71a > 0

v v

End Proof

4 Implementation of the Priority Queue

4.1 Introduction

In this section we give an implementation for a priority queue for an EREW PRAM.
Formally, a priority queue stores a set of n elements e, each with a priority pr(e). A
processor PE;, 1 <1 < p, can perform one of the following operations on PQ.

1. ParEztractmin(PQ)
Processor PFE; deletes an element from PQ), with a priority as low as posible that
no processor PFE; deletes from PQ, 1 < j <.

2. ParInsert(PQ, (e,pr(e)))
Processor PF; inserts element e with priority pr(e) in PQ.

3. ParDecreasekey(PQ, {g,pr))

Processor PE; decreases the priority of element ¢ to pr.

Let S be a collection of abstract data structures DSj, ..., D.S,. Suppose some processors
perform an operation on DS;, some processors perform an operation on DS, etc. In
order to perform operations on DS; the processors that access DS; should get a help

16

index such that PE},...,PE,; will perform an operation on DS;. To determine the
help indices, with every abstract data structure an access tree is associated. Using
this access tree PFE; can compute its help index in O(log p) time, see result 1. Before
an operation starts, the processors PEy,...,PE; need to be distributed among the
vertices on the leftmost path. Using an array of pointers with a pointer to every vertex
on the leftmost path, this can be accomplished in O(log p) time. Let the leftmost path
contain m vertices. Processor PE with helpindex j is associated to the vertices on
the leftmost path to which the pointers of the array with index (5 — 1)% +1,...,] -'5'*
point. Notice that the time bound for an operation on a collection of priority queues is
determined by the slowest priority queue, i.e. the priority queue that takes most time
to perform an operation.

4.2 Implementation

To implement a priority queue PQ suitable for parallel access we use a weight-balanced
tree T'. The elements of PQ are stored in the leaves of T', from left to right in the order
of increasing priority. T is indexed using the priorities associated with the elements.
With every vertex on the leftmost path of T' a processor is associated and a processor
is associated with at most ¢ consecutive vertices on the leftmost path. When inserting
elements in PQ the elements are inserted in T. Where a new element e is inserted
in T, depends on its associated priority pr(e). So when p elements e;,e3,...e, with
associated priorities pr(ey),...,pr(ep,) are inserted in PQ, first a search operation on
T is performed for the values pr(e;),...,pr(ep). We assume that p = O(log n).

4.3 ParExtractmin

Let weight-balanced tree T' implement priority queue PQ. Suppose the processors
PE,,...,PE, all want to perform ParEztractmin(PQ). In this section we describe
an algorithm that is performed by every processor PE;, 1 < i < p. Figure 7 shows the
frame of the algorithm.

During the preprocess step, processor PE; determines the vertex v on the leftmost

Preprocess

Delete the elements from PQ with lowest priority that PFE,,..., PE;_1 do not delete from PQ.
Balance T

Restore

Figure 7: The frame of the algorithm that is executed by PE;

path of T, such that size(v) > p and v is as low in T as possible.

Then the processors PE},...,PE, distribute themselves among the p leftmost leaves
of T,.

During the delete step the p leftmost leaves of T are deleted from the linked list. The

17

parent(8,)

Figure 8: A single left rotation on the leftmost path of T

processors adjust the size information in the vertices on the leftmost path of T'.

The algorithm finishes with a restore step. During the restore step processors are
associated again with at most ¢ adjoining vertices on the leftmost path of T'.

The balance step of the algorithm is the most complicated step. During the balance step
unbalanced vertices are balanced using rotations or by rebuilding subtrees. To decide
how a vertex is balanced, first a vertex u is determined, that satisfies the following
properties.

1. v = v or u is an ancestor of v.

2. For every ancestor w of u:

a a(l - a) }
o)2-a)’1+a—a?

B(w) > maz{ i

3. Bu) < mam{(l_a;‘zz o(1—a) }

—a)? 1+a—a?

Subtree T;, will be rebuilt. All unbalanced ancestors of u are balanced using a rotation.
The rotations can be performed in O(1) time.

parent(81)

Figure 9: A double left rotation on the leftmost path of T'

18

Lemma 4.1 Let tree T be ¢ BBJa]-tree. Let 61 be a vertez on the leftmost path of T.
Let 6; have right child 65 and parent parent(8;) and let 85 have left child 63.
Suppose that

maz] a a(l — a)
l-a)2-a)’1+a—a?

Then

}<B(é1)<a

1. When a rotation takes place at 6; only information is used and updated in the
vertices 6;, 62 and 63.

2. If after balancing 61, vertez r becomes the parent of 61, r = 63 or r = 63, then
parent(8;) becomes the new parent of r. The relation between r and parent(é;)
can not be altered by a leftrotation at parent(6;).

Proof
The first fact stated in this theorem can be easily seen from the figures 5 and 6. The

second fact can be seen from the figures 8 and 9.
End Proof

Notice that the vertices 62 and 63 are not on the leftmost path of T". Therefore all
necessary rotations are independent of each other , and we have the following corollary.

Corollary 1 Let T be a BBfa]-tree. All vertices on the leftmost path of T with

= it a)z} <B(6) <a

maw{(l—a)(Z—-a)’l—{—a—a

can be balanced in O(1) time, using p = O(log n) processors.

Proof

The vertices can be balanced using single or double rotations, see theorem 3.2. All
single rotations can take place at the same time and all double rotations can take place
at the same time, see theorem 4.1.

Because a rotation can be performed in O(1) time, the parallel execution of all rotations
takes also O(1) time. We assumed that p = ©(log n).

End Proof

Rebuilding T, can be done in O(logp) time.

Lemma 4.2 Let u be as above. Then rebuilding T, with p processors can be done in
O(log p) time.

Proof

Before deleting the elements from T, f(u) > a. After deleting the elements from T,

B(u) < v, where v < maw{(l_aﬁz_a), ﬁfi__z)z}.

19

Thus before deletion T, contained at most cp elements, where ¢ = a—_l_,; Using the

parRebuild algorithm of section 2.2, it is easy to see that T}, can be rebuilt in time
O(logp).
End Proof

The time complexity is stated in the following theorem.

Theorem 4.1 Let PQ be a priority queue containing n elements.
Then p processors of an EREW PRAM can perform a ParEztractmin operation on PQ
in O(logp +loglogp + lgf,ﬂ) time.

Proof

Notice that for O(log p) vertices on the leftmost path of T', size(u) < p. So when PE;
walks up from the leftmost leaf of T' to the root, it finds after O(log p) time a vertex u
with size(u) > p. The distribution of the processors among the p leftmost leaves of T,
can be done in O(logp) time, see result 2. So the preprocess step takes O(log p) time.
The delete step takes O(1) time, since with every c vertices on the leftmost path of T'
a different processor is associated.

The balance step takes O(log p) time, see corollary 1 and lemma 4.2.

Finally, the restore step takes O(log p) time, see result 3.

End Proof

4.4 Parlnsert

Introduction

In this section we give two insert algorithms that insert ey, .. ., e, with priority pr(e;),1 <
i < p, in PQ using p processors in O(log n + log p) time. Since sorting p values on an
EREW PRAM with p processors takes O(logp) time, [Col88], we will assume that
pr(e1) < pr(ez) < ... < pr(ep). The first algorithm is a parallelization of the sequential
insert algorithm, [BM80], and works according a bottom-up approach. The disadvan-
tage of this algorithm is that there is a lot of communication between processors.

The second algorithm minimizes the communication between processors, and works top
down.

Both insert algorithms exist of three steps:

1. The places where the elements should be inserted are searched.
2. The elements are inserted.
3. The resulting tree is balanced.

If pr(e;) is smaller than the smallest priority of an element stored in T, then e; is first
inserted. Therefore we assume that pr(e;) is equal to or greater than the smallest pri-
ority stored in 7. In both insert algorithms processor PFE; is associated with element e;.

20

Algorithm ParlInsertl
In the first parallel insert algorithm the three steps of the introduction are described
as follows:

1. The places in T', where the new elements should be inserted, are searched using
the ParSearch algorithm on the key value pr(e;),...,pr(ep). During the search
the information about the new balances is updated.

2. Every processor PE,, 1 < s < p, asks one empty vertex v,. The empty vertices
become the new leaves in T. The pointer right(v,) is set to vertex v,y iff
ind, = ind,y;. Consider subchain CJ’: = (ai,...,q;) with ind; = ... = ind;.
Suppose p; is set to leaf I; and I; has its pointer right set to leaf l. Processor PE;
stores I. The right pointer of I; is set to v;. Thus the elements of C;: are stored in
a linked list. Now a BB[1/3]-tree TC;; is built on this list with Par Rebuild. Then

in T, I; is replaced by T;: and processor PE; is associated with the root of T:.
2 2

3. Consider T after the new elements have been inserted. Let u; be an internal
vertex in T, such that

a ol - a)
a)2-0a)’'1+a-a?

B(u;) < maz{ = }

or

o a(l—a)
a)2-a)’'1+a—a?

Blu;) > l—maa:{(l_ }

and for every ancestor v; of u;,

a a(l - a)
2-a)’'l+a—a?

}.

1-a)
_az}gﬂ(vi)§1~max{(l_a

PE; determines such a vertex u; on the search path of «;, if such a vertex u;
exists.

(a) The subtrees T, are rebuilt. The processors used for this rebuilding are the
ones associated with the newly inserted elements in T,;. Since before inser-
tion B(u;) > o and after insetion B(u;) < 0.9 there are enough processors
to rebuild T, in O(log p) time.

(b) Unbalanced ancestors v; of u; are balanced using a rotation. No rotation
takes place at v; until all vertices in its left- and right subtree are balanced.
To achieve this the processors walk up along tree paths using the third walk-
ing up technique. A single rotation is used if B(right(v;)) < ﬁ Otherwise

21

v; is balanced using a double rotation.

Notice that only rotations performed at vertices on the leftmost path, cause
an extra vertex to appear on the leftmost path. So with every c consecutive
vertices on the leftmost path a processor can be associated in O(log p) time,
see result 3.

Theorem 4.2 The first parallel insert algorithm as described in this section runs in
O(logn + log p) time using p processors of an EREW PRAM.

Proof

The search part takes O(logn + log p) time using p processors.

The insert part takes O(log p) time using p processors.

The balance part takes O(log n+log p) time using p processors, since every search path
contains O(logn) vertices and rebuilding takes O(log p) time.

End Proof

Algorithm Parlnsert2

Also the second parallel insert algorithm consists of a search part, an insert part and a
balance part. The insert part of ParInsert2 is exactly the same as the insert part of
ParInsertl. The search and balance part of ParInsert2 are described below. Except
when subtrees are rebuilt no communication occurs between processors.

Search

During the search part again the places are searched where the new elements are in-
serted. Furthermore, information is gathered about which processor is going to balance
which vertex. Processor PE; maintains during the search path a balance queue Q;.
Balance queue Q); is filled using the following convention.

Let subchain C = (k(e;), ..., k(ej)) be the first subchain that is associated with a vertez
v. Then v is put in the queue Q; of processor PE;.

To be able to decide whether a subchain is the first subchain visiting a certain vertex
a field associated(v) is maintained in v. Before the search part associated(v) = false,
for every internal vertex v.

Balance

Unbalanced vertices on search paths in T are balanced top-down. To avoid concurrent
reads and writes, internal vertices in T store an allowed field. An internal vertex v in
T is balanced using a rotation only if allowed(v) = true.

An internal vertex v stores also a field rebuilt(v). The field rebuilt(v) is set to true if
there is a vertex u such that T}, will be rebuilt and © = v or u is an ancestor of v. During
the walking down all necessary rotations are performed. After the walking down sub-
trees are rebuilt. Initially for every internal vertex v, allowed(v) = rebuilt(v) = false,
except for the root r which has allowed(r) = true and rebuilt(r) = false.

22

Let processor PFE; have associated balance queue Q;.
while @; is not empty
do balance step on vertex v;, where v; is the first vertex on Q;.
if allowed(v;) = true or rebuilt(v;) = true
then remove v; from Q; and set allowed(v;) and rebuilt(v;) to false.
od
Rebuild the subtrees

Figure 10: The algorithm performed by processor PE; during the balance part

The frame of the balance part is described in figure 10.

During each balance step a processor considers the first vertex on its balance queue. A
vertex v is removed from the balance queue after the balance step only if allowed(v) =
true or if rebuilt(v) = true. The loop is iterated until all balance queues are empty.
Again, during the balance step, vertices are balanced using rotations or by rebuilding
subtrees. Let §; be an internal vertex of T' with right child 82, such that after insertion
B(61) < a. Let 62 have right child §3. Below we give the conditions, when Tj5, must
be rebuilt, when a single rotation should take place at §; and when a double rotation
should take place at §;. We only treat the case when 8(6;) < a. The case when
B(61) > 1 — a is treated symmetrically.

1. A single rotation, which is performed when

(a) 0.9 < B(61)<a
(b) 0.9a < ﬂ(52) < f_—l—a

2. A double rotation, which is performed when
(a) 0.9a < B(61)<a
(b) 52-<B(62) <1-09¢
(c) 0.9a < B(83) <1—0.9a

3. Rebuilding T;,, where © = §; or u is an ancestor of §;. This happens in all other
cases.

The factor 0.9 is rather arbitrary. A factor is needed to assure that the rebuilding
of subtrees takes O(logp) time. Notice that also theorem 3.3 has a value 0.9« in its
conditions.

Suppose that at a certain balance step, vertex §; is the first vertex on balance queue
Q; of processor PE;,1 <i<p.

1. If allowed(61) = rebuilt(6;) = false, nothing happens in that balance step with
61. Vertex 6; stays at the front of Q;.

23

2. If rebuilt(6;) = true then rebuilt(8s) is set to true. The same happens to the
rebuilt field in the left child of 6;.

3. If allowed(81) = true and §; is balanced, the allowed fields of the children of §;
are set to true.

4. If allowed(61) = true and §; should be balanced using a single rotation, processor
PE; performs a single rotation at §;. The allowed fields of §2 and the allowed
fields of the new children of 6; (the children of §; after the rotation) are set to
true.

5. If allowed(6,) = true and 6; should be balanced using a double rotation, processor
PE; performs a double rotation at 6;. The allowed fields of 85 and of §;3 and of
the new children of é; (the children of 6, after the rotation) are set to true.

6. If allowed(6,) = true and T}, should be rebuilt, rebuilt(6;) is set to true. Also
the rebuilt fields of the children of §; are set to true.

Suppose that during a balance step vertex v is considered, and that allowed(v) = true
or rebuilt(v) = true. Notice then that the allowed or rebuilt fields of v’s children are
set to true. If a rotation has been performed at v, also the allowed fields of v’s new
children are set to true. This fact will be used later on to prove the time complexity of
the algorithm. We need the next lemma to prove that no concurrent reads and writes
occur during a balance step.

Lemma 4.3 Let v be a vertez such that during balance step i allowed(v) is set to true.
Then all ancestors of v are balanced.

Proof

The lemma is proved with induction on i. With balance step 0 the initialization is
meant.

basis i = 0, the lemma is trivially true.

hypothesis Suppose the lemma holds for all balance steps before the i’th balance step.
induction

Let v be an internal vertex in T' and suppose allowed(v) is set to true during balance
step i. There are five cases why allowed(v) is set to true during balance step 1.

1. At the beginning of balance step %, allowed(parent(v)) = true and parent(v) is a
balanced vertex. The allowed field of parent(v) has been set to true at balance
step ¢’ < i.

Using the hypothesis the lemma holds for this case.

2. During balance step 7 a single left rotation is performed at a vertex w and v =
right(w), v = left(w) or v = left(right(w)). Using theorem 3.3, notice that w
and right(w) are balanced vertices after the rotation. The balances of ancestors
of right(w) are balanced since allowed(w) has been set to true after at balance
step i’ < 1.

24

3. During balance step i a single right rotation is performed at a vertex w and
v = left(w), v = right(w) or v = right(left(w)). Symmetrically to the case
above.

4. During balance step i a double left rotation is performed at a vertex w and
v = right(w), v = left(w), v = left(right(w)) or v = left(left(right(w))).
Using theorem 3.3, notice that w and left(right(w)) are balanced vertices after
the rotation. The balances of ancestors of right(w) are balanced since allowed(w)
has been set to true after balance step i’ < i.

5. During balance step i a double right rotation is performed at a vertex w and
v = left(w), v = right(w), v = right(left(w)) or v = right(right(left(w))).
Symmetrically to the case above.

End Proof

Theorem 4.3 No concurrent reads and writes occur during the balance part.

Proof

Suppose v is a vertex with allowed(v) = true and suppose v is the first vertex on Q;.
Furthermore, suppose allowed(v) has been set to true at balance step j.

All ancestors of v where balanced at that time, lemma 4.3.

At the balance step j, when processor PE; examines v, still all ancestors of v are bal-

anced. Therefore no rotation takes place at an ancestor of v when PE; examines v.
End Proof

The balance part finishes when the balance queues for all processors are empty and
the subtrees have been rebuilt. We now will analyse after how many balance steps the
balance queues are empty.

Let vertex 6; be the first vertex on balance queue Q;. When allowed(6;) = true or
rebuilt(61) = true, §; will be removed from Q; after the balance step. Since Q; contains
O(log n) vertices, after O(logn) of such balance steps Q; is empty.

Consider the case that allowed(8;) = rebuilt(61) = false. Then nothing happens with
01 during that balance step. Processor PE; performs a busy wait until allowed(6;) =
true or rebuilt(6;) = true.

To bound the number of balance steps of this kind, we associate a help queue HQ;
with Q;. HQ); contains all the vertices on the search path of PF;. Vertices on the
search path, that are in Q;, are called marked vertices. Other vertices in HQ; are
unmarked vertices. For analytic purpose, we pretend that PE; performs balance steps
on HQ); instead of on Q;. The balance steps PFE; performs on HQ; are described in
figure 11. Instead of performing a busy wait on Q;, PE; removes unmarked vertices
from HQ; until there is a marked vertex §; at the front of HQ;. When this happens
allowed(61) = true or rebuilt(6;) = true, as is proved in the next lemma.

25

while HQ; is not empty
do Let §; be the first vertex on HQ;.
if 6, is a marked vertex on HQ;
then PE,; treats §; as in figure 10.
else Suppose 6, is an unmarked vertex on HQ;.
Then PFE; removes 6§; from HQ);.
od

Figure 11: The balance step on HQ;

Lemma 4.4 Let HQ; be the help queue associated with balance queue Q;, as above.
Suppose that during a balance step processor PE; examines the first vertez v on HQ;,
where v is either marked or unmarked.

Then allowed(v) = true or rebuilt(v) = true.

Proof

Let v be the j’th vertex on HQ; and suppose that rebuilt(v) = false.

If i = 1, then the lemma holds trivially.

Let > 1. Consider T before any rotation has taken place. Let w = parent(v); if w is
not the root of T, let u = parent(w), and if u is not the root of T, let u' = parent(u).
Notice that HQ; contains v, u, w and v, adjoining and in that order, see figure 12.
Suppose v is considered for the first time in balance step i. Suppose that at the time
that w was considered w was still the parent of v. Then allowed(v) was set to true,
since by treating w the allowed fields of all w’s children are set to true.

Suppose that when w was considered, v was not anymore a child of w. Then this has
happened by one of the following cases.

1. A double rotation has been performed at u’ and u = right(u’) and w = left(u)
or u = left(u') and w = right(u).
If after the rotation, v is a child of v/, then allowed(v) is set during that balance
step.
If after the rotation, v is a child of u, then allowed(v) will be set in the next
balance step, when u is treated.

2. A double rotation has been performed at u.
Then v becomes the new parent of u and allowed(v) is set to true.

u .u W v

Figure 12: The order of vertices on HQ);

26

3. A single rotation has been performed at u.
Then v becomes the new child of « and allowed(v) is set to true.

End Proof

Theorem 4.4 After O(logn) balance steps the balance queues of all processors are
empty. All vertices v with rebuilt(v)=false are balanced.

Proof

From help queue HQ); associated with balance queue Q;, after each balance step a ver-
tex (either marked or unmarked) is removed, see also lemma 4.4. Since HQ; contains
O(log n) marked and unmarked vertices, after O(logn) balance steps HQ;, and thus
Q;, are empty.

Use theorem 3.3 to see that all vertices v with rebuilt(v) = false, that are removed

from a balance queue, are balanced.
End Proof

Rebuilding a subtree T, is done by all processors that have inserted a new element
in T,. It is easy to see that enough elements have been inserted in T, to rebuild T,
in O(logp) time. Notice that just before rebuilding, v has a balance less than 0.9a.
Before insertion, v had a balance greater than or equal to o.

Let T}, be the subtree before rotations have been performed at T'. Let §;, 62 and 63 be
as before. Suppose v = 63. If T'(v) = T'(v), enough new elements have been inserted in
T(v), since B(v) < 0.9a. There are three reasons why T'(v) and T'(v) can differ. Only
the last case is of interest, since only then T'(v) will be rebuilt.

1. Suppose a single rotation has been performed at 6;. By theorem 3.3, in that case
v is a balanced vertex.

2. Suppose a double rotation has been performed at parent(é;). By theorem 3.3, in
that case v is a balanced vertex.

3. Suppose a double rotation has been performed at 6;. In the next theorem it
is proved that then enough elements have been inserted in T, to rebuild T, in
O(log p) time.

Theorem 4.5 Suppose T, must be rebutlt. Suppose T, is rebuilt using the processors
that have inserted an element in T,,. Then enough processors have inserted an element
in T, to rebuild T,, in O(logp) time.

Proof
Let T! be as before. If T}, = T,, the theorem is trivial.
If T} # T,, theorem 3.3 tells us that v in T} has a balance less than 0.9a. Thus in that

27

case the theorem is also trivial.
End Proof

Notice that only rotations performed at vertices on the leftmost path, cause an ex-
tra vertex to appear on the leftmost path. So with every ¢ consecutive vertices on the
leftmost path a processor can be associated on O(log p) time, see result 3.

The time complexity of the second insert algorithm is stated in the following theorem.

Theorem 4.6 The second parallel insert algorithm as described in this section runs in
O(log n + log p) using p processors.

Proof

The search part takes again O(logn + log p) time using p processors.

The insert part takes O(logp) time.

Since every vertex on a balance queue is processed for O(1) time theorem 4.4 implies
that the balance part takes O(logn + log p) time.

End Proof

Theorem 4.7 Let PQ be a priority queue containing n elements.
Then p processors of an EREW PRAM can perform a ParInsert operation on PQ in
O(logn) time.

bf Proof
Use the first or second parallel insert algorithm.
bf End Proof

4.5 ParDecreasekey

Input to the ParDecreasekey algorithm is the weight-balanced tree T and the tuples
{g1,pP71),...,{gp,Prp), Where g; is a pointer to leaf I; in T and pr; is a key value,
1 < i < p. The element e; in I; will get new key value pr;.

It is easy to perform ParDecreasekey in O(logn + log p) time using p processors by
first deleting the leaves I;, 1 < i < p, using the ParDelete algorithm described below
and then to insert the elements e; with new key value k;, 1 < ¢ < p, using a parallel
insert algorithm.

4.5.1 ParDelete

Input to the ParDelete algorithm are the pointers gy, ..., gp, and weight-balanced tree
T. Processor PE; will delete the element in the leaf to which ¢; points, 1 < i < p. The
ParDelete algorithm consists of two steps.

28

1. The Delete Part

Let pointer g¢; point to /;. Then processor PE; must delete /; and every ancestor
a; of l; that has at most one son, after deleting all elements in T,;. To delete
these vertices on the tree path TP from [; to the root of T', PE; walks up along
TP using the third walking up technique.

During the walking up PF; maintains the pointer gi. Suppose that at a certain
moment PE; is associated with a vertex v. Then if g} has value nil, all elements
in T, are deleted. If g} points to a vertex w, all elements in T, that are not deleted
are stored in T,,. The vertices on TP with one child are deleted by replacing such
a vertex with its only child. Vertices on T'P that have no children are deleted.
During the delete part the balance information in vertices is updated.

2. The Balance Part
The balance part of the ParDelete algorithm is analogous to the balance part of
the algorithm ParInsertl.

Theorem 4.8 The ParDelete algorithm runs in O(logn) time.

Proof
By the above discussion.
End Proof

Using the ParDelete algorithm as described above, the time complexity of the ParDe-
creasekey algorithm can be bounded by O(logn + log p).

Theorem 4.9 Let PQ be a priority queue containing n elements.
Then p processors of an EREW PRAM can perform a ParDecreasekey operation on
PQ in O(logn) time.

Proof
Clear by the above discussion.
End Proof

References

[BM80] N.Blum and K. Melhorn. On the avereage number of rebalancing operations
in weight-balanced trees. Theoret. Comput. Sci., 10:303-320, 1980.

[CLR90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms.
The MIT Press, 1990.

[Col88] R. Cole. Parallel merge sort. J. Comp. System Scs., 17:770-785, 1988.

[DGST88] J.R. Driscoll, H.N. Gabow, R. Shrairman, and R.E. Tarjan. Relaxed heaps:
An alternative to fibonnacci heaps with application to parallel computation.
Communications of the ACM, 31(11):1343-1354, 1988.

29

[Ove83]

[PP91]

[PVWS83]

[ST86]

[SV82]

[Vel87]

M.H. Overmars. The design of dynamic data structures. Springer Lecture
Notes in Computer Science, 156, 1983.

M.C. Pinotti and G. Pucci. Parallel priority queues. Inform. Process. Lett.,
40:33-40, 1991.

W. Paul, U. Vishkin, and H. Wagener. Parallel computation on 2-3 trees.
Springer Lecture Notes in Computer Science, 154:579-609, 1983.

D. D. Sleator and R. E. Tarjan. Self-adjusting heaps. SIAM J. Comput.,
15:52-50, 1986.

Y. Shiloach and U. Vishkin. An O(n?logn) Parallel Max-Flow Algorithm.
Jrnl. of Algorithms, 3:128-146, 1982.

M. Veldhorst. Linked allocation for parallel data structures. Technical
Report RUU-CS-87-18, University of Utrecht, Dep. of Computer Science,
October 1987.

30

