Index Expression Belief Networks

for Information Disclosure

P.D. Bruza, L.C. van der Gaag

RUU-CS-92-21
June 1992

Utrecht University

2)
f (2 Department of Computer Science
©
% Y Padualaan 14, P.0. Box 80.089,
7 Y

3508 TB Utrecht, The Netherlands,
Tel. : ... + 31-30-531454




Index Expression Belief Networks

for Information Disclosure

P.D. Bruza, L.C. van der Gaag

Technical Report RUU-CS-92-21
June 1992

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands



Index Expression Belief Networks

for Information Disclosure

P.D. Bruza, L.C. van der Gaag

RUU-CS-92-21
June 1992

Utrecht University

f (2 Department of Computer Science
% \g) Padualaan 14, P.O. Box 80.089,

Kz n '3\» 3508 TB Utrecht, The Netherlands,
Tel. : ... + 31-30-531454




ISSN: 09243275



Index Expression Belief Networks for Information Disclosure

P.D. Bruza* L.C. van der Gaag
Dept. of Information Systems Dept. of Computer Science

Faculty of Mathematics and Informatics Utrecht University
University of Nijmegen P.O. Box 80.089
Toernooiveld 1, 6525 ED Nijmegen 3508 TB Utrecht
The Netherlands The Netherlands

e-mail: peterb@cs.kun.nl e-mail: 1inda@cs.ruu.nl
Abstract

It is widely accepted that to extend the effectiveness of information disclosure beyond
the limitations of current empirically-based retrieval systems, some notion of document
semantics has to be incorporated into the retrieval mechanism. A recent approach to
bringing semantics into play is to found the retrieval mechanism on the notion of logical
inference. In this paper, we build on this approach and describe a promising new mecha-
nism for information disclosure, called the Refinement Machine. The Refinement Machine
features the language of index expressions as a language for characterizing information
objects and a deduction mechanism driven by rules of inference. Two types of inference
rule are distinguished. The rules of strict inference follow the line of traditional logical
deduction. As the characterizations of objects are incomplete and requests are typically
partial descriptions of the information need, the rules of strict inference are supplemented
with a rule of plausible inference. This rule of plausible inference is motivated by recent
work in the area of plausible reasoning in knowledge-based systems and, in particular,
is derived from the work on belief networks. Besides giving details of the Refinement
Machine, this paper also presents some preliminary experimental results.

1 Introduction

We are currently experiencing the Information Age. Information is proliferating itself faster
and faster with the consequence that organizations are becoming burdened with an informa-
tion overload; filing cabinets full of dossiers and thousands of (incompatible) word processor
files abound. It is becoming increasingly difficult for organizations to control these mounds of
information, let alone make effective use of it. Information disclosure can simply be described
as the quest to find all objects that are relevant to a searcher’s information need.

The information disclosure problem is represented schematically in Figure 1. The problem
begins with a person having an information need that they wish to fulfill. Henceforth, we will
term this person the searcher and denote the information need by N. The information need
is typically formulated in the form of a request, denoted by ¢, which is given to an automatic
system, or a human intermediary such as a librarian. The intention is that the request g is an
as good as possible description of the information need N. On the other hand, there is the
information itself. This is modelled as a set O of information objects; the information ob jects

*This work has been partially supported by ESPRIT project APPED (2499).
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Figure 1: The Information Disclosure Problem

are also referred to as information carriers or documents. Each information ob ject O € O is
characterized by a set of descriptors to facilitate its disclosure; these descriptors are drawn
from a descriptor language C. The characterization of an object O will be denoted by x(0).
The characterization is arrived at by a process called indezing. Now, information disclosure
is typically driven by a process called matching. In this process, the request q of the searcher
is matched with the characterizations x(O) of the objects O in ©. If the matching algorithm
deems an information object as being sufficiently similar to the request, then the object is
assumed relevant and returned to the searcher, thus disclosing it.

Although only a limited number of concepts are involved in information disclosure, it
nevertheless turns out to be a formidable problem due to the following reasons:

e formulation is not easy
e indezing produces incomplete object characterizations

o matching is based on nefarious assumptions

In this paper we describe a promising new framework for information disclosure which fea-
tures the so-called language of indez ezpressions as a language for characterizing information
objects. Furthermore, a matching process is introduced which is based on deduction driven
by an Information Disclosure Machine providing rules of strict and plausible inference. An
important focus of the paper is on the notion of plausible deduction. This comes to the fore
as characterizations of objects are incomplete and requests typically partial descriptions of
the information need. Two approaches to plausible deduction are highlighted: a context-free
approach in which specific rules are used with which to reason with uncertainty, and a more
contezt-sensitive approach in which uncertainty is handled by a belief network. The second
approach is chosen to be incorporated into the framework of the Refinement Machine, a
particular concretization of an Information Disclosure Machine.

The paper is structured in the following manner. Section 2 provides some background
to logic-based information disclosure; an important notion introduced in this section is that
of the Information Disclosure Machine, which serves as the integrating framework for the
ideas presented in this paper. Section 3 presents the language of index expressions as a
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characterization language for information objects. In Section 4, the strict inference mechanism
of the Refinement Machine is featured which is based on a logic defined over the language
of index expressions. In Section 5 a set of rules of plausible inference is introduced based
on context-free inference over index expressions. This inference mechanism is shown to be
inadequate. Therefore, in Section 6 a more context-sensitive approach to plausible inference is
presented based on the reasoning mechanism provided by a belief network built from a set of
index expressions. This approach is subsequently incorporated into the Refinement Machine.
Finally, in Section 7, the potential effectiveness of the Refinement Machine is explored in
the light of some preliminary experimental results. The paper is rounded off with some
conclusions and directions for further research.

2 Background and Preliminaries

The information disclosure system presented in this paper is motivated by the work of C.J. van
Rijsbergen [Rij86a], [Rij86b], [Rij89]. Van Rijsbergen has recently developed a new informa-
tion disclosure system in which the matching between a request and an object characterization
is founded on the notion of logical inference. This contrasts with state-of-the-art disclosure
systems, where the matching process is driven by empirical relations between query terms and
documents. These empirically-based retrieval systems have the inherent limitation that they
do not in any substantial way incorporate the meaning of an object. Much of the research
in document retrieval over the last thirty years has been directed at maximizing disclosure
effectiveness within this limitation. Some, however, believe that the limits of exploitation
of empirically-based systems have been reached, [Rij86a]. Quite a considerable amount of
recent research in document retrieval has therefore been directed at incorporating document
semantics to arrive at more effective retrieval, see for example [SVR90], [Wea88], [BC89]. In
this section we confine ourselves to a brief discussion of a logic-based approach to information
disclosure only as it forms the basis of our disclosure system.

The crucial questions with regard to incorporating document semantics in information
disclosure are as to how the meaning of an object should be represented, and given that
the meaning is available, how can it be used to render effective disclosure. In the logic-
based approach to information disclosure an object is assumed to have a formal semantics
in the form of a set of so-called azioms. Each axiom describes or characterizes a part of
the content of the object. In logic, a model is an interpretation in which all given axioms
hold. In this sense, an information object O can be said to form a model of its associated
axioms A, denoted as O |= A. Also in logic, a well-formed formula W can be deduced,
or proved, from a set A of axioms by applying so-called rules of inference; the provability
of W from A is often denoted as A - W. A formal theory for information disclosure can
now be constructed in the following way. The basis is a set of primitive descriptors which
are used to describe the content of information objects; these primitive descriptors are the
atomic formulae in information disclosure. The well-formed formulae are complex expressions
involving primitive descriptors and can be used as more sophisticated characterizations of
document content than the primitive descriptors. The language of complex descriptors is
denoted by C, and the axiomatization of objects is drawn from this language, that is, for
each information object O we have x(0) C C. In addition, it is assumed that the request ¢
is a complex descriptor, so ¢ € C. Furthermore, a set of rules of inference is assumed with
which we attempt to derive the request ¢ from a given object characterization x(O). The



first possibility is x(O) I g, meaning that the request ¢ can indeed be proved from the axiom
set of object O. From x(O) I ¢ we are sure that O is a model for the request ¢, or in less
formal terms, that object O deals with, or is about, q. Therefore, O is relevant with respect
to ¢ and should be returned in response to the request ¢. If ¢ cannot be deduced from x(0),
however, then no definitive statement can be made about O being relevant with respect to
g; it only means that the relevance of O with respect to ¢ cannot be proved from the axioms
associated with O.

The above concepts form a so-called Information Disclosure Machine. Before defining
the Information Disclosure Machine more formally, we introduce the notion of a Disclosure
Structure.

Definition 2.1 A Disclosure Structure is a triple D = (0,C, x) where
e O is a set of information objects
o C i3 a descriptor language

e X C O x C is an indezing relation

After having defined a Disclosure Structure, the question remains as to how the relevance of an
object O in response to a request g can be established. This is effectuated by the Information
Disclosure Machine which is driven by a process of logic-based inference as outlined above.

Definition 2.2 An Information Disclosure Machine, or Disclosure Machine for short, is a
triple A = (D, S, P) where

o D is a Disclosure Structure
o S 13 a set of rules of strict inference

o P is a set of rules of plausible inference
We define the notion of derivation using the rules of inference of a Disclosure Machine.

Definition 2.8 Let A = (D, S, P) be a Disclosure Machine. LetC be the descriptor language
of the Disclosure Structure D. Ford C C,z € C and s € S, we use d -, z to denote that
z can be deduced from d by applying the rule of strict inference s. Furthermore, d Fp z
denotes a sequence of zero or more deduction steps involving rules of strict inference from
A. Analogously, we use d v ,z to denote that z is plausibly deduced from d via the rule
of plausible inference p € P; d v Ao = denotes a sequence of one or more deduction steps
involving rules of strict inference and rules of plausible inference of A such that at least one
step involves a rule of plausible inference.

For reasons of brevity, in the sequel the subscript A will often be dropped from 5 and k 4.

We will take a closer look at the rules of inference of a Disclosure Machine. To begin with,
strict inference based on object characterizations will be detailed. Earlier it was stated that
from x(O) g it is sure that O |= ¢. This statement is based on the assumptions that all
object characterizations are valid and the rules of strict inference preserve relevance. Under
these assumptions the Disclosure Machine is said to be sound:

x(O)Fq = Ol=¢q
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In other words, in a sound Disclosure Machine the objects from whose characterization the
request g can be derived are relevant with respect to g. The converse of soundness is com-
pleteness. Completeness states that all valid propositions are deducible, or:

OkFq = x(O)Fgq

A complete Disclosure Machine has the advantage that relevance can be established purely by
strict inference. Unfortunately, a complete Disclosure Machine turns out to be very difficult
to realize. This is due to the fact that the characterization of objects seems to be inherently
incomplete. For this reason the power of the strict inference mechanism is limited, meaning
that in general it is not often the case that an object can be proved relevant via strict
inference only. Now note that if a request g cannot be (strictly) deduced from the axioms of
an information object O, this does not necessarily mean that O is not relevant with respect
to g. It only means that the axioms of O are too weak to establish the validity of ¢ in O. In
other words, it is important that the Disclosure Machine does not employ an implicit Closed
World Assumption; this assumption would state that if a request ¢ is not deducible via the
rules of strict inference, then the object O is irrelevant with respect to g:

“(x(O)Fq) = -(0fFq)

It will be evident that applying only rules of strict inference results in an imbalance
between relevance and derivability. To alleviate this imbalance plausible inference is used.
The plausible inference mechanism strives to generate high probabilities of relevance for those
relevant information objects that escaped the strict inference mechanism. If, for a given
object O, the probability of relevance is high, then the Disclosure Machine might return the
object after all. The plausible inference mechanism of a Disclosure Machine can be founded
on the principle of minimal aziomatic eztension which has its roots in the so-called logical
uncertainty principle documented in [Rij86b]. The principle of minimal axiomatic extension
states that the probability of an object being relevant to a request is inversely proportional to
the minimal extension of the object description allowing to prove the request. It is important
to note that either the characterization of the object must be extended with new axioms, or
some axiom(s) of the description have to be strengthened; an inverse approach to description
strengthening is query weakening [Nie86). It is easy to see that by strengthening axioms,
the deduction process becomes less certain because it involves suppositions that were not
originally a part of the semantics of the object.

The Sections 4 and 6 feature a concretization of the Information Disclosure Machine, the
so-called Refinement Machine. This Refinement Machine employs an inference mechanism
defined over the language of index expressions. This language is the topic of the next section.

3 The Language of Index Expressions

One of the main assumptions underlying information disclosure research is that the better the
characterization of an object, the better the possibilities to disclose it. The content descriptors
of an information object must distinguish it from other objects to enable identifying it as
relevant to a given request. However, the content descriptors must not only discriminate
between objects but also be usable with respect to the searcher. For example, the disk
address of an object is a perfect discriminator but is useless in regard to the formulation of
requests. In this section, we introduce a descriptor language, called the language of index
expressions, that satisfies these criteria.



3.1 Term and Term Phrase Descriptors

A descriptor can take several forms. The most elementary form of descriptor is a keyword,
or term. Term descriptors have the advantage that there are a number of straightforward
indexing methods to automatically derive them from information objects [Sal89]; the disad-
vantage of terms is that they sometimes lack discriminatory power as is particularly true in
large object bases.

An extension to term descriptors is the term phrase descriptor, or term phrase for short. In
general, a term phrase is a sequence of one or more terms; the most common term phrases con-
sist of two terms. Term phrase descriptors have an increased specificity and thus an enhanced
ability for discrimination. For example, the term phrase computer programming is more specific
and thus more discriminating than each of the terms computer and programming separately.
Even though straightforward indexing methods exist for generating term phrases [Sal89],
these methods often suffer from the problem that either too many non-meaningful phrases
are generated, or conversely a large percentage of the phrases are meaningful but the resulting
object characterizations lack completeness.

3.2 Index Expression Descriptors

An extension to term phrase descriptors is the so-called index ezpression descriptor, or index
ezpression for short. As a term phrase, an index expression consists of a number of terms;
however, in an index expression the relationships between the separate terms are modelled
explicitly by means of so-called connectors. The motivation behind this is that much of the
content of an information object is embodied in term relationships [Far80]. A parallel can
be drawn here with the conceptual model from the database world where relationship types
between entities play an important role; the characterization of an object consisting simply
of keywords would be like an entity relationship model without relationship types.

Definition 8.1 Let T be a set of terms and C a set of connectors. We define the language
L(T,C) of index expressions over T and C by the following syntaz (in ertended BNF format):

Expr — €| Nexpr

Nexpr — Term {Connector Nexpr}*
Term — t,teT

Connector — ¢, c€eC

We use ¢ to denote the empty index expression. A term t basically corresponds to a noun,
noun-qualifying adjective or noun phrase; a connector ¢ denotes a relationship type between
two terms and is basically restricted to the prepositions and the so-called null connector which
is denoted by o. Figure 2 shows some of the allowable connectors and the relationship types
they denote.

In contrast to terms and term phrases, index expressions have associated a structure.
The way the structure of an index expression is derived will be discussed briefly in Section
3.4. For now it suffices to note that the structure of an index expression is tree-like. In the
sequel, we will often indicate the structure of an index expression explicitly and represent the
expression by its associated tree. For example, the index expression attitudes of (students of
(universities)) to (war in (vietnam)) is depicted in Figure 3.

The more expressive nature of index expressions over terms and term phrases will be
evident from the following observation. Let £(T, C) denote the language of index expressions
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Connector | Relationship Type | Ezamples

of possession, castle of queen,
action-object pollination of crops

by action-agent voting by students

in, on, etc. position trees in garden

to, on, for, in | directed assoc- attitudes to courses,
iation research on voting

with, o, and | association assistance with problems,

fruit o trees
as equivalence humans as searchers

Figure 2: Connector Table

students

universities vietnam

Figure 3: An Example Index Expression




over a set of terms T and a set of connectors C. Then, the term phrases are described by the
language £(T, {o}) and the terms by £(T,0). Now note that

L(T,C) D L(T,{o}) D L(T,0)

Also note that £({t}, {c}) is an infinite language whereas £({t},0) = {t} is finite.

3.3 Power Index Expressions

Building on the notion of an index expression, we define the notion of a power indez expression.
This notion bears a strong resemblance to the power set concept: the power index expression
of an index expression is the set of all its index subexpressions. We introduce the notion
of an index subexpression of a given index expression informally in terms of its graphical
representation: an index subexpression of a given index expression is an index expression
represented by a subgraph of the representation of the given index expression. For example,
the index expressions war in vietham and attitudes of students to war are index subexpressions of
the index expression attitudes of students of universities to war in vietnam depicted in Figure 3,
whereas students in vietnam is not. In the sequel, we will use G to denote the is-subexpression-
of relation over a language of index expressions, that is, we take ¢ @ j to denote that ¢ is an
index subexpression of j in the sense described above. Note that the relation G is reflexive,
antisymmetric and transitive; in fact, (£(T,C), @) is a poset.
We now define the power index expression of a given index expression more formally.

Definition 8.2 Leti be an indez ezpression in a language L(T,C). The power index expres-
sion of i, denoted by P(3), is the set

P = {jlj@d}
where G is the is-subezpression-of relation as above.

Note that for any index expression i in a language £(T, C) we have that P(i) C £(T,C).

Like the power set of a given set, the power index expression of a given index expression
forms a lattice where the underlying ordering relation is @. The top of this lattice is the
index expression itself and the bottom is the empty index expression e. The Hasse diagram
of the power index expression of the index expression represented in Figure 3 is depicted in
Figure 4.

As we are going to exploit power index expressions for information disclosure, it is useful
to have an indication of the size of the power index expression of a given index expression.
For this purpose, an upper bound and a lower bound on the number of elements in the power
index expression of an arbitrary index expression are given. Let i, be an index expression
comprising n terms. We use s(,,) to denote the size of the power index expression of i,,. Then,

the upper bound on s(i,) is given by 2"~! 4 n, and the lower bound by w + 1. These
bounds are attained for so-called umbrella expressions and for path expressions respectively,
as depicted in Figure 5. Unfortunately, the upper bound on the size of the power index
expression of an index expression is exponential in the number of terms. However, in practice
umbrella expressions are rare. Our experiences with index expressions thus far, have shown
that a polynomial size of the power index expression is more common. For the proofs of the
bounds mentioned above and a discussion of other useful properties of index expressions, the
reader is referred to [Bru92].
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Thus far we have looked at the power index expression of a single index expression only.
For a set of objects, however, a core set of index expressions is generated each of which
gives rise to a power index expression. These power index expressions may have some non-
trivial overlap. For example, the power index expressions of the index expressions effective o
information o retrieval and people in need of information share the index expressions information
and e. Now, by forming the union of all power index expressions for a set of objects, that is,

by taking
U6

€T
where T is the core set of index expressions generated, a lattice-like structure is rendered. For
the index expressions mentioned above the structure shown in Figure 6 is yielded. Note that
this structure is not a lattice since for example no join exists for the two index expressions
effective o information o retrieval and people in need of information. The lattice-like structure
of a union of power index expressions will be termed a lithoid because the associated diagram
resembles a crystalline structure.

effective o information o people in need
retrieval of information

effective o information o p need of
information retrieval information

effective

Figure 6: An Example Lithoid

One way of exploiting the lithoid for the purpose of information disclosure is as follows. If
we take every vertex in the lattice as a potential focus of the searcher, then the surrounding
vertices are enlargements or refinements of the context represented by the focus. The searcher
can browse through the lithoid by refining or enlarging the current focus until a focus is found
that fits the information need. Searching in this way is coined query by navigation, [BvdW90],
[Bru9o0].

3.4 Automatic Generation of Index Expressions

T.C. Craven [Cra86] mentions that the title of an information object and the titles of its
sections, subsections and figures often have a form very similar to that of index expressions
when stop words such as the and a are removed. This suggests that automatic generation of
index expressions can be based on these headings. Unfortunately, headings will not always
be content-revealing as sometimes they are used for structural organization; consider for
example, the heading Introduction. In this paper, we do not discuss this issue in further
detail; we assume that a core set of index expressions has been identified. As to deriving
the tree structure of a given index expression, we confine ourselves to summarizing the main
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algorithm from [BBB91]. After the removal of stop words from a title the remaining tokens
are successively processed in building a representation of the corresponding index expression.
In the case of a connector token, its priority is used to decide whether the current tree is to be
deepened, or broadened. The underlying idea of this approach is the observation that some
connectors bind terms more strongly than others; those that bind stronger lead to deepening
in the structure. For more details the reader is referred to [Bru92]. It will be evident that
once a core set of index expressions has been identified and the index expressions have been
associated a structure, the lithoid can be constructed automatically,

4 The Refinement Machine: Rules of Strict Inference

In the previous section, the language of index expressions was introduced as a language for
expressing object characterizations. Building on this language, the so-called Refinement Ma-
chine will be defined. The Refinement Machine owes its name to the way minimal axiomatic
extension is realized: axioms are in the form of index expressions which are strengthened
by refinement. In this section, the strict inference mechanism of the Refinement Machine is
elucidated; its plausible inference mechanism will be discussed in Section 6.

4.1 Rules of Strict Inference

The strict inference mechanism of the Refinement Machine is based on a single rule of inference
called modus continens which will be discussed in detail. Besides this rule, two closely related
rules, called modus generans and modus substituens, will be introduced; although these rules
are no part of the strict inference mechanism of the Refinement Machine at present, they
constitute a point of departure for further research.

The rule of strict inference called modus continens may be looked upon as deduction by
way of containment. To illustrate the basic idea, we consider the following example. Suppose
a given information object has the index expression pollution of rivers as an axiom. From
this index expression we can see that the object is about pollution, because the information
conveyed by pollution is also inherent in pollution of rivers; a similar observation holds for
rivers. Modus continens is formally defined as follows.

Definition 4.1 Let i and j be indez ezpressions in a language L(T,C) and let G be the is-
subezpression-of relation over L(T,C). Then, if j is an inder subezpression of i, j can be
derived from i, or:
J&i > ibkpmoj

This rule of inference is called modus continens and is denoted by MC.
Note that there is an analogy here with modus ponens.

The intuition behind modus generansis deduction by way of generalization. The basis of
this rule of inference are generalizations captured in the form of an 1sa-relation. For example,

given the generalization salmon 1sa fish, modus generans affirms that any information object
that deals with salmon also implicitly deals with fish.

Definition 4.2 Let L(T,C) be a language of index ezpressions and let i,j € L(T,C). Let
15s CT x T. If i 1sa j, then j can be inferred from i, or:

tisa ] = ikpmgd

11



This rule of inference is called modus generans and is denoted by MG.

The 1sa-relation is quite common in frame-based knowledge-representation languages [LvdG91).
Note that it brings domain knowledge into play within the Refinement Machine. Unfortu-
nately, the isa-relation cannot typically be derived automatically. We observe that care must
be exercised when using modus generans due to homonyms. For example, the generalization
crane 1sa bird can only be exploited if the context is avian and not building construction.

The third rule of inference, called modus substituens, drives deduction by way of substi-
tution. Recall from a previous example that pollution is deducible from pollution of rivers
by modus continens. Now modus substituens may be used for example to conclude that any
object that is about the effects of POLLUTION OF RIVERS in Australia is also about the effects of
POLLUTION in Australia.

Definition 4.3 Let k and i be inder ezpressions in a language L(T,C) such that i is an
inder subezpression of k. Furthermore, let k] be the indez ezpression k with i substituted by
j- Then,

itj = kblysk!
This rule of inference is called modus substituens and is denoted by MS.

The general idea of modus substituens is schematically represented in Figure 7.

ANAN

AN

Figure 7: Modus Substituens

Note that modus substituens provides for context-free substitution. The disadvantage
of this approach is well documented in the work of Chomsky. Within the realms of the
Refinement Machine the problem manifests itself in the form of spurious index expressions.
For example, from the index expression effects of pollution of rivers in Australia in the above
example, effects of rivers can also be derived. However, it is highly unlikely that the object
actually deals with this subject. Recently, attempts have been made at restricting conditions
under which substitution can take place so as to prevent the occurrence of wild substitutions.

A. Rosing [Ros91], for example, proposes that a term should only be substituted by one of
its generalizations:

iisaj = k!—Msk‘!
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Another approach is to allow substitutions to take place only within the context of a so-
called term sequence: a term sequence is a sequence of expressions involving only the null
connector. If one considers a term sequence as describing a particular context, then this
context can often be implicitly described by any term subsequence which contains the last
term. For example, the information conveyed by the expression little o green o martians is
also implicitly contained in green o martians. Exploiting this observation to define a restricted
form of modus substituens, the following is a valid derivation:

invasion of LITTLE © GREEN 0 MARTIANS |
invasion of GREEN o MARTIANS

Note that this restricted modus substituens provides a more context-sensitive notion of sub-
stitution.

4.2 The Lithoid Revisited

In the previous, three rules of strict inference have been introduced. Note that all rules apply
to a single index expression, yielding a single index expression as well. From this observation,
it follows that a strict derivation takes the form of a sequence of transformations on an index
expression transforming it into another one. An immediate consequence is that the relevance
of an object with respect to a given request can be established by deriving the request from
a single index expression in the characterization of the object. This property is stated more
formally in the following theorem, which is known as the hook theorem, signifying that a single
characterization of an object acts as a ‘hook’ for its retrieval.

Theorem 4.1 Let L(T,C) be a language of index ezpressions and let ¢ € L(T,C). If for
some object O we have x(O) |- q, then there is an indezx ezpression i € x(O) such that i |- q.

From this property, it will be evident that the lithoid constructed from a core set of index
expressions constitutes all index expressions derivable from these index expressions by the
Refinement Machine with modus continens for the only rule of strict inference.

5 Context-Free Plausible Inference

In Section 2 it has been mentioned that the plausible inference mechanism of an Information
Disclosure Machine can be founded on the principle of minimal axiomatic extension. Here,
we elaborate on this observation and take a closer look at strengthening for the purpose of
plausible inference. In doing so, we assume that the axioms of an object characterization have
the form of index expressions.

5.1 Rules of Context-Free Plausible Inference

The axioms of an object characterization can be strengthened by an operation called refine-
ment. Informally speaking, refining an index expression is making it more specific. Refinement
is typically achieved by adding a connector-term pair to a given index expression. For exam-
ple, consider the index expression information. This expression can be refined into the index
expression need of information which can in turn be refined into people in need of information;
these refinements can be better understood by considering the lithoid depicted in Figure 8.
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effective 0 information o @ people in need
retrieval “Rof information

effective o information o p ») need of
information retrieval information

effective

Figure 8: Refining Index Expressions

The refinements in this example are a direct result of the inverse G-relation over the
language of index expressions and therefore are in turn determined by the underlying lithoid.
However, refinement can also be defined via the inverse of the isa-relation between terms. For

example, the expression fish can be refined into salmon. More formally, refinement is defined
as follows.

Definition 5.1 Let i and j be indez expressions in a language L(T,C). We say that i can
be refined into j, denoted as i — j, if and only if one of the following conditions applies:

1. 1Gj and for all index ezpressions k such that i Gk Gj it follows that k=j v k=i
2. i1saj and for all index expressions k such that iisakisaj it follows that k =j v k=i

Now observe that refinement can be taken as the basis for plausible inference: by applying
refinement inference is rendered plausible in the sense that the derivations involve index
(sub)expressions that are no part of the original characterization of an object and are not
deducible by strict inference.

The first rule of plausible inference we discuss is based on the notion of refinement as
introduced above. It is called plausible inference by refinement. The general idea of this rule
is as follows. Assume for example that within the set of information objects characterized
by pollution there are objects that deal with the pollution of rivers. On the basis of this, the
index expression pollution of rivers may be derived from the index expression pollution. For
the moment we will not consider the certainty of this derivation, but merely observe that it
is plausible.

Definition 5.2 Let i and j be index expressions in a language C(T,C). Then, if i can be
refined into j, j can be plausibly derived from i, or:

t—»j = th pPrj
This rule of inference is called plausible inference by refinement and is denoted by PR.

Note that plausible inference by refinement applies to a single index expression as was true for
the rules of strict inference discussed in the previous section. It therefore drives a context-free
type of inference. The same observation holds for the second rule of plausible inference, called
plausible substitution. This rule bears a strong resemblance to modus substituens.
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Definition 5.8 Let k and i be index ezpressions in a language L(T,C) such that i is an

indez subezpression of k. Furthermore, let k{ be the index ezpression k with i substituted by
j. Then,

t—»j => kb ps k{
This rule of inference is called plausible substitution and is denoted by PS.

Together with the rules of strict inference, plausible inference by refinement and plausible
substitution can provide the driving mechanism with which index expressions can be plausibly
derived from others. For example, the index expression metals can be derived from pollution
of rivers as follows:

pollution of rivers a0

pollution bk pp
pollution from metals ¢

metals

The following example demonstrates the use of plausible substitution:

effects of POLLUTION OF RIVERS ko

effects of POLLUTION K ps

effects of POLLUTION FROM METALS a0
effects of METALS

Note that in the last example only a single plausible inference step is involved in the derivation
of effects of metals from effects of pollution of rivers. This means that these expressions have
a fairly high degree of similarity. So, if effects of metals is a request, and an information
object O is characterized by effects of pollution of rivers, then it is fairly likely that O would
be relevant.

5.2 Problems with Context-Free Plausible Inference

After having introduced two rules of plausible inference, we address the question how adequate
these rules are. Consider three information objects O,,02 and O3. Object O, is about river
pollution in Australia, object Oy is about the effects of pollution in rivers and the third
object, O3, deals with air pollution in Holland. Assume that these objects have the following

characterizations:
x(01) = {riveropollution in australia}

x(032) = ({effects of pollution in river}
x(03) = ({airo pollution in holland}

For the sake of the argument, the characterization of the second information object specifies
the term river instead of the term rivers.

Now suppose that the request is river o pollution. Intuitively, objects O; and O3 would
seem to be relevant with respect to this request whereas O3 is not. Furthermore, imagine that
this request is fed into an Information Disclosure Machine whose inference mechanism is driven
by the rules of inference defined in the previous sections. Formally, the machine has the rules
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of strict inference § = {MC, MG, MS} and the rules of plausible inference P = {PR, PS}.
We now unleash this machine and try to derive the request from the characterizations of the
three objects. Object Oy can be shown to be relevant by application of modus continens:

river o pollution in australia k¢ river o pollution

As it is not possible to strictly derive the request from the characterization of object O,,
plausible inference is brought to bear:

effects of pollution in river 0

pollution K pg
river o pollution

Since the above derivation involves only a single plausible inference step it may be concluded
that the probability of relevance of object O, to the request ¢ is fairly high. Considering
the situation, this conforms with our intuition. However the following derivation also only
involves one plausible inference step:

air o pollution in holland ¢

pollution t pgp
river o pollution

This in fact means that on the basis of the above derivations the Information Disclosure
Machine employed would assess the probability of relevance of the object dealing with air
pollution in Holland, that is, the relevance of object O3, as being the same as that of the
object dealing with the effects of pollution in rivers, that is, of object Og; furthermore, this
probability would be assessed as being fairly high. In other words, in addition to the ob jects
O, and O3, also object O3 would be returned by this Disclosure Machine in response to
the request river o pollution. Clearly, the Disclosure Machine is too blunt: it is unable to
distinguish between object O, which is very likely to deal with river pollution and object
O3 which clearly does not. Figure 9 schematically depicts the above derivations in terms of
the underlying lithoid; the index expressions involved have been abbreviated for the sake of
clarity.

air o poll in holland eff of poll in riv riv o poll in aus

d poll in aus
air holland eff poll riv aus

Figure 9: A Schematic Representation of Two Plausible Derivations

The reason for the inadequacy of an Information Disclosure Machine based on the rules
of inference described above, lies in the fact that in applying these rules major parts of the
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context provided by the initial characterization of an information object are discarded. For
example, in the derivation

effects of pollution in river Fjc  pollution

the context mentioning the pollution being in rivers is thrown away and therefore cannot be
used further in the derivation.

6 The Refinement Machine: Rules of Plausible Inference

Recall that the intention is to define the inference mechanism for the Refinement Machine.
So far, a strict inference mechanism has been proposed in Section 4. It remains to define
the plausible inference mechanism of the machine. It will be evident from the previous
section that the Refinement Machine should not be based on context-free plausible inference.
In this section, we present a new approach to plausible inference based on so-called belief
networks. These have emerged from research into the representation and manipulation of
uncertain information in knowledge-based systems; for an overview of this research area, we
refer the reader to [LvdG91]. The present section is organized as follows. In Section 6.1
a brief introduction is given to belief networks as a general formalism for probability-based
plausible reasoning. Section 6.2 features how to build a belief network from a lithoid of index
expressions. Note that even though belief networks are based on probability theory and hence
implicitly involve negation, this can be handled without adopting a Closed World Assumption
in the sense as described in Section 2.

6.1 Introduction to Belief Networks

Informally speaking, a belief network is a graphical representation of a problem domain de-
picting the statistical variables discerned in the domain and their probabilistic interrelation-
ships. These interrelationships are quantified by means of conditional probabilities. Several
algorithms have been devised to efficiently compute probabilities of interest from such a repre-
sentation. Before introducing the belief network formalism in Section 6.1.2, we provide some
preliminaries. Section 6.1.3 describes reasoning with a belief network.

6.1.1 Preliminaries from Probability Theory

In providing some preliminaries from probability theory, we take an algebraic point of view
and start with a brief review of the notion of a Boolean algebra. A Boolean algebra B is
a set of elements with two binary operations A (conjunction) and v (disjunction), a unary
operation - (negation) and two constants false and true which (by equality according to
logical truth tables) adhere to the usual axioms. A subset of (algebraically independent)
elements ¥V = {v1,...,v,}, n > 1, of a Boolean algebra B is said to be a set of generators
for B if each element of B can be represented in terms of the elements v; € V, i1 = 1,...,n,
and the operations A, V and ~. We will use B(vy,...,v,) to denote the Boolean algebra B
generated by V. In the sequel, we will often take the point of view of a Boolean algebra
B(vi,...,vs) being ‘spanned’ by a set of variables V;, i = 1,...,n, each taking values from
{v;, ~v;} where v; is taken to represent V; = true and —v; denotes V; = false. From now on,
such a variable will be called a probabilistic variable.
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Now,let V = {W;,...,V,} be the set of probabilistic variables spanning a Boolean algebra
B(v1,...,v,) and let V' be a subset of V with m > 1 variables. A conjunction of length m in
which for each V; € V' either v; or -; occurs is called a configuration of V'. For example, the
conjunction —; A vz A s is a configuration of the set V/ = {V;, V3, Vs}. The conjunction of
length m in which each probabilistic variable V; € V' is named only, that is, specified without
its value, is called a configuration template of V'. For example, the configuration template of
V' = {W1, V2, V3} is V1 A V2 A V;. Note that the configuration —v; A v, A =v5 mentioned above
can be obtained from the configuration template V; A V, A Vj by filling in —~v,, v5 and -vg for
the variables V;, V, and Vj respectively.

On a Boolean algebra B(v,,...,v,) we define a joint probability distribution. As it can
easily be shown that the probability of an event is equivalent to the probability of the truth
of the proposition asserting the occurrence of the event, it follows that a joint probability dis-
tribution on a Boolean algebra has the usual properties. In addition, conditional probabilities
are defined as customary.

To conclude these preliminaries, the notion of an independency relation between proba-
bilistic variables is introduced.

Definition 6.1 Let B(vy,...,v,), n > 1, be a Boolean algebra and let Pr be a joint probability
distribution on B(vy,...,v,). LetV = {V;,...,V,} be a set of probabilistic variables spanning
B(v1,...,vn). Now, let X,Y,Z C V be sets of variables and let Cx,Cy and Cz be the
configuration templates for the sets X, Y and Z, respectively. The set of variables X is said
to be conditionally independent of Y given Z if Pr(Cx|Cy A Cz) = Pr(Cx|C3z).

For further details, the reader is referred to [vdG90].

68.1.2 The Belief Network Formalism

The notion of a belief network is introduced informally before a formal definition is given.
It has been mentioned before that belief networks provide a formalism for representing a
problem domain, or to be more precise, a joint probability distribution on a domain. To
this end, a belief network comprises two parts: a qualitative representation and a quantitative
representation of the domain. The qualitative part of a belief network takes the form of an
acyclic digraph G = (V(G), A(G)) with vertices V(G) = {W4,...,V,}, n > 1, and arcs A(G).
Each vertex V; in V(G) is taken to represent a probabilistic variable. An arc (V;,V;) € A(G)
is taken to represent a direct ‘influential’ relationship between the linked variables V; and
V;; absence of an arc between two vertices means that the corresponding variables do not
influence each other directly. Associated with the graphical part of a belief network is a
numerical assessment of the ‘strengths’ of the represented relationships: with each vertex is
associated a set of (conditional) probabilities which describe the influence of the values of the
predecessors of the vertex on the values of the vertex itself.
We now define the notion of a belief network more formally.

Definition 6.2 A belief network is a tuple B = (G,T) where
1. G = (V(G), A(G)) is an acyclic digraph with vertices V(G) = {V4,...,V,}, n > 1, and

2. T = {wlV; € V(G)} is a set of real-valued nonnegative functions vy, : {v;, w;} x
{ex(vi)} — [0, 1], called (conditional probability) assessment functions, such that for each
configuration c.(v,) of the set of parents =(V;) of V; in G we have that 7w(ﬁv;|c,,(w)) =
1-v(vilexvyy)s 1 =1,...,n.
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Note that in the previous definition V; is viewed as a vertex from the graph and as a proba-
bilistic variable, alternatively.

In order to link the qualitative and quantitative parts of a belief network, a probabilistic
meaning is assigned to the topology of the digraph of the network. We do note elaborate on
the probabilistic meaning of the graphical part of a belief network in detail. For the purpose
of this paper, it suffices to introduce this meaning only informally: two sets of variables X
and Y are taken to be conditionally independent given a third set of variables Z if all paths
in the underlying graph of the digraph from a vertex in X to a vertex in Y are blocked by a
vertex in Z. Further details may be found in [Pea88].

The following theorem now states that the initial assessment functions of a belief network
provide all information necessary for uniquely defining a joint probability distribution on the
variables discerned that respects the independency relationships portrayed by the graphical

part of the network. Henceforth, we will call this the joint probability distribution defined by
the network.

Theorem 8.1 Let B = (G,T') be a belief network where V(G) = {V4,...,V,}, n > 1. Let
B(v1,...,vs) be the free Boolean algebra spanned by V(G). Then,

Pr(iCyig) = [ mw(VilCrviy)
VieV(G)

defines a joint probability distribution Pr on B(vy,...,v,) that respects the independency
relation portrayed by G.

Note that since the conditional probability assessment functions of a belief network uniquely
define a joint probability distribution on the Boolean algebra generated by the vertex set of
the graph, any probability of interest can be computed from these functions.

6.1.3 Reasoning with a Belief Network

In the previous section, the notion of a belief network was introduced as a means for rep-
resenting a joint probability distribution. For making probabilistic statements concerning
the variables discerned in the problem domain, two algorithms are associated with a belief
network:

¢ an algorithm for (efficiently) computing probabilities of interest from the network, and

¢ an algorithm for processing evidence, that is, for entering evidence into the network
and subsequently (efficiently) computing the revised probability distribution given the
evidence; this process is generally called evidence propagation.

We have mentioned before that any probability of interest can be computed from the condi-
tional probability assessment functions. Equally, the impact of a piece of evidence concerning
a specific variable, on each of the other variables can be computed from these functions. Now,
observe that the conditional probability assessment functions describe the joint probability
distribution locally for each vertex and its predecessors. Calculation of a (revised) probability
from the joint probability distribution defined by the assessment functions in a straightfor-
ward manner, however, will generally not be restricted to performing computations which are
local in terms of the graphical part of the belief network. In the literature therefore, several
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less naive algorithms for computing probabilities of interest from a belief network and for
processing evidence in the network have been proposed. The most well-known is the set of
algorithms presented by J. Pearl [Pea88]. The basic idea of these algorithms is that the topol-
ogy of the graph of a belief network is exploited as a computational architecture. The vertices
of the graph are taken as autonomous objects having a local processor capable of performing
certain probabilistic computations and a local memory in which the associated conditional
probability assessment function is stored; the arcs of the graph are viewed as (bi-directional)
communication channels through which the objects can send each other messages. Updating
the joint probability distribution and computing local probabilities essentially entails each
probabilistic variable, that is, each vertex, combining its own local information with messages
it receives from its neighbours providing it with further information about the joint probabil-
ity distribution. Another set of elegant algorithms based on the statistical theory of Markov
random fields, has been proposed by S.L. Lauritzen and D.J. Spiegelhalter [LS88].

Although all algorithms proposed for evidence propagation are based on probability the-
ory, they differ considerably with respect to the algorithms employed and their complexity. It
should be noted that in general probabilistic inference in belief networks without any restric-
tions is NP-hard [Co090]. However, only small restrictions on the topology of the graphical

part of the belief network suffice to render the schemes mentioned above polynomial in the
number of variables discerned.

6.2 An Index Expression Belief Network

In Section 3, it has been mentioned that the lithoid is a useful structure for information
disclosure as it can be viewed by the searcher as a conceptual space through which he or she
can browse in order to locate index expressions which they feel are good descriptions of their
information need; this process was referred to earlier as query by navigation. In this section,
we further exploit the lithoid as the basis of the inference mechanism of the Refinement
Machine. To this end, a belief network of index expressions is generated from the lithoid. We
recall from the previous that a belief network comprises both a qualitative and a quantitative
representation of a problem domain. These components will be discussed separately in the
Sections 6.2.2 and 6.2.3. Before doing so, however, we show that within a probabilistic
context negation can be introduced without adopting a Closed World Assumption in the
sense described in Section 2. The section will be concluded by a discussion as to how the
resulting belief network and associated algorithms constitute the inference mechanism of the
Refinement Machine.

6.2.1 Introducing Negation

In information disclosure, one way of bringing negation into play is to adopt a Closed World
Assumption, stating that if a request ¢ is not deducible from an object characterization x(O)
by the strict inference mechanism, then the object O is assumed not to be relevant with respect
to ¢. As was argued in Section 2, this can be a dubious assumption. This observation is further
illustrated by an example. Consider an information object O which is characterized by the
index expression pollution of rivers only. The request river o pollution cannot be proven from
this characterization using the strict rules of inference. An Information Disclosure Machine
operating under a Closed World Assumption therefore would conclude that O is not relevant
with respect to this request. Intuitively, however, O would seem to have a high probability
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of relevance as the expressions pollution of rivers and river o pollution are very similar: our
belief in the relevance of the object with respect to the request is directly proportional to the
similarity between the index expression in its characterization and the request.

Probability theory provides a means to introduce negation and at the same time avoid a
Closed World Assumption. The notion of negation subsistent in probability theory further
yields a suitable, mathematically sound mechanism for discriminating between degrees of
relevance. We assume a joint probability distribution Pr being defined on a set of index
expressions indicating prior probabilities of being associated with a relevant object. The
probability of relevance of an object O with respect to a given request q can be equated with
the probability of ¢ given the context described by the characterization of O. Analogous to
the hook theorem, which states that a request can be proven from a single index expression
in an object’s characterization, we adopt the view that the probability of relevance of an
object is the maximal conditional probability generated from individual index expressions in
its characterization. The probability of relevance is defined more formally in the following
definition.

Definition 6.3 Let £L(T,C) be a language of indez ezpressions. Let O be an object, let
x(0) € L(T,C) be its characterization and let ¢ € L(T,C) be a request. Furthermore, let Pr
be a joint probability distribution defined on L(T,C). Then, the probability of relevance of O
with respect to g, denoted by Pp.,(O, q), is defined as

Pra(0,9) = maz{Pr(qli)]i€ x(0)}

Note that an alternative definition of the probability of relevance would be to take the entire
characterization of an object as evidence, that is, to take Py, (O, q) defined as

Pra(0,q9) = Pr(q|x(0))

This alternative definition will yield a different behaviour of the resulting Disclosure Machine;
it will be a matter of experimentation to decide which definition is more appropriate in
practice.

The probabilistic approach indicated above is combined with the strict inference mecha-
nism of the Refinement Machine as defined in Section 4 in the following sense. Consider an
object O and a given request ¢. If ¢ can be deduced from an index expression i € x(0) of O
by strict inference, then the probability of g given i is maximal, that is,

tkq = Pr(glt)=1

So, in this case the probability of relevance of O with respect to g equals 1. Conversely, only
if Pr(q|i) = 0 for all i € x(O) does the Refinement Machine conclude that O is not relevant
with respect to ¢.

6.2.2 The Qualitative Part of the Belief Network

Building a belief network of index expressions is now addressed. Recall from the previous
section that the qualitative part of a belief network is an acyclic digraph. The vertices in
this digraph are taken to represent probabilistic variables and the arcs are taken as influential
relationships between these variables. In constructing the qualitative part of a belief net-
work of index expressions, therefore, the probabilistic variables involved and the relationships
between these variables have to be identified.

21



In Section 3.3 we have introduced the notion of a power index expression and have indi-
cated that the union of the power index expressions for a given core set of index expressions
forms a lithoid. The searcher exploits this lithoid for information disclosure by moving across
it refining or enlarging a current focus. For a specific search some of the contexts in the lithoid
are possibly relevant and some are not in the sense of the negation introduced in the previous.
Therefore, we interpret each of the vertices of the lithoid to define a probabilistic variable.
In order to distinguish between the variables defined by the index expressions in the lithoid
and the index expressions themselves, we will adhere to the notational convention introduced
in Section 6.1: for example, POLLUTION OF RIVERS denotes the probabilistic variable taking a
value from the set of values {pollution of rivers, ~pollution of rivers}.

Now recall that the index expressions in a power index expression are partially ordered by
the is-subexpression-of relation @. It follows that the probabilistic variables we have defined
are partially ordered as well. Therefore, the lithoid can be taken to define the (undirected)
topology of the graphical part of a belief network. The edges of the resulting undirected graph
indicate the partial ordering on the probabilistic variables discerned. These edges are assigned
a direction using the inverse G-relation since for the purpose of information disclosure we are
interested, for example, in the probability of the index expression pollution of rivers given the
separate terms pollution and rivers. From G being a partial ordering the digraph resulting
from the transformation described above is guaranteed to be acyclic. Finally, we note that in
constructing the digraph from the lithoid the empty index expression may be omitted as it
is not information bearing to the disclosure. As an example consider the lithoid depicted in
Figure 6; the corresponding digraph constructed from this lithoid is shown in Figure 10.

EFFECTIVE o INFORMATION q
RETRIEVAL

PEOPLE IN NEED
OF INFORMATION

v

PEOPLE ¥ NEED

EFFECTIVE o
INFORMATION

INFORMATION o

RETRIEVAL !

g .
"ATION. RIEVAL

NEED OF
INFORMATION

EFFECTIVE

Figure 10: An Example Digraph

' 6.2.3 The Quantitative Part of the Belief Network

In the previous subsection, the qualitative part of a belief network of index expressions has
been constructed. In this section this representation is completed by a set of conditional
probability assessment functions quantifying the strengths of the relationships between the
probabilistic variables defined. Different assessment functions will be presented for different
types of vertices in the digraph.

We begin by looking at vertices having an in-degree equal to zero. For the variables
corresponding with these vertices we have to specify prior probabilities on the values such
a variable can take. From the associated lithoid we see that these variables correspond to
unary index expressions, or terms. In the context of information disclosure relative to a given
set of information objects O, it is reasonable to assume that a term that occurs frequently
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has a higher probability of being in a relevant object than a term that occurs infrequently.
The prior probabilities on the values of a term variable may therefore be computed from the
occurrence frequency of the term relative to the set of objects ©. That is, for a variable T for
a term ¢ we compute the value v,(2) of the assessment function v, associated with T' using

12(t) = nf(t)
where 7 is some normalizing factor. Note that the complementary function value v,(-t)
can be computed using the equality v,(-t) = 1 — v,(¢). This approach to estimating the
probability of occurrence of a term is common in information retrieval [WY90).

We now turn to vertices for which the set of parents consists of vertices with in-degree zero.
These vertices correspond with variables that represent binary index expressions which are
constructed from two terms via the addition of a connector. For example, the binary index
expression pollution of rivers is constructed from the terms pollution and rivers by adding
the connector of; the graphical part of a belief network comprising variables for these index
expressions only is depicted in Figure 11. We use this example to define the conditional
probability assessment function for the variable POLLUTION OF RIVERS; for the sake of brevity,
we use P OF R to denote POLLUTION OF RIVERS.

POLLUTION OF RIVERS

POLLUTION RIVERS

Figure 11: A Simple Belief Network

For the conditional probability assessment function Yp oF B V€ have to specify eight
values: the four function values
P oF l‘(pollution of rivers|pollution A rivers) = w
p oF R(pollution of rivers|-pollution A rivers) = =z
Tp oF l'.(polluticm of rivers|pollution A —rivers) = y
Tp o p(Pollution of rivers|-pollution A —rivers) = 2

and the complementary ones. Now consider the function value
Tp OF R(Pouuﬁon of rivers|pollution A rivers) = w

In terms of information disclosure, this function value has the following meaning: given that
we know that an object O is about pollution and that we know that O is about rivers, then
the probability that O is about pollution of rivers equals w. Later in this section we will
discuss a method for computing suitable probability estimates based on frequency analyses
of connectors in binary index expressions. First, however, we consider the function values z,
y and z indicated above and show that these values are necessarily equal to zero.

Theorem 6.2 Let B = (G,TI') be a belief network. For each triple of probabilistic variables
I,J,K € V(G) such that (I, K),(J, K) € A(G), we have that

T(KIIAJT) = 0

Jor I =i orJ=~j.
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Proof: Let Pr be the joint probability distribution defined by the belief network B as in
Section 6.1. From the construction of the digraph G and (I, K) € A(G) we have that
t@k. Therefore, k I ¢ which implies Pr(iJk) = 1. Analogously, we find Pr(j|k) = 1.
From Pr(ilk) = 1 and Pr(j|lk) = 1, we have Pr(i A j|k) = 1. Using marginalization,
Pr(iA jlk) = 1 implies Pr(i A =jlk) + Pr(-iA jlk) + Pr(—=iA -j|k) = 0. Now observe
that from Pr(-i A -jlk) = 0 we find Pr(k|~i A =j) - Pr(=i A nj) = 0. So, at least
one of the probabilities Pr(k|-i A ~j) and Pr(-i A -j) equals zero. We know that
Pr(—i A ~j) > 0 because Pr(-i A -j) = 0 would imply that there is no information
object which is not about expression i and not about j, which clearly is not the case.
Therefore, Pr(k|-i A -j) = 0, and so ¥,(k]-¢ A =j) = 0. Using similar arguments, we
find v, (ki A j) = v (k|ni A j) = 0.

O

Note that the theorem states a direct result of harbouring maximal belief in the consequences
of the strict inference mechanism.

The question remains as to how the function value w can be obtained. One method is
to analyze the frequencies of occurrence of connectors in binary index expressions. Recently
such an analysis has been carried out [Ros91]. Index expressions were derived from the titles
of the Cranfield document collection. Using these expressions, a lithoid was constructed as
described in Section 3. An analysis of the index expressions in the resulting lithoid revealed
that approximately fifteen percent of binary expressions involve the of connector. In our
example, therefore, the value w can be approximated by 0.15, that is,

Y oF R(pollution of rivers|pollution A rivers) =~ 0.15

For binary index expressions involving other connectors, the estimates in the (incomplete)
table shown in Figure 12 can be used. For a full report on connector probabilities, the reader
is referred to [Bru92]. Note that using these connector probabilities provides only rough
estimates of the probabilities required.

Up to this point, we have considered variables that represent terms or binary index ex-
pressions and have defined associated conditional probability assessment functions for these
variables. Attention will now be focussed on variables representing n-ary index expressions,
n > 3. From the construction of a lithoid it will be evident that an n-ary index expression
is formed by combining two index expressions of degree n — 1 that overlap in one term. For
example, the ternary index expression people in need of information is constructed from the
binary index expressions people in need and need of information on the basis of the term need
appearing in both expressions. The analysis of the titles of the Cranfield document collection
cited above revealed that if two index expressions of degree n — 1 combined into an n-ary
index expression, n > 3, then they did so uniquely. So, for two index expressions ¢ and j
combining into an index expression k, the function value v, (k|i A j) therefore can be taken
to be

'/K(kli Aj) =1
Theorem 6.2 also applies here, so

o

’Yx(kl.ﬁi/\]:) =
Yi (k|2 A -j)
Ye(k|miA-g) = 0

Il
=
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| Connector | Probability |

o 0.5366
and 0.0492
as 0.0004
at 0.0348
between 0.0052
by 0.0061
for 0.0327
from 0.0039
in 0.0632
of 0.1529
on 0.0370
or 0.0026
over 0.0066
through 0.0035
to 0.0170
with 0.0248

Figure 12: Some Connector Probabilities

Note that for larger document collections the assessment function given above may not be
acurate. However, it is expected that for larger sets of information objects there equally
exists some small value of n such that for probabilistic variables representing n-ary index
expressions the probability assessment shown above is appropriate as well.

Now, for all variables discerned a conditional probability assessment function has been
specified. The digraph constructed in the previous section and this set of assessment functions
together define a belief network of index expressions. We conclude by observing that the
approach presented differs from the one proposed H. Turtle and W.B. Croft [TC90], in the
respect that in our approach the belief network exists purely within the realm of the descriptor
language. Recently belief networks have also been investigated in conjunction with term
phrases [CTL91].

6.3 The Index Expression Belief Network and Plausible Inference

Recall that the intention of Section 6 is to define the plausible inference mechanism of the
Refinement Machine. The basic idea now is to take the index expression belief network built
from a core set of index expressions as outlined before and its associated algorithms, to define
a rule of plausible inference. Before defining this rule of inference we observe that the Refine-
ment Machine restricted to the rule of strict inference modus continensis implicitly embedded
in the index expression belief network; this follows from the topology of the graphical part of
an index expression belief network being obtained from the lithoid which in turn defines the
set of index expressions deducible via modus continens from a core set of index expressions,
and the way the joint probability distribution on the index expressions is defined.

Plausible reasoning with the index expression belief network now is taken to define plau-
sible inference in the Refinement Machine as illustrated by the following example. Consider
once again the index expression belief network depicted in Figure 11. From the two separate
terms pollution and rivers, the binary index expression pollution of rivers may be derived with
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probability Pr(pollution of rivers|pollution A rivers). In terms of logic, this is equivalent to the
plausible inference step

pollution,rivers k~  pollution of rivers

This inference step can be seen as a step in which the connector of is “guessed”; the strength
of the guess is represented by the associated conditional probability. By generalizing this
example, the plausible inference mechanism of the Refinement Machine is defined as follows.

Definition 6.4 Let iy,...,i,, n > 1, and k be indezx ezpressions in L(T,C). Then,
PT(kItl /\“-/\‘in) >0 = i1,...,0a N prk

This rule of inference is termed plausible inference by probabilistic deduction and is denoted
by PI.

In summary, the Refinement Machine A is defined as A = (D,{MC},{PI}) assuming the
Disclosure Structure D.

7 Experimental Results

In the previous sections we have defined the Refinement Machine as a concretization of the
Information Disclosure Machine. The effectiveness of this Refinement Machine is the theme
of the present section. As a starting point for discussion of the effectiveness of the Refinement
Machine, consider once again the example depicted in Figure 9 at the end of Section 5. The
reader is reminded that this example was used to show how a Disclosure Machine with a
context-free plausible inference mechanism would assign the same probability of relevance to
a document about air pollution in Holland as to one about the effects of pollution in rivers
in response to a request river o pollution.

The same problem will now be presented to the Refinement Machine as defined in the
previous section. This entails that an index expression belief network is constructed from the
core set of index expressions from the three information objects 0,0, and O3 having the
following characterizations:

x(01) = ({river o pollution in australia}
x(02) = {effects of pollution in river}
x(03) = ({air o pollution in holland}

The graphical part of the resulting belief network is depicted in Figure 13; again, for reasons
of clarity the names of the probabilistic variables have been abbreviated. The associated
conditional probability assessment functions are defined as outlined before. Recall that the
probability of a term was estimated using normalized occurrence frequencies. In this example,
the term pollution occurs three times, once in each document, resulting in the prior probability
Pr(pollution) = 0.33. The table shown in Figure 14 summarizes the term probabilities for this
example. The conditional probability assessment functions for variables representing binary
index expressions are defined using the normalized connector occurrence frequencies shown
in Figure 12.

As a testing vehicle, the IDEAL system was used [SB90]. IDEAL is an environment for
building and reasoning with belief networks. A number of evidence propagation algorithms
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AIR o POLL IN HOLLAND EFF OF POLL IN RIV RIV POLL o IN AUS

POLL IN

AIR o POLL POLL IN AUS

AIR HOLLAND EFF POLL RIV AUS

Figure 13: The Index Expression Belief Network for the Pollution Example
[t | f(t) | Pr(?) |

[ pollution | 3 0.33
river 2 0.22
effects 1 0.11
australia | 1 0.11
air 1 0.11
holland 1 0.11

Figure 14: Term Probabilities for the Pollution Example

are supported by IDEAL; in our case, the Lauritzen and Spiegelhalter algorithm was used.
The experiment was run as follows. The index expression characterizing an object was entered
as evidence into the belief network and subsequently propagated; thereafter the probability
of the request was computed from the network. The results of this experiment for each of the
objects are summarized in the table shown in Figure 15.

| Evidence Pr(river o pollution| Evidence) |

effects of pollution in river | 0.55
river o pollution in australia | 1
air o pollution in holland 0.12

Figure 15: The Computed Probabilities of Relevance

Comparing these results with the results obtained for the same example in Section 5,
we observe that they are encouraging. In contrast with a Disclosure Machine employing a
context-free plausible inference mechanism, the Refinement Machine shows a substantial dif-
ferentiation between Pr(river o pollution|effects of pollution in river) and Pr(river o pollution|
air o pollution in holland). Note that the probability

Pr(river o pollution|river o pollution in australia) = 1

is a consequence of the request river o pollution being strictly deducible from the index ex-
pression river o pollution in australia via modus continens.

8 Conclusions

In this paper the Refinement Machine has been presented as a concretization of an Information
Disclosure Machine. The Refinement Machine features the language of index expressions
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for characterizing information objects and provides both a strict and a plausible inference
mechanism.

The work presented has been motivated by recent work on a logic-based approach to in-
formation disclosure. Although this approach is generally considered theoretically elegant,
many questions regarding its feasibility has been raised. As to this respect, the Refinement
Machine appears to be very promising for further investigation. This is because it brings to-
gether two facets which are (more or less) generally considered as being necessary for realizing
significant improvements in disclosure effectiveness. On the one hand, there is the language of
index expressions, which is more expressive than languages of terms or term phrases, and on
the other hand, there is the disclosure aspect derived from the inference mechanism provided
by the framework of belief networks.

As to its effectiveness, we are currently testing the Refinement Machine in the context of
larger examples than the one presented in this paper. In addition, we would like to investigate
enhanced Refinement Machines which include modus generans and modus substituens; the
problem here is the efficient construction of the enhanced lithoid. There are also many
open problems concerning the feasibility of the Refinement Machine. The lithoid which is
the basis of the belief network, for example, can grow very large: the number of vertices
may be exponential in the number of index expressions in the core set of index expressions
generated from a given document collection. For larger object bases it is not feasible to
store and reason with the entire resulting belief network. One of the results of the ESPRIT
project APPED is an implementation of query by navigation which generates the relevant
part of the lithoid dynamically. Future research will be directed towards developing a strategy
for dynamic generation of relevant parts of a belief network to be incorporated into the
Refinement Machine. Another area of interest is using the Refinement Machine to support
interlayer navigation within stratified hypermedia [BvdW92]. We hope to communicate our
further research results in future publications.
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