Congruences and Quotients

in Categories of Algebras

Nico Verwer

RUU-CS-92-23
June 1992

Utrecht University

; (2 Department of Computer Science
1S 5’ Padualaan 14, P.O. Box 80.089,
1 »

3508 TB Utrecht, The Netherlands,
Tel. : ... +31-30- 531454

Congruences and Quotients

in Categories of Algebras

Nico Verwer

Technical Report RUU-CS-92-23
June 1992

Department of Computer Science
Utrecht University
P.0.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 0924-3275

Congruences and Quotients
in Categories of Algebras

Nico Verwer

Department of Computer Science, Utrecht University,
P.O. box 80.089, 3508 TB Utrecht, the Netherlands.
Email: nico@cs.ruu.nl.

Abstract

Equational specifications can be implemented by quotient algebras. A cat-
egory theoretical description of algebraic specification should include quotient
algebras in such a way that it can serve as a guide in building algebraic speci-
fication systems. In this paper we give a new construction which does exactly
this, and give an example of how it could be used. This construction is simple,
but still applicable in practical situations.

1 Introduction

The category theoretical description of abstract data types is elegant, because it has
a high level of abstraction, and gives a concise and precise definition of the notions
that are involved, and the way they are related. But it is more than a nice exercise
in theoretical computer science; a thorough category theoretical description can be
used to implement a system for compiling and manipulating algebraic specifications.
Such a system tends to be complex, and a clear description can help tremendously in
building it, by defining interfaces for the large number of modules involved. Without
a clear view of the different aspects of the system, construction is cumbersome, ad
hoc, and of limited applicability. The machine, or programming language in which
the system is implemented is viewed as a base category, upon which the complicated
constructions are made. Along the lines of ‘computational category theory’ [7], a
system for algebraic specification and implementation of data types is being built
at the moment.

The purpose of this paper is to propose a category theoretical description of
quotient algebras, as well as to give constructions for it. Quotient algebras are
important for the specification and implementation of abstract data types, because
they are models of equational specifications. In a quotient algebra the values are
equivalence classes with respect to a congruence relation. The important thing about

1

a congruence relation is that it preserves the operations of the algebra, a property
which is usually called compatibility.

Several ways of describing quotients in a category theoretical framework have
been devised. In the sketches approach of Barr and Wells [1], congruences are
formed by a construction that is outside the base category. Since we would like to
do all programming within this category, this approach is not applicable in our case.

In the category Set, a construction for quotient algebras is given by Ehrig and
Mahr [3]. This construction relies on the fact that epimorphisms split (i.e. we can
use an axiom of choice in our programs), something which we cannot always assume.
We discuss this in section 5.

Fokkinga explores algebras in a more general framework in [4]. In his chapter
on ‘laws’, he restricts relations to the subcategory Congr(¢) of congruence relations
on the algebra ¢, but again this is a restriction imposed from outside. Also it is
not clear whether there is a category theoretical way of deciding what relations are
congruences.

The approach developed here is similar to that of Diaconescu in [2]. It may
seem less powerful than those just mentioned, but this is only because we make
no assumptions which cannot be satisfied easily: It shows exactly where the hard
work in building systems for algebraic specification takes place. This is illustrated
in section 5. Here we are interested in the motivation behind the constructions, and
their applicability, whereas Diaconescu concentrates on soundness and completeness
properties.

2 Categories and algebras

It is assumed that the reader has an elementary knowledge of category theory on the
level of, for instance, the introductions of Rydeheard & Burstall [7], or Pierce [5].
The reader should also know something about the theory of algebraic specification
and implementation of data types. There is a great amount of literature on this
subject; the introductory chapters of Ehrig & Mahr [3] and Wirsing [8] provide
enough background to understand this paper.

The notation used here is rather non-standard for category theorists. Some of it
is borrowed from Fokkinga’s thesis [4], and some of it agrees with what is common
in algebraic specification formalisms.

Objects in a category C are indicated with capitals A, B, ...or greek letters
@, 1, ...if they are algebras. Arrows are indicated by f, g, h, ...or &, ¥,
Composition of arrows is written as o, and is in anti-diagramatic order. Functors
are indicated by whatever symbol is appropriate. Functor application is done by
superscripting, like in AF or f¥. Functor composition is in diagramatic order, and
written as ; or just by juxtaposition. When 7 is a natural transformation from F' to
G, this is written as 7 : F - G. For every object A € C, there is a constant functor

A : D —C, defined by
XA=A) fA=idA.

Here D may be any category, and F'; X = X. The lifting of a bifunctor @ is defined
as

F&G:C— &
AFéG=AF®AG , fFéG-’—'fF@fG

for F,G:C—Dand @&: DXD —E.

We use the notation 1 for the terminal object in a category, and !4 : A — 1 for
the unique arrow from the object A to it. The initial object, and the unique arrow
from it to A are denoted by j, : 0 — A. The notation for product and coproduct is
as in the diagram below: !

AT _AxB—22 . A—YU a4 B2 B
\ng\ / \lf/
C C

A category C is called extensional if for all objects A
Va:1—> A: foa=goa = f=g.

Sometimes this is expressed as “1 is a generator.”
For a cartesian closed category C, the exponential is written B « A. Currying
is written as ©, and application as @. The name of an arrow f: A — B is

‘Fr=(f om2,,4))® : 1 = (B« A).

From now on, C is the base category, i.e. the model of the machine on which
programs are executed. We assume that it is cartesian closed, and that it has finite
coproducts. It should also be extensional.

A signature is represented by an endofunctor ¥ : ¢ — C. A X-algebra is an
arrow ¢ : AT — A in C. The object A is the carrier of ¢, and we shall write 1t as ol
A homomorphism h from the algebra ¢ to the algebra i is determined by an arrow
Rl : ¢l = 9!l in C, such that

W= o hl®.

The category C|X has £-algebras as objects, and homomorphisms as arrows. Identity
and composition are taken from C. The carrier is a functor || : C|Z — C.

1The diagrams in this paper were drawn with the Xy-pic package [6].

The natural transformation
TRy
is defined as
s=9¢

where the subscript ¢ (in which 2 is instantiated) is the algebra, and the other ¢ is
the arrow in C. A signature ¥ : C — C gives rise to a functor

X:ClT—=C|E
¢E = ¢2 . ¢||EE N ¢||E.
REI = pli=

This means that
=l = glI®,

From now on we shall write ¥ instead of X

The initial X-algebra in C|T is p(X) : w(Z)® - u(S)N. Tt does not always exist,
but its existence can be proved if C is w-cocomplete and ¥ is w-cocontinuous. There
is a unique homomorphism j, : u(X) — ¢ for every E-algebra ¢. In the notation of

[4],
(#) =i u(z)! = 41
which is called the catamorphism of ¢.

3 Equations and variables

In most algebraic specification languages, the simplest form of equation is a pair of
terms. When the base category is Set, terms are the elements of the term algebra
over the signature ¥. This is the free initial algebra p(X); its carrier object is the set
of all well-formed expressions with operators from X. Thus, category theoretically,
a (ground) term corresponds to an arrow

t:1— pS)M

Definition 1 Let ¢,¢': 1 — u(E)”. The property that the equation ¢ = ¢’ holds in
the algebra ¢ (¢ satisfies t = t') is defined as

plEt~t & (g)ot=(g)ot"

We used the symbol ‘~’ instead of ‘=" in this definition, because the terms ¢ and ¢’
themselves are not equal; their interpretations in the algebra ¢ are equal.

The situation becomes more complicated when we allow variables to occur in
the equations. Set-theoretically, the variables are just elements of some set (in some
specification language this set is enumerated in the vars section of a specification).
An obvious generalization is to consider a ‘variable-object’, which can be any object
in the base category. Individual variables are constant arrows = : 1 — X to this
object. The signature of L-algebras with variables in X is

T+X:C—-C.

The variables are considered as new constants in the signature. The algebra of
T-terms with variables in X is the initial ¥ + X-algebra

pEHX): w0+ X - (uE X))

The interesting thing about variables is that we can assign values to them. This
is done by something called a valuation, assignment, substitution, or environment.
Here we shall use the word assignment for a natural transformation

a: X = |

(note that X : C|X — C). This may be instantiated in an algebra ¢ to get ay :

X — ¢ll. Every arrow f: X — u(E)“ can be extended to an assignment by defining
Q¢ = (I¢D o _f

Sometimes we would like to have a variable object X that is not fixed, but
dependent on the algebra to which the variables are added. In this case we do not
have a variable object X, but a variable functor F : C — C. The extended signature
is ¥ 4 F, and an assignment is a natural transformation o : || ; F' - ||. When the
variables are fixed, the functor F is X.

We shall now introduce functors to make ¥ 4 F-algebras from Z-algebras, and
vice versa.

Definition 2 (variable addition) Let ¢ and ¢ be E-algebras, h : ¢ — ¢ a X-
homomorphism, and F a functor, F : C — C. For every assignment a : || ; F' = ||
there is a functor

[a] :C|E > C|(Z+ F)

defined by
o = pvag: ¢IF + lIF - gl
plallt = i

O

This defines a homomorphism Al®l, because
Rlelll g glol = gpled o (plelIE | pladiiF)
& (definitions of hl°) and [a])

Mo ($vas) = (¥ vay)o (H®+AIF)
<

(Wl o g) v (Al o ag) = (¥ 0 ") v (ay o AIF)
<

Mog=1pohlE A Aloay=ayohlF

< (h is a homomorphism, a a natural transformation).

Definition 3 (variable deletion) Let ¢, be (T + F)-algebras, and h : ¢ — 9.
The functor '

\F:C|(Z +F)—>CT
is defined as

B = pouy: g% ¢l
R\FIl = gl

o

It is easy to see that A\F is a homomorphism:
RVFIl, G\ — g\F | p\FIIS
& (definition of \ F)
Blodoi =thotyohl®
< (coproduct property)
Wl ¢ = 1o (AlIE + RIF)
<« (h is a homomorphism).

Both variable addition and deletion are natural with respect to the base category C.

The following properties can be used to calculate with variable addition and
deletion:

Proposition 1 For every assignment a: || ; F —= ||
[e];\F =1
The other way round, this holds for a very specific assignment only:

\F;[iolq]:I.

Proof For algebras, all we have to do is to write out the definitions:
glelVF =
(dvag)en =

¢

and
,‘/)\F[l'uzl =

(You)v(Poi) =
P

For homomorphisms the proposition is trivial.
a

There are also some interesting properties of initial algebras with variables:

Proposition 2 If ¢ is a X-algebra and a: || ; F — ||, then

i¢[a] ° {(uE)lal) = i(qlel) in C|(Z + F)

i¢ ° i(“(z)lul)\F = i(d,[a))\F in CIE
If ¢ is a (¥ 4 F)-algebra, then

. \F ., — :

l¢\ °luziF)\F) = i(w\F) in C|E

i'b ° i(ﬂ(z-“-F)\F)[] =]('/,\F)[.“z] in C|(2 'i' F).
a

The proofs follow immediately from the initiality of ; and proposition 1. In order
to check this, the reader may find the following diagrams helpful.

WE+F)— L) bo\r
lm ﬂ lu(gk /
p(z)kl w(E + F)\F

Proposition 3 (free algebra) The carrier functor || : C|X — C is a forgetful func-
tor, which has a left adjoint Fy : C — C|Z, which is defined as follows:

AT =3 A)M, Acc,
7® = it 2, f:A— B

This is illustrated in the following diagram.

1 t

w4 F)
‘a¢’ (I¢[a]])

Il — gIF quu

The activation is unique in extensional categories.

Proposition 4 If 1 is a generator in C (C is extensional) then /%, is unique if it
exists. Moreover, if it exists for all algebras, then it is a natural transformation

Vel =5 F) =i

The following proposition shows how activations can be constructed for polyno-
mial signatures. '

Proposition 5 (construction of activations) If T is a polynomial signature then

the following defines the activation of t : 1 — u(¥ + F)" for every X-algebra ¢, by
setting G = 1, initially.
Let £,F,G : C— C be polynomial functors, and t : 1 — u(Z F F)”G. The arrow

Vg (g gIF) - gl
is defined, inductively on the structure of ¢, as follows:

o If the term consists of just one variable z : 1 — X, then t = u(X 4 F)o oz,
and

Vi, =@o(ida(zo!)).

o If G =1 and t is not a variable, then, because u(X + F) is an isomorphism,
t=u(E+ F)ouot forsomet' :1— pu(T+ F)"E+F. In this case,

\/ t4> =¢o \/ t,¢
where the existence of 1/t', is the induction hypothesis.

e fG=A,and t:1 — A,

‘Jtd’:to!.

] HG=G1§G2,t=tlat2,and
\/t¢= \/t1¢A\/t2¢.
] IfG=G1-‘|\-G2 a.Ildt=L,'ot’,

In certain base categories, like CPO, there is no coproduct, but only a weak
coproduct, i.e. the arrow f ¢ g is not unique. That means that not all arrows
t:1-uCF F)“G1 +u(T F F)'®? can be written as t = 1; 0¢'. For all t where this
is a problem, we must extend the above definition. For instance, in CPO we would

define that for t = L 1P puzip)Io2)

Vg = Ligleiyglcz) o}

|

The proof that this is inded an activation in the sense of definition 5 is a tedious
exercise in writing out definitions.

4 Equivalences and congruences

In this section, we shall define the quotient of an algebra with respect to an equation.
We shall make a slight generalization and use arrows like

p:llsR—=|
instead of

Vi< (5 F) = |,
where R = (I & F).

Definition 5 (equivalence relation) An equivalence relation p ~ ¢ is given by a
pair

p,q:||3;R—=|, forsomeR:C — C.

The property that this equivalence relation holds in the X-algebra ¢ (¢ satisfies
p =~ q) is defined as

dEp~qg & ps=qp

10

If we have an algebra ¢ which does not satisfy the equivalence p ~ ¢, then
we may form equivalence classes, and obtain a new algebra which does satisfy the
equivalence. It is well known that in Set we can make equivalence classes of ¢l
under p ~ ¢ by taking the coequalizer of p and q. We generalize this to arbitrary
base categories.

Definition 6 (equivalence quotient) The quotient for carrier objects in C w.r.t.

the equivalence p =~ ¢ is an endofunctor /(p ~ ¢) defined on the image of || in C, and
a natural transformation

(pxq):ll=15/(p=9):
The object-part of the functor /(p =~ ¢), and (p ~ q) are defined as the coequalizer
of p and q. For a homomorphism h : ¢ — 3, hll/(P=a) : gll/(p=a) _ ll/(p=a) j5 the
unique arrow that is given by the coequalizer for (p ~ q) 0° Rll. This depends on the

fact that (p ~ ¢),, 0 hlopgy = (p =~ q) ° hll o g4 which follows from the naturality of p
and gq.
0

This is illustrated with the following diagram:

D¢ ~
g 1 P = Dt ny
[;
hnn‘ lh” Rl (r=a)
Py v

o —

s 1/ (pa)
0y 4 @zﬂf

The use of quotients of equivalence relations brings up some big problems. The
above definition only makes quotients of carriers, not of complete algebras. Thus it
does not give an algebra ¢’ such that ¢’ = gll/P~0) and ¢ |= p ~ ¢. Even if there is
such an algebra, there is no guarantee that the arrow (p ~ ¢), : ol — ¢ll/(P=9) can
be extended into a homomorphism. This should come as no surprise for those who
know about algebraic specifications. What we really need is a congruence relation
instead of an equivalence relation.

In the standard theory of algebraic specifications, a congruence relation is an
equivalence relation which is compatible. Compatibility means that the equivalence
defined above is ‘propagated within expressions’, i.e. we do not only require

Pe = 99
but also

bopss = dogs”,
2 2
GodTopsT = od¥og”,

11

etcetera. Thus, we do not only quantify over all environments (in the case where
an equation is given by a pair of terms with variables), but also over all contexts
b, pod%, o T o @™, etcetera. We should construct a kind of coequalizer which
coequalizes all of these, i.e. all pairs of arrows

i ¢E|’—1 ¢
HIRE’ ‘ plI=" . T ¢l
7 ¢= ¢

This is done in the form of an w-colimit, similar to the well known initial algebra
construction. In order to make this work, we start with the coequalizer of

igh s igh - O — ¢l
which is just the identity idyy. Step by step, we add arrows, obtaining
Yo = gl Y = (¢ o 7i—12) v Pé
To=ia = (o%_1") v
By the definitian of the (£ 4 ﬂ’_’)-algebras ¢ and ¢4, and the fact that
(B0 f5) vy =($vay) o (fF +idgin) = gl o fE+D)
this may also be written as
; FoIR);
Yo = jgl Yi = ¢[p] 0 ’Y£—12+ﬁ : 0(E+ﬁ) - ¢[p]"

TiolR L SR
’76 = i¢|| fy: = ¢[‘I] o ,7'{_1 +ol* : 0(2+ﬁ) — ¢[q]||

This gives two cocones v and 4’ on the w-chain (024&) o' The w-colimit of this

chain is (X + ¢lIF), and the colimits of the cones v and ~" are (¢! and ($l)).
The result of this somewhat complex argument is summarized in the following
definition.

Definition 7 (congruence relation) A congruence relation p & ¢ is given by a
pair

p,q:||3;R—=], forsomeR:C — C.

The fact that this congruence relation holds in the T-algebra ¢ (¢ satisfies p = ¢q) is
defined as

PEPEG © iyn = iga-
This is equivalent to saying that

(47, (8 : (¢17)> — !

are equal.
O

12

We can define quotients w.r.t. congruence relations similarly to definition 6.

Definition 8 (congruence quotient) The quotient in C|E w.r.t. the congruence

p = gq,wherep,q:||; R— ||, is an endofunctor /(p = ¢) : C|X — C|Z and a natural
transformation

(p=q):I= /(p=yq).

The object-part of the functor /(p = q), and (p = q) are defined as the coequalizer
of the parallel pair

i)\
¢||R-7"2)

(¢'®)

(igatay)
in the category C|X. For a homomorphism A : ¢ — ¢,
Rl (o2a) . gll/(p2a) _, pll/ (p22a)

is the unique arrow that is given by the coequalizer for (p & g),, o h.
g

Note that the quotient is only defined if the above coequalizer exists in C|Z.
It is easy to see that definition 8 does what we want.

Proposition 6

¢/ (P=) Epxg

]
Proof
¢/ = pg
¢ (definition 7)
ip/(rxa)lr) = jg/(r2a)ld]
<& (initiality)
(P q)yoign = (P q)yoiga
< (coequalizer)
a

The following proposition says that for algebras, satisfaction of a congruence and
satisfaction of an equivalence are the same.

13

Proposition 7

¢Ep=q & dEpg

=]
Proof
ol = iglal
& ¢Fl = gl
& dups=¢9vgs
< Ps=4qs
0

By taking the quotient of an algebra, we have obtained the intended meaning of
equations t = ¢'.

Proposition 8

pE/IZ N & Va: X = |60 =t~ t

a
Proof
igivl = iglw)
& (proposition 7)
\/ t¢ = \/ t'¢
& (extensionality)
Va: X = ||t yigo‘ay = /t'yo‘ay’
& (definition of /)
Va: X - ||: () ot = ()0t
8]

The formalism developed here can also be used to handle systems of multiple
equations. The meaning of such a system is defined by

PEMEOaA Ap=g) & SEPZaA- - AdlEp. g,
where p; , g : || ; Ri = ||. By definition 7, this is equivalent to

iglr1l = Qgla) Ao Afglen]l = jglanl-

Definition 2 says that ¢l = ¢ ¢ Pig- These algebras have ¢ in common, so we can
combine them into a bigger algebra

¢[P1]"'[Pn] =¢v P14V "V Png = ¢[P1v~-~vpn] . ¢,“2 + ¢||Rl 4.4 ¢||Rn N ¢||‘
This leads to the following proposition.

14

Proposition 9

PEMEQA AP =) & dEPLv 9 Pa) Z(1v Y n)

O
Proof
igler] = iglal Aot Ajglon]l = iglan
& (apply the proof of proposition 7)
Pig = Qg N " APng = qng
S iglrv-vrnl = gl v wan]-
0

This proposition means that we may transform a system of multiple equations into
one equation. Therefore such systems can be handled without difficulty.

5 Constructing quotients

As we saw in the previous section, taking the quotient algebra of a T-algebra under
some congruence relation involves a coequalizer in the category C|Z. It is clear that
this coequalizer need not exist for all possible congruence relations. Diaconescu
gives a general construction in [2], but he assumes the existence of coequalizers (and
pullbacks) in C|X. Here, we would rather use properties of C, which is the category
in which things are actually ‘computed’. Using these properties, we might construct
quotient algebras for certain congruence relations.

The standard set-theoretic construction of congruences uses an axiom of choice,
which says that we may pick representatives from congruence classes. The cate-
gory theoretical version of this is formulated as follows (Diaconescu [2] has another
variant).

Definition 9 An epimorphism e : A — B splits if there exists an arrow r : B — A,

such that eor = id .
a

Definition 10 (compatible equivalence) The equivalence quotient (p ~~ q) (see
definition 6) is compatible w.r.t. the algebra ¢ if for all objects A, and all arrows

(pqfoz=(pxgoy = (pxg)opor=(pq)odoy.

15

Proposition 10 The congruence quotient (p & q) viewed as an equivalence quo-

tient (p = ¢)l! is compatible for every algebra.
o

Proof

(pq)Foz=(px gy
=

¢ P2, (p gF o g = g/r=9) (p=q)®oy
& ((p = q) is a homomorphism)

(= glogoz=(p=glcgoy

O

Proposition 11 An equivalence quotient which splits and is compatible can be

extended into a congruence quotient.
0O

Proof Suppose that (p = g) splits (it is epi because it is the arrow of a coequalizer)
as (p = g) or = id. We define the congruence quotient as

(r=g=p~9g
¢/ = (p =~ g), 0 pory®

< (compatibility)
(P g)¥orgZo(p~g)* = (pxg)®
< ((p ~ q) splits)
(pq)=(pxg)F

In a practical implementation, the congruence classes are computed by a rewrit-
ing system, which is what the arrow (p & ¢) models. The more powerful the rewriting
system, the more coequalizers we can compute. The simplest rewriting system is
one for simple function definitions of the form f(z) = expr. This is implemented in

every functional programming language, and we should be able to do at least this
in the categorical framework.

16

The left hand side of the equation f(x) = ezpr is the application of one of the
operators from the signature, f, to some variables, z. We assume that ¥ = £, + &,
where ¥; is that part of the signature that corresponds to f. The left hand side is
now a constant

£:1- uE i x)

b= 1 =, g5, (MEED)u)7 52 _M(E+X)orr oty

#(Z+ X) u(= 4+ x)

We must impose the condition that all variables in X occur in the left hand side,
1.e. there are no variables in expr that do not occur in z. The variables are given by
X, and ¢ll — X are all possible ¢-assignments to these variables. The inputs for f
in ¢ are given by ¢¥2, so ¥, corresponds to the variables that occur in the left hand
side. This condition then becomes

When this condition is satisfied,
\/l — ¢° L2 : ¢”E2 —_ ¢”.

For the right hand side, we require that f does not occur in it. This means that
we do not allow recursive definitions; we only allow expressions from which recursive
calls have been removed, or ‘canned’ recursion, in the form of catamorphisms. The
right hand side now becomes

ri1— p(S 4—&)"
and +/r is defined for X;-algebras (including ¢* for any T-algebra ¢).
Proposition 12 The quotient of 4(X) w.r.t. the congruence relation \/£ = /r is
”(2)/(\/15\#) — u(zl)ls/r]

(VE= \/")p(z) = d(u(z)vly ¢ wE) — #(21)[\/4
a

"The homomorphism (/¢ & VT) u(x) teplaces occurrences of f(x) by ezpr throughout
the term. This corresponds to the semantics of functional languages. The carrier of
the algebra 4(X;) contains all expressions that are in normal form.

Proof We must show that

. IE2)
(1) (2N z
{vr]
pu(x) =7z p() —EEL (vl

G ()l v])\(——M(B)"Ez)
w T

17

is a coequalizer, as required by definition 8. First, we show that the two arrows are
equal:

. . T)iS2
bu(zy)v]) © (l“(z)l\/l])\(ﬁ(—)——)

= (proposition 2)
1=
(i, yiveitva) L)
= (from the definition of /¢,
Vo = ((E1) v Vi, v 0 2 = Vs, vy
)

(i(zyytveitvn
= (proposition 2)

)\(u(z)"”n

H . n)lE
Hu(E)v) © (»,,(E)[m)\(u)

Next we prove that there is a unique homomorphism to any other algebra ¢, for

which

)\(u(E)"”’) —

. . miI=2
= l¢° (l“(z)[\/ﬂ)\(&—)

i ° (ium)iva
& (proposition 2)

(ighvn) V2 (j)\ D)

& (homomorphism determined by carrier)
(V) = (V")

& (catamorphism determined by algebra)
V2 = VT &
By definition of /¢, proposition 1, and the above line,
é= ¢\22[¢4 = ¢\22[\/r].

By initiality of 4,
is = (34,\22)[\/r] ° i(“(zl)h/rl)

and (i¢\z,)[‘/'] is the unique arrow such that this holds.
a

Proposition 12 only defines the quotient of the initial algebra. Since it makes critical
use of catamorphisms, it is not easily extendable to general algebras. In many cases,
this is no problem. For instance, the meaning of a functional program given by a set
of function definitions is given by the quotient of the initial algebra w.r.t. the system
of multiple equations arising from these function definitions. In proposition 9 we
saw how to handle such a system. In this case, it means choosing I, such that it
incorporates all the defined function symbols.

18

6 Discussion

Although we did not mention them, many-sorted algebras and algebras with pa-
rameters fit in easily with our description. Not all aspects of quotient algebras have
been investigated in this paper. We have only looked at systems of multiple equa-
tions, but not at more complex ways of combining equations. Ideally, all boolean
connectives should be allowed in equations, but the theory presented here is not
capable to describe this.

It is rather disturbing that initial algebras play such an important role in contexts
(see page 11). After having considered several other ways of specifying contexts, the
way we handled them here still appeared to be the best alternative.

Probably the most important result is that we have a simple characterization of
congruences and quotients (c.f. definitions 7 and 8), which is applicable in practical
situations (c.f. propositions 5 and 12).

References

[1] Michael Barr, Charles Wells, Category Theory for Computing Science, Prentice
Hall 1990.

[2] Rézvan Diaconescu, The Formal Completeness of Equational Logics, Program-
ming Research Group, Oxford University, August 1991.

[3] H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification 1, Equations and
Initial Semantics, Springer-Verlag 1985.

[4] Maarten M. Fokkinga, Law and Order in Algorithmics, thesis.

[5] Benjamin C. Pierce, A Taste of Category Theory for Computer Scientists, tech.
rep. CMU-CS-90-113, Carnegie Mellon University, 1990.

[6] Kristoffer H. Rose, Typesetting Diagrams with Xy:pic: User’s Manual, DIKU,
1992. (This manual and the TEX macro package it describes are available via

FTP from diku.dk and archive.cs.ruu.nl.)

[7] D.E. Rydeheard, R.M. Burstall, Computational Category Theory, Prentice Hall
1988. :

[8] Martin Wirsing, Algebraic Specification, in Jan van Leeuwen, ed., Handbook
of Theoretical Computer Science, volume B, Formal Models and Semantics,
Elsevier/MIT press 1990.

19

This is illustrated in the following diagram.

w(Z+A)

pCHAF + 4 w4

(u(S+B)o(id+1)))7 +id 4 ((u(E4B)e(id+1)))

wE 4B+ A—g7= =+ B + Brgrg—u(= 4+ B)
The algebra A”* is called the free T-algebra over A.
Proof It is easy to check that this indeed defines a functor from C to C|X. Since
A%l = (s § M = (s} a)
we may define for every A € C, an arrow
na=u(E+A)ou:A— pEF4)
Now for every f: A — ¢ll there is a unique arrow
idof, u(Z 4’-4) — o9 fo
such that

i¢vf¢“ ona = f.

0

The intended meaning of an equation ¢ = ' where variables from X occur in
both sides, is that for all assignments to X the interpretations of these terms are
equal. That is, we require

Va: X = |: ¢ =t ~t.
The problem with this is that we have a different algebra $l*! for every assignment
a, so we cannot say what it means that the algebra ¢ itself satisfies t = ¢'. In
order to do this, we must bring the quantification over « ‘inside’. This is done by
parameterizing the terms in the equation with o, thus making the quantification
implicit.
Definition 4 (activation of terms) An activation in a X-algebra ¢ of a term
t:1—-+u(2-i—F)”
is an arrow
\/t¢ . (¢H — ¢IIF) — gll
such that for all a : ||; F —= ||

\/t¢ o‘ay’ = (I¢[a]]) ot.

