The LazyRMS: Avoiding Work
in the ATMS

Gerry Kelleher, Linda van der Gaag

RUU-CS-92-20
May 1992

Utrecht University

()
5 (E Department of Computer Science
©
S g) Padualaan 14, P.O. Box 80.089,

5

3508 TB Utrecht, The Netherlands,
Tel. : ... + 31-30- 531454

The LazyRMS: Avoiding Work
in the ATMS

Gerry Kelleher, Linda van der Gaag

Technical Report RUU-CS-92-20
May 1992

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 0924-3275

The LazyRMS: Avoiding Work in the ATMS

Gerry Kelleher
Research Institute for Knowledge-Based Systems
Tongersestraat 6, 6211 LN Maastricht
The Netherlands

e-mail: gerry@riks.nl

Linda van der Gaag
Utrecht University, Department of Computer Science
P.O. Box 80.089, 3508 TB Utrecht
The Netherlands

e-mail; linda@cs.ruu.nl

Abstract

The basic algorithms involved in reason maintenance in the standard ATMS are
known to have a computational complexity that is exponential in the worst case.
Yet, also in average-case problem solving, the ATMS often lays claim to a major part
of the computational effort spent by a problem solver/ATMS system. In this paper,
we argue that within the limits of the worst-case computational complexity, it is
possible to improve on the average-case complexity of reason maintenance and query
processing by eliminating computation that is of no relevance to the problem solver’s
performance. To this purpose, we present a set of algorithms designed to control
the effort spent by the ATMS on label updating. The basic idea underlying these
algorithms is that of lazy evaluation: labels are not automatically maintained on all
datums but are computed only when needed (either directly or indirectly) by the
problem solver. The algorithms have been implemented in the LazyRMS with which
we have experimented in the context of model-based diagnosis; our experiments show
a substantial saving in the computational effort spent on reason maintenance.

1 Introduction

The assumption-based truth maintenance system (ATMS) of J. de Kleer as presented in
[de Kleer, 1986], has been successfully used in a wide range of applications [Smith and
Kelleher, 1988], most notably in the areas of automatic diagnosis and planning, see for

example [de Kleer and Williams, 1987}, [Morris and Feldman, 1989} and [Mott et al.,
1988]. The ATMS, however, suffers from a major drawback in that, unless great care is
taken, it can become the major consumer of resources in a reasoning system. In the worst
case this problem is insolvable as the algorithms underlying the ATMS have an exponential
worst-case computational complexity, [Provan, 1988]. The propensity of the ATMS to lay
claim to a major part of the computational effort in average-case problem solving, however,
may to some extent be attributed to the ATMS maintaining complete, minimal, sound and
consistent labels for all the datums in its justification network at all times; this can lead to
expensive computation that is never relevant to anything the problem solver is interested
in. There is, for example, the possibility that the problem solver may never ask about
(either directly or indirectly) the label of a node; in the standard ATMS such ‘unqueried’
nodes have their labels updated irrespective of the pointlessness of doing so.

This paper is about improving the average-case performance of the ATMS: it pro-
poses a set of algorithms to control ATMS label updating so that, within the limits of its
worst-case computational complexity, the system only does work relevant to the problem
solver’s queries. The basic intuition underlying the ideas presented here is the same as
that underlying the notion of lazy evaluation: label updating is left until the system is
actually queried and only labels relevant to the query are computed. The shift in emphasis
is away from computation at assertion time to computation at query time. The paper
is organised as follows. In Section 2 we briefly review previous work on restricting the
computational effort spent by the ATMS within an overall reasoning system and indicate
where our works fits in. Section 3 presents the algorithms for a lazy approach to ATMS
label updating. The algorithms are illustrated by an example in Section 4. In Section
5 we discuss the relevance of our work in practical applications and present the results
we obtained in experiments both on randomly generated justification networks and in the
context of model-based diagnosis. Section 6 concludes the paper with some directions for
further research.

2 Previous Work

As this paper addresses ATMS label updating, we assume a basic understanding of de
Kleer’s ATMS, [de Kleer, 1986]. An introduction to RMSs in general can be found in
[Kelleher and Smith, 1988]; [Martins, 1990] is an excellent bibliography of work on RMSs.

The propensity of the ATMS to consume a large portion of the computational effort in
problem solving has been apparent for some time; however, work on this problem has been
relatively restricted when compared to work on extending features of the original ATMS.
K.D. Forbus and J. de Kleer describe a problem solver/ ATMS architecture designed to help
minimise the amount of work done within the overall system by the ATMS, by restricting
the information passed on to the ATMS to justifications relevant to the problem solver’s
performance, [Forbus and de Kleer, 1988]. This is achieved by requiring the problem
solver to maintain a focus environment; a potential justification whose antecedents are not
justified by a focus environment provided by the problem solver is not passed on to the

Q]

ATMS. As pointed out by Forbus and de Kleer, although much extra overhead of the
ATMS is eliminated, the problem of controlling label updating remains: relevant or not,
label updating still occurs globally throughout the ATMS justification network. In response
to this difficulty, de Kleer has presented work on a Hybrid RMS (HTMS) which attempts
to eliminate overhead involved in label creation [de Kleer, 1991]. This is achieved by
providing focus environments which restrict the ATMS to constructing label environments
relevant to the focus environment provided. This approach appears to be almost the same
as the one proposed by O. Dressler and A. Farquhar in [Dressler and Farquhar, 1991].
Experimental results reported by de Kleer for his HTMS and by Dressler and Farquhar
are impressive; the systems show huge savings on the computational effort required from

the RMS.
Basically, the problem of controlling label updating consists of two subproblems:

e to update only those environments of a node’s label that are relevant to the problem
solver’s current focus (the updating problem), and

¢ to maintain labels only on nodes which are needed by the problem solver (the prop-
agation problem).

The first of these is a problem internally within a node’s label. Within a standard ATMS
the entire label is created irrespective of its potential for providing useful information to
the problem solver. Yet, it may well be that environments are constructed which are of no
use in actual problem solving, and in particular this may have been deducible before the
environment was created. The provision of focus environments addresses this problem.
There is a degree of overlap between the updating problem and the propagation prob-
lem: restricting label updating will, in general, minimise the number of times a label will
change and thus the amount of propagation of effects between nodes. More importantly,
however, the restricted focus means that within a particular focus only labels of relevance
to queries within that focus will be updated. This may seem to suggest that the propaga-
tion problem is solved by the provision of focus environments. Unfortunately this is not
always true: useless work will still be done if a focus is not minimal with respect to the
queries actually generated. This is most obvious for a focus which is established but never
queried by the problem solver. If a focus environment provided by the problem solver
contains assumptions that are superfluous to the queries actually generated, then these
assumptions will be propagated through label updating causing potentially unnecessary
computation. The present paper is concerned with the propagation problem.

3 Algorithms

In this section we present a set of algorithms designed to cope with the propagation prob-
lem in controlling label updating. We have mentioned before that the general intuition
underlying the algorithms is that of lazy evaluation: labels are computed only when neces-
sary. We therefore refer to this set of algorithms as the LazyRMS. Before presenting the
algorithms in detail we give a general outline.

3

Consider a reasoning system consisting of a problem solver supported by an RMS.
Suppose that new nodes and justifications are passed on to the RMS by the problem
solver. The standard ATMS would recompute the labels of all nodes that may be affected
by these changes immediately. In contrast, the LazyRMS does not recompute the labels of
these nodes but simply marks the nodes as possibly affected. The marking of a node then
signifies that its label will have to be recomputed before it can be used in any further label
computations itself; an unmarked node is a node whose label is stable given the information
we have, that is, the label of an unmarked node needs no further work and may be used
as it stands. After marking nodes that may be affected, the LazyRMS is left, potentially,
with a partially marked justification network.

Now, suppose the problem solver queries a particular node. The LazyRMS behaves
towards the problem solver as if it maintained proper labels on all nodes in the justification
network, that is, for each queried node the complete, minimal, sound and consistent label
given the justifications in the network is returned. If the queried node is unmarked, then
the LazyRMS simply returns the label of the node as it is. However, if the queried node
is marked, indicating that its label might not be complete, minimal, sound and consistent,
then the LazyRMS has to compute the proper label for the node before it can be returned
to the problem solver. There is no need to compute labels on all marked nodes, though.
The nodes relevant to the queried node will be restricted to its ancestors in the justification
network. It therefore suffices to recursively compute labels only on marked ancestors of
the queried node, and to recompute, if necessary, the nogood label, thus allowing the
computation of the correct label of the queried node itself.

The two algorithms sketched above constitute the basis of the LazyRMS; they will be
discussed in the Sections 3.2 and 3.3. The basic algorithms presented in these sections are
extended to handle loops in a justification network in Section 3.4. Section 3.1 provides
some additional data structures that are exploited in the algorithms.

3.1 Additional Data Structures

For the algorithms outlined above we introduce three extra components in the standard
ATMS’s node data structure. ,

The first addition to a node’s data structure is a simple flag for marking the node.
The second addition is the antecedent list, which is a list of all ancestors of the node in the
justification network: the antecedent list of a node consists of the node itself, the supporters
of its justifications and the members of their respective antecedent lists. Consider for
example Figure 1. The antecedent list of node ng mentions the nodes a,b, ¢, d,ny,n2,n3
and ng. Clearly an antecedent list may be quite large, but never larger in length than the
total number of nodes in the network. The third addition to a node’s data structure is the
mentioned-in list, which is the set of consequents of the justifications that have the node
as a supporter. For example in Figure 1, the mentioned-in list of node ny consists of ng
and ng. .

The antecedent lists and mentioned-in lists will have to be updated when new nodes
and justifications are passed on to the LazyRMS. Maintaining the mentioned-in lists for all

4

nodes in the justification network is computationally trivial: if a new justification is entered
into the network, then the consequent of this justification is added to the mentioned-in list
of each of the supporters of the justification. Maintaining the antecedent lists for all nodes
in the justification network is more complicated. If a new justification is entered into the
network, then the supporters of this justification are added to the antecedent list of the
consequent of the justification. The change in the antecedent list of this node may affect
the antecedent lists of the nodes in the mentioned-in list of this node. The antecedent
list of each of these nodes is updated by taking the union of the antecedent lists of the
supporters of its justifications and subsequently adding the node itself. This procedure is
repeated recursively until all antecedent lists have been updated. Note that in maintaining
the antecedent lists for all nodes in the network we can only ever visit any node once.

3.2 Marking Nodes

One of the basic algorithms of the LazyRMS is concerned with marking nodes as having
potentially changed labels after a new justification has been added to the justification
network. When a new justification is given for a particular node or when a node is otherwise
thought affected, the algorithm marks this node and recursively repeats the procedure for
the nodes in its mentioned-in list until no new nodes are marked. This algorithm is outlined

in the following pseudo-code; the list node-list is initialised with the name of the node which
had a new justification.

procedure mark-nodes (node-list)

while node-list is not empty do
if the first element of node-list is marked
then delete the first element from node-list
else
mark the node mentioned as the first element in node-list;
delete the first element from node-list and insert the mentioned-in list of that node;
remove duplicates from node-list
endif
enddo

Note that a node is only marked as potentially having an altered label; there is no guarantee
that its label will actually change. Also note that assumptions and premises are never
marked. In addition, we observe that it is possible to check for a node that has no marked
nodes in its antecedent list, if its label does in fact change before marking it. This way
the number of marked nodes within the justification network and thus the amount of label
computation at query time, is reduced. We feel that there is a balance between doing easy
label updates to avoid marking and marking to avoid hard label updates; as this balance
appears to be application-dependent we have not implemented easy label updating in the
algorithms proposed in this paper.

Sofar, we have not taken nogoods into consideration. It will be evident that the
LazyRMS will have to take special care of nogoods in order to be able to ensure con-
sistency throughout the justification network. We present the basic algorithms for dealing
with nogoods in this and the following section. As soon as a new justification is entered for
the nogood or the nogood is otherwise considered affected, its label is recomputed. How
the nogood label is recomputed by the LazyRMS will be discussed in Section 3.3; here
we first focus on the algorithm for marking after an update of the nogood label. When
the nogood label is updated, the algorithm starts with the assumptions mentioned in the
nogood label (or better still, with the assumptions mentioned in the updated environments
of the nogood label) and then recursively traverses the justification network performing a
consistency check for each unmarked node visited. If an unmarked node is encountered
having an inconsistent environment in its label, then the mark-node procedure is invoked to
recursively mark this node and its consequents. This algorithm is outline below; the list
node-list is initialised with the assumptions mentioned in the nogood label.

procedure mark-after-nogood-update (node-list)

while node-list is not empty do
if the first element of node-list is marked
then delete the first element from node-list
else
if some environment in the label of the first element of node-list is inconsistent
then call mark-nodes for the first element of node-list
else
delete the first element from node-list and insert the mentioned-in list of that node;
remove duplicates from node-list
endif
endif
enddo

Note that the mark-after-nogood-update procedure is applied only after the nogood label has
been updated; the procedure therefore uses a complete and minimal nogood label. This
ensures that after the procedure is executed, the labels of the nodes that are still unmarked
are consistent.

3.3 Querying a Node

After having marked nodes as having a potentially affected label, the LazyRMS is left with
an only partially unmarked justification network. Now, if the problem solver queries the
LazyRMS for a node’s label, the LazyRMS may have to compute labels for several nodes
in the network in order to behave towards the problem solver as if it maintained proper
labels on all nodes in the network. Before presenting the algorithm for determining the
label of a queried node in detail, we introduce two additional notions.

A boundary node is a marked node having an antecedent list consisting of unmarked
nodes only; informally speaking, it is on the ‘boundary’ of the (sub)network of marked
nodes. Consider Figure 1 once more; ns is an example of a boundary node. A closely
connected component is a set of two or more nodes mentioning each other in their respective
antecedent lists. In Figure 1, for example, the nodes n1,n, and n3 form a closely connected
component. For the sake of brevity, we will in the sequel often refer to a closely connected
component as a loop in informal discussions.

As the presence of loops in a justification network introduces some complications for
the algorithm for determining a queried node’s label, loops will be dealt with separately
in Section 3.4; here we focus on justification networks not containing any loops. Basically,
the algorithm for determining a queried node’s label operates by recursively computing
labels for marked nodes that are ancestors of the queried node in the justification network.
We distinguish between three cases:

e if the queried node is unmarked this means that the node’s label has not been affected
by changes in the network after its last update and therefore is complete, sound and
minimal; furthermore, from the way nogoods are handled it follows that the present
label is consistent as well. Therefore, the node’s label can simply be returned as it
stands.

e if the queried node is a boundary node then the standard ATMS label creation
algorithm is used to compute the node’s complete, minimal, sound and consistent

label.

e otherwise the labels of the supporters of the justifications for the queried node are
determined recursively to render it a boundary node.

The algorithm is outlined in pseudo-code below; loops are dealt with in the stabilise-component
procedure which will be discussed in the next section.

procedure query-node (node)

if node is unmarked
then return node’s label
else
let node-list be the antecedent list of node and remove all unmarked nodes from node-list;
while node-list is not empty do
if there are boundary nodes in node-list
then compute the labels on these nodes and unmark them
else stabilise-component (node-list)
endif;
remove all unmarked nodes from node-list
enddo;
query-node (node)
endif

In the previous section, we have already mentioned that the LazyRMS has to take special
care of the nogood label to guarantee correct behaviour towards the problem solver. We
recall that the LazyRMS has to recompute the nogood label as soon as the nogood gets
marked to be able to ensure consistency of all unmarked nodes throughout the justification
network. The updating of the nogood label is done by the standard label updating algo-
rithm after applying the query-node procedure to all marked supporters of the justifications
for the nogood to have their labels updated. After the nogood label is recomputed, the
mark-after-nogood-update procedure is called to mark all nodes that may be affected by the
new nogood label.

We have implemented a straightforward optimisation of the algorithms for dealing with
nogoods by observing that it is possible to postpone computing the nogood label as well.
To this purpose we observe that when the nogood label is considered affected, only labels
on nodes whose set of antecedent assumptions intersect with the nogood’s antecedent
assumptions can have become inconsistent. This observation is exploited as follows. When
the nogood label is considered affected, the nogood is marked as are those nodes whose set
of antecedent assumptions comprise assumptions mentioned in the antecedent list of the
nogood. Now, if a queried node’s antecedent list specifies assumptions that are antecedents
of the nogood, then the label of the nogood is computed before the label for the queried
node is considered.

3.4 Handling Loops

In the previous section, we have mentioned that the presence of loops in a justification
network complicates the algorithm for querying nodes. We note that a loop can easily
be detected within the query-node procedure: if the list of nodes for which a label has to
be computed does not specify any boundary nodes, then a loop, or to be more precise,
a closely connected component, is encountered. Now observe that this list of nodes may
specify more than one closely connected component. As the labels on the members of
one such component may be dependent upon the labels of another component’s members,
it is important to identify a minimal closely connected component, in the sense used by
J. Goodwin in the context of JTMSs, [Goodwin, 1987]. Exploiting the observation that
we are guaranteed by the query-node procedure that every node outside the identified set
of closely connected components that is an ancestor of the nodes in these components
already has had its label updated, the members of a minimal closely connected component
can easily be computed from the node-list that is being examined. We do not elaborate
on this issue any further.

The basic idea of handling a minimal closely connected component is to stabilise the
labels on the members of the component first before the nodes dependent on the component
are considered. Stabilising the labels on the members of a minimal closely connected
component involves checking the nodes in the component more than once but never more
than the number of members of the component. The algorithm for handling a closely
connected component starts with creating a list of nodes to be checked, initially being the
set of all nodes inside the component. A particular node is removed from the list and

its label is computed from the labels of its supporters as they are; note that the resulting
label may not be complete, sound, minimal and consistent since it may have been computed
using labels of marked nodes. If the computed label is the same as the old label nothing
happens and a successor element in the component is considered. If there is some change,
however, the label is updated accordingly and those members of the component that are in
its mentioned-in list are added to the list of nodes to be checked. We repeat this procedure
until there are no more nodes left to check.

procedure stabilise-component (node-list)

identify minimal component from node-list and initialise to-be-updated with component;
while to-be-updated is not empty do
update the label of the first element of to-be-updated and remove that element;
if its label has changed
then
add the component members from its mentioned-in list to to-be-updated;
remove duplicates from to-be-updated
endif
enddo;
unmark all nodes in component
end

Note that the standard ATMS would make no distinction between nodes in a closely con-
nected component and nodes which are dependent on the component. However, there is
no reason to update labels on nodes that are dependent on a component until the compo-
nent itself has been dealt with. Consider Figure 1 once more; node ng would be updated
(potentially) twice by the standard ATMS but only once by our algorithm. Obviously, our
algorithm for stabilising closely connected components before computing labels on nodes
that are dependent on such a component could be incorporated into the standard ATMS
algorithm and thus save unnecessary computational effort. There is a close relationship
between the cycle-cutset algorithm of R. Dechter and J. Pearl for constraint satisfaction
problems [Dechter and Pearl, 1987], and the algorithm we propose here. The computa-
tional saving occurs because computing labels on nodes in a tree-structured arrangement
is much cheaper than computing labels within a closely connected component.

4 An Example

The algorithms described in the previous section are best seen in the context of an example.
The following example is intended to make the exposition of the ideas clearer, rather than
to illustrate a realistic use of the LazyRMS.

Suppose that the LazyRMS has been given the following history of justifications (the

a b d

AL yay
NN

nogood * Ny ne
/ \ Y / \
* ng * *

ng ng *

n3
Figure 1: An Example RMS Network.

letters a, b, ¢, d, e, f,g denote ATMS assumptions):

(abec)—n (cde)—ng (f)—ns

(1 d)—n2 (n4) > ne (f 9)—ns
(n2) = ns (ne) — n7 (n1) — nogood
(n3) — ny (n7) — ny

(nz) - Ng (n7) — Ng

This results in the network shown in Figure 1; an * indicates a node being marked.
Initially, all nodes other than assumptions are marked. Within the LazyRMS the only
work done so far is the construction of justification lists, antecedent lists and mentioned-in
lists. Now suppose that the problem solver asks for the label of node ns. The LazyRMS
applies the query-node procedure to determine the label of this node. Since nj is a bound-
ary node and its antecedent assumptions do not intersect with the nogood’s antecedent
assumptions, the LazyRMS computes ns’s label directly, yielding

ns: ((f 9))

This is one label computation. Note that in the standard ATMS, all nodes in the network
would have had their labels computed. This is a straightforward example of the reduction
of work which is possible within our scheme.

A more interesting example follows from a query of node ng. Since now the antecedent
assumptions of this node intersect with those of the nogood, the LazyRMS first updates the
nogood label. The only marked supporter for the nogood is n;. Therefore, the query-node
procedure is called for n; in order to update its label. The set of antecedents of ny consists
of a,b,c,d,ny,ny and n3; removing all unmarked nodes, we have ny,n2,n3. As none of
these are boundary nodes we know we have encountered a closely connected component

10

which is identified to consist of these three nodes. This component is stabilised using the
stabilise-component procedure. The resulting labels are:

ny:((e b ¢))
ny:((a b ¢ d))
ng:((a b ¢ d))

All nodes in the closely connected component are now unmarked. The nogood label is
computed from the label of node n;y, its only supporter:

nogood : ((a b ¢))

The nogood is then unmarked. Walking forward from the assumptions in the nogood
label, i.e. a, b and ¢, node n; is found to have an inconsistent environment and is therefore
marked; ny and n3 are also marked as consequents of n;. Subsequently, the problem of
finding a label for ng is re-addressed. Once more, the stabilise-component procedure is called
for the nodes n;,n, and n3. The new computed node labels are empty labels for all three
nodes:

n:(())
nz:(())
ng: (())

Computing ng’s label from the empty node label of n; gives the result

no : (())

which is returned to the problem solver as ng’s label. Note that in doing this work the
labels of ng, ng, n7 or ng are never computed: a saving over the standard ATMS.

5 Experiments with the LazyRMS

Clearly the most interesting question to address is in what circumstances the LazyRMS as
described in the previous saves computational effort. As the basic algorithms for label up-
dating have an exponential worst-case computational complexity, it is not hard to generate
examples which render our approach pointless. This would be a set of queries demanding
label updating on every node in the network. Our experience is that such a worst-case
situation is rare although not impossible. It is worth noting, however, that our system
would not require essentially more computational effort than a standard ATMS on actually
computing the labels needed; the only additional work required would be that involved in
the computationally trivial ‘housekeeping’ algorithms. On the other hand, it is equally
easy to generate examples of problem solving within which the LazyRMS massively out-
performs the standard ATMS. It will be evident that the lazy evaluation scheme will save
work when the number of queries by the problem solver is small relative to the number of
justifications passed on to the RMS. Also, the more disconnected the justification network

11

is the better the results rendered by the LazyRMS will be, as the chance of a query needing
to compute large numbers of RMS labels is reduced. Furthermore, the LazyRMS helps
in circumstances where the justification network must be built whilst the problem solver
is operating; if the justification network can be precomputed for problem solver’s use as
a static data base (as for example in [Kelleher and Bailey, 1989]) our proposals are of no
help in improving the performance of a system at runtime.

The above observations are very general. To gain more insight into the performance
characteristics of the LazyRMS in situations which were not predesigned, we have con-
ducted two experiments. In Section 5.1 we discuss the results of our first experiment in
which we compared the standard ATMS with our LazyRMS on randomly generated justi-
fication networks. As in most problem solver/RMS systems the interactions between the
two subsystems are heavily optimised, the use of random justification networks may be
misleading. In our second experiment, therefore, we have analysed the performance of the
LazyRMS in a practical application, namely within the context of model-based diagnosis.
Section 5.2 describes the results we obtained.

5.1 The LazyRMS and Random Justification Networks

The first experiment reported here has been designed to compare performance character-
istics of the standard ATMS and our LazyRMS on arbitrary justification networks. To
conduct this experiment, we have created several sets of randomly generated justification
networks. Each of the generated networks consisted of one thousand nodes. Of these, two
hundred nodes were assumptions; all other nodes were either assumed nodes or nodes jus-
tified by a combination of other nodes. The networks did not comprise any premises. The
justifications for the nodes in the network were created using the random number genera-
tion facilities of a commercial Common Lisp system, that is, the number of justifications
and their content and length were chosen using this facility. The node to be justified by a
generated justification was also randomly chosen. The position of the nogood was chosen
at random as well; for the nogood, ten justifications were generated.

The justification networks were created to have differing degrees of connectivity. This
was achieved by varying the balance between the number of nodes supported by assump-
tions only, the number of nodes supported by assumptions and other nodes, and the number
of nodes supported by other nodes only. As a crude measure of average connectivity we
have used the average number of antecedents of a node plus the average number of nodes
affected by a change in a node’s label. With respect to connectivity, we observe that in
randomly generated highly connected justification networks the labels of the nodes rapidly
become unmanageable. This is in part due to the nogood environments being unrelated
to node labels, which results in elimination of environments by nogood subsumption be-
ing rare. A consequence is that the highly connected networks have a lower degree of
connectivity than we would like.

In the experiment, we have further varied the querying frequency. The querying fre-
quency is given by the number of new justifications entered into the justification network
before the next query is posed to the RMS. For each query, the queried node was chosen

12

at random. In addition, after all justifications had been supplied to the RMS the nogood
was queried. A

We compared the standard ATMS and the LazyRMS with respect to three different
performance characteristics. The most interesting measure of performance used is the
number of label updates performed, that is, the number of times the RMS generated a
label from other labels. In addition, the percentage of nodes for which the label was
fully computed was considered (assumptions excluded); note that for the standard ATMS
this percentage always equals 100%. To conclude, the time spent on reason maintenance
and query processing by the respective RMSs in CPU seconds was compared; the timing
information given below is based on implementations of both the standard ATMS and the
LazyRMS written in Common Lisp, run on a SPARC II workstation. Table 1 presents the
performance results for a randomly generated justification network having the following
characteristics:

e the connectivity is low (¢ = 16),
¢ the total number of justifications supplied to the RMS equals 901, and

e the number of nogood antecedents equals 117.

The table shows the performance characteristics of both RMSs under two querying fre-
quencies; the low frequency corresponds with a query after every tenth justification has
been entered into the network, the high frequency corresponds with a query after every
hundred justifications. Note that the difference in the time spent by the standard ATMS
results from the different numbers of queries.

querying number of calls percentage of time
frequency | for label creation labels computed CPU secs
ATMS LazyRMS | ATMS LazyRMS | ATMS LazyRMS
low 30562 75 100 4 462 16
high 30562 165 100 8 474 22

Table 1: Performance Results for a Network with Low Connectivity.

Table 2 presents the performance results of both the standard ATMS and the LazyRMS

for a random justification network having the following characteristics:

e the connectivity is high (¢ = 84),

e the total number of justifications supplied to the RMS equals 701, and

e the number of nogood antecedents equals 329.

13

The querying frequencies mentioned in the table correspond to the ones mentioned in Table
1. Note that the highly connected justification network has fewer justifications than the
network with the low connectivity; the labels to be computed, however, are more complex
thus accounting for the differences in time spent by the ATMS for the two networks.

querying number of calls percentage of time
frequency | for label creation labels computed CPU secs
ATMS LazyRMS | ATMS LazyRMS | ATMS LazyRMS
low 25106 638 100 16 44161 379
high 25106 1129 100 24 44172 463

Table 2: Performance Results for a Network with High Connectivity.

To conclude, an additional performance test with a special type of querying strategy has
been performed in which after every addition of a new node to the highly connected network
every node in the network was queried. This is a rather unrealistic use of the LazyRMS
but as it is a type of worst-case situation it has been included. The results of this test are

shown in Table 3.

querying number of calls percentage of time
strategy | for label creation labels computed CPU secs
ATMS LazyRMS | ATMS LazyRMS | ATMS LazyRMS
| all | 25106 2615 | 100 100 | 44235

7081 |
Table 3: Performance Results for a Network with High Connectivity, All Nodes Queried.

As can be seen from the tables shown above, the LazyRMS outperforms the standard
ATMS in any case. As would be expected, the most dramatic results are obtained in the
situation in which the justification network is relatively disconnected and few nodes are
queried: large parts of the network are never considered in this case and the savings are
correspondingly large. As the connectivity of the justification network and the number of
queries posed to the RMS increase, the improvement in performance of the LazyRMS over
the standard ATMS shows a corresponding decrease but is still significant.

With respect to the results shown above, we would wish to emphasise that, although we
have made efforts to ensure that the comparisons were fair, the figures quoted are not for
highly optimised implementations of neither of the RMSs. An important point, however,
is that both RMSs use exactly the same label creation procedure. All differences therefore
derive from their means of controlling and choosing the way in which label updates are
propagated. As with any experiment such as this, there nevertheless remains the possibility

14

that different implementations may well produce different results. In our opinion, though,
this would not radically alter the basic outcome of the experiments.

5.2 The LazyRMS and Model-Based Diagnosis

The aim of our second experiment was to investigate the performance characteristics of
the LazyRMS in a real-life application. This experiment was conducted in the context of
a problem solver/RMS system for model-based diagnosis.

In model-based diagnosis, a model of the correct behaviour of a system is built and
exploited for performing diagnosis. For a specific system, a diagnosis is arrived at by
analysing the discrepancies between the observed behaviour of the system and the be-
haviour it is expected to demonstrate according to its model. The most famous framework
for model-based diagnosis is the General Diagnostic Engine (GDE), developed by J. de
Kleer; GDE provides a problem solver supported by an ATMS. In our experiments with
the LazyRMS we have used a GDE-like framework for model-based diagnosis developed
by T. van Rij, [van Rij, 1992]. In this framework, a similar approach is followed to that
of GDE as described in [de Kleer & Williams, 1987]. An important difference, however,
between this framework and GDE is that it makes use of so-called hierarchies, describ-
ing the decomposition of the system to be diagnosed into components. An example of a
system is a full bit adder which consists of two exclusive-or-gates, two and-gates and an
or-gate. At each hierarchical level of the system, model-based diagnosis is applied with
the following characteristics. The diagnostic engine is driven by a constraint satisfaction
system that uses test sets to arrive at a diagnosis. At a given hierarchical level, only
constraints concerning components that are present in the test set associated with that
specific level are applied. The first test set for example specifies all components at the
highest hierarchical level. The inferences made by the diagnostic engine are passed on to
the supporting RMS until an inconsistency is detected. As soon as the diagnostic engine
detects an inconsistency, a nogood representing the inconsistency is created and passed
on to the RMS. The environments in the label of the nogood are then taken as the new
test sets. Note that the only query posed to the RMS is a query for the nogood label; no
other node is ever queried directly by the diagnostic engine. The fundamental idea of this
modified diagnostic engine is that it is ‘selective’ about its queries to the supporting RMS
by concentrating entirely on the nogood: the RMS admits applying a focusing strategy
(based on queries) and the diagnostic engine takes advantage of that focusing. Since in
most diagnostic situations the majority of components of a system and their associated
constraints are never connected with a failure of the system, the overwhelming majority of
nodes in the justification network constructed during a GDE-based diagnosis are irrelevant
to the operation of the system and are avoided by the framework described above.

In our experiment we have replaced the standard ATMS by the LazyRMS in the problem
solver/RMS architecture outlined above. The results obtained show huge savings in the
computational effort spent by the RMS. To give an idea of the savings involved in this
strategy we typically found that in the diagnosis of a 100bit adder less than ten nodes
from a total of several hundreds of nodes are implicated in deriving the nogood label.

15

That is, instead of maintaining the labels of hundreds of nodes the LazyRMS computes
labels for less than ten. Although the LazyRMS has some computational overhead of two
or three percent in the ‘housekeeping’ algorithms, this leads to startling savings in terms
of computational effort. It is the focusing on nogoods only by the diagnostic engine that
accounts for this result.

6 Further Research

In the foregoing, we have presented a set of algorithms designed to control the effort spent
by the ATMS on label updating, thus improving on the complexity of average-case problem
solving. These algorithms have been implemented in the LazyRMS. The initial experiments
with the LazyRMS look promising. However, it is evident that much work needs to be
done on perfecting the algorithms we have described; at present, the procedures for the
LazyRMS are clear and conceptually simple but sub-optimal.

As for further research, the most interesting area appears to be the integration of
focusing strategies and lazy evaluation. How the two strategies may be combined is not
entirely straightforward. The problem is that the marking performed in the LazyRMS
would be inappropriate under a focusing strategy: it could either be incorrect or lead
to massive redundancy in computation. Consider unmarking a node as soon as the part
of its label that is relevant to a given focus had been computed. This clearly leads to
incorrectness when the focus changes: the label may need recomputing but this is not
indicated by the node being marked. Now consider leaving the node marked in the same
situation. Then it is possible that the LazyRMS is required to do the same work over and
over again, recomputing exactly the same information that had been derived previously.
One potential means of easing the problem is to use justifications as the basic RMS data
structure; there are good efficiency reasons for this approach over and above integrating
focusing strategies and lazy evaluation as it avoids the need to recompute label components
for unaffected parts of a label when a justification for a node changes, [Farquhar, 1992].
With respect to the LazyRMS, marking would be of individual justification sets with labels
only being computed if at least part of a set is relevant to the focus environment. The
combination of the two strategies should lead to the elimination within an RMS of almost
all irrelevant work, at the expense of some minor ‘housekeeping’ overhead.

Acknowledgement

We are indebted to Adam Farquhar for many helpful comments on an earlier draft of this
paper. Tanja van Rij provided much of the information about using the LazyRMS for
model-based diagnosis.

16

References

[de Kleer, 1986] J. de Kleer (1986). An assumption-based TMS, Artificial Intelligence, vol.
28, pp. 127-162.

[de Kleer, 1991] J. de Kleer (1991). A Hybrid Truth Maintenance System, Technical Re-
port, Xerox Palo Alto Research Center, Palo Alto, USA.

[de Kleer and Williams, 1987] J. de Kleer and B.C. Williams (1987). Diagnosing multiple
faults, Artificial Intelligence, vol. 32, pp. 97 - 130.

[Dechter and Pearl, 1987] R. Dechter and J. Pearl (1987). The cycle-cutset method for
improving search performance in Al applications, Proceedings of the Third IEEE
Conference on AI Applications.

[Dressler and Farquhar, 1991] O. Dressler and A. Farquhar (1991). Putting the problem
solver back in the driver’s seat: contextual control of the ATMS, in: J.P. Mar-
tins and M. Reinfrank (eds.) Proceedings of the ECAI-90 Workshop on Truth
Maintenance Systems, Springer-Verlag, Heidelberg, Germany, pp. 1 - 16.

[Farquhar, 1992] A. Farquhar (1992). Personal communication.

[Forbus and de Kleer, 1988] K.D. Forbus and J. de Kleer (1988). Focusing the ATMS,
Proceedings of the Seventh National Conference on Artificial Intelligence, pp. 193
- 198.

[Goodwin, 1987] J. Goodwin (1987). A Theory and System for Non-Monotonic Reasoning,
Linkoping Studies in Science and Technology, Dissertations no. 165, Linkoping
University, Linkoping, Sweden.

[Kelleher and Bailey, 1989] G. Kelleher and J. Bailey (1989). An explanation driven ar-
chitecture for a knowledge based system in post-operative care, Proceedings of
the Second European Conference on Al in Medicine, Lecture Notes in Medical
Informatics, Springer-Verlag, Heidelberg, Germany.

[Kelleher and Smith, 1988] G. Kelleher and B.M. Smith (1988). A brief introduction to
reason maintenance systems, in: B.M. Smith and G. Kelleher (eds.) Reason Main-
tenance Systems and their Applications, Ellis Horwood, New Jersey, pp. 4 - 20.

[Martins, 1990] J.P. Martins (1990). The truth, the whole truth and nothing but the truth,
AI Magazine, special issue, pp. 7 - 25. '

[Morris and Feldman, 1989] P. Morris and R. Feldman (1989). Planning and Truth Main-
tenance, Technical Report, Intellicorp.

17

[Mott et. al., 1988] D.H. Mott, J.L. Cunningham, G. Kelleher and J.A. Gadsden (1988).
Constraint-based reasoning for the generation of naval flying programmes, Inter-
national Journal of Expert Systems, vol. 5, pp. 226 - 245.

[Provan, 1988] G.M. Provan (1988). A complexity analysis of assumption-based truth
maintenance systems, in: B.M. Smith and G. Kelleher (eds.) Reason Mainte-
nance Systems and their Applications, Ellis Horwood, Chichester, New Jersey,
pp. 98 - 113.

[Smith and Kelleher, 1988] B.M. Smith and G. Kelleher, eds. (1988). Reason Maintenance
Systems and their Applications, Ellis Horwood, New Jersey.

[van Rij, 1992] T. van Rij (1992). Efficient Model Based Diagnosis, RIKS Technical Re-
port 9211, Research Institute for Knowledge-Based Systems, Maastricht, The
Netherlands.

18

