Approximating treewidth and pathwidth of

some classes of perfect graphs

T. Kloks, H. Bodlaender

RUU-CS-92-29
September 1992

Utrecht University
Department of Computer Science

X Y

N

\fp N Padualaan 14, P.O. Box 80.089,
7 »

3508 TB Utrecht, The Netherlands,
Tel. : ... 4+ 31-30- 531454

Approximating treewidth and pathwidth of

some classes of perfect graphs

T. Kloks, H. Bodlaender

Technical Report RUU-CS-92-29
September 1992

Department of Computer Science
Utrecht University
P.0.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 00343275

Approximating Treewidth and Pathwidth of
some Classes of Perfect Graphs

T. Kloks * H. Bodlaender ?
Department of Computer Science, Utrecht University
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

Abstract

In this paper we discuss the problem of finding approximations for the tree-
width and pathwidth of cotriangulated graphs, convex graphs, permutation
graphs and of cocomparability graphs. For a cotriangulated graph, of which
the treewidth is at most k, the pathwidth is at most 3k + 4 and we show there
exists an O(n?) algorithm finding a path-decomposition with width at most
3k +4. For convex graphs with treewidth at most k, the pathwidth is at most
2k + 1 and we give a O(nk) algorithm which computes a path-decomposition
with width at most 2k + 1. If G[r] is a permutation graph with treewidth
k, then we show that the pathwidth of G[r] is at most 2k, and we give an
algorithm which constructs a path-decomposition with width at most 2k in
time O(nk). We assume that the permutation « is given. In this paper we
also discuss the problem of finding an approximation for the treewidth and
pathwidth of cocomparability graphs. We show that, if the treewidth of a
cocomparability graph is at most k, then the pathwidth is at most O(k?),
and we give a simple algorithm finding a path-decomposition with this width.
The running time of the algorithm is dominated by a coloring algorithm of
the graph. Such a coloring can be found in time O(n3).

If the treewidth is bounded by some constant, these results, together with
previous results, [11, 31], show that, once the approximations are given, the
exact treewidth and pathwidth can be computed in linear time for all these
graphs.

1 Introduction

In many recent investigations in computer science, the notions of treewidth and
pathwidth play an increasingly important role. One reason for this is that many

*This author is supported by the foundation for Computer Science (S.I.O.N) of the Netherlands
Organization for Scientific Research (N.W.0.), Email: ton@cs.ruu.nl.
tEmail:hansb@cs.ruu.nl.

problems, including many well studied NP-complete graph problems, become solv-
able in polynomial and usually even linear time, when restricted to the class of graphs
with bounded tree- or pathwidth, [1, 3, 5, 7, 8, 32]. Of crucial importance for these
algorithms is, that a tree-decomposition or path-decomposition of the graph is given
in advance. Much research has been done in finding a tree-decomposition with a rea-
sonable small treewidth. Recent results [36] show that an O(n logn) algorithm exists
to find a suitable tree-decomposition for a graph with bounded treewidth. However,
the constant hidden in the ’big oh’, is exponential in the treewidth, limiting the
practicality of this algorithm.

For many special classes of graphs, it has been shown that the treewidth can be
computed efficiently. In this paper we discuss the problem of finding approximate
tree- and path-decompositions for cotriangulated graphs, convex graphs, permuta-
tion graphs and for cocomparability graphs. We also show that for these graphs, if
the treewidth is at most k, then the pathwidth is bounded by some polynomial in
k.

It has been shown that computing the pathwidth of a triangulated graph is
NP-complete [27]. It is unknown whether there exist good approximations, which
can be computed efficiently, for the pathwidth of a triangulated graph. Surpris-
ingly, for cotriangulated graphs, the pathwidth and treewidth are related in a linear
fashion, and there is a very simple algorithm that computes an approximate path-
decomposition.

Permutation graphs have a large number of applications in scheduling problems.
See for example [21], where permutation graphs are used to describe a problem
concerning the memory requirements of a number of programs at a certain time (see
also [26]). Permutation graphs also arise in a natural way, in the problem of sorting
a permutation, using queues in parallel. In [26] it is shown that this problem is
closely related with the coloring problem of permutation graphs.

We show that the pathwidth of a permutation graph is at most two times the
treewidth of that graph, and we give a linear time algorithm which produces a path-
decomposition which is at most two times off the optimal one. If the treewidth of the
permutation graph is bounded by a constant, this result, together with earlier results
show that an optimal tree- and path-decomposition can be computed in linear time.
In a forthcoming paper, [10], we show that for permutation graphs, the treewidth
and pathwidth are in fact equal, and we show an O(nk?) algorithm which computes
the (exact) treewidth (given the permutation).

It is easy to see that computing the treewidth and pathwidth for bipartite graphs
is NP-complete. Indeed, finding an approximation algorithm with a certain perfor-
mance ratio for bipartite graphs is at least as difficult as finding an approximation
with the same performance for graphs in general. In this paper we show that, if
the bipartite graph is convez, with treewidth k, the pathwidth is at most 2k + 1
and it is almost straightforward to find a path-decomposition with width 2k + 1 in
O(nk) time. In a forthcoming paper, [30], we show that computing the treewidth
of chordal bipartite graphs is polynomial. As the class of convex graphs is properly

2

contained in the class of chordal bipartite graphs, this shows that the exact tree-
width of convex graphs can be computed in polynomial time. However, the running
time of this algorithm is not very good (O(e?), where e is the number of edges),
and we think that, especially for practical applications, the algorithm described in
this paper, is of importance. Furthermore, as far as we know, computing the exact
pathwidth is still an open problem.

Comparability graphs and their complements have a large number of applica-
tions (see e.g. [26, 39]). These graph classes, as well as those of the triangulated
and of the cotriangulated graphs, are among the largest and most important classes
of perfect graphs. Cocomparability graphs properly contain many other well known
classes of perfect graphs, like interval graphs, cographs (or Ps-free graphs), permu-
tation graphs, indifference graphs, complements of superperfect graphs etc. (see
e.g. [26] or [6, pages 67-96]). Cocomparability graphs are exactly the intersection
graphs of continuous functions F; : (0,1) — R (see [40]). Comparability graphs can
be recognized in polynomial time [35, 26, 25, 41]. Given a comparability graph, a
transitive orientation of the edges can be found in O(n?) time [41].

We show that, if the treewidth of a cocomparability graph G is at most k, then
the pathwidth is at most O(k?), and we give a simple algorithm which finds a path-
decomposition with this width. Our algorithm uses a transitive orientation of the
complement G, and the height function which can be obtained from this orientation
in linear time. The algorithm also uses a vertex coloring of the graph G. This vertex
coloring, or clique cover in the complement, can be found in O(n3) time using a flow
algorithm, as described in [26].

2 Preliminaries

In this section we start with some definitions and easy lemmas. For more information
on special perfect graph classes the reader is referred to [26, 14].

One of the oldest classes of graphs known to be perfect are the triangulated
graphs.

Definition 2.1 A graph is called triangulated if it has no induced chordless cycle of
length at least four. The complement of a triangulated graph is called cotriangulated.

Triangulated graphs are also called chordal. There are some nice characterizations
of triangulated graphs. For example, a graph is triangulated if and only if every
minimal vertex separator induces a clique [20] or, a graph is triangulated if and only
if it has a perfect elimination scheme [23]. Triangulated graphs are perfect, i.e. for
every induced subgraph the chromatic number is equal to the maximum number
of vertices in a clique [28]. They can be recognized in linear time, and there exist
fast algorithms for many NP-complete problems (see e.g. [26]). The perfect graph
theorem [33], states that a graph is perfect if and only if the complement of the
graph is perfect, hence also cotriangulated graphs are perfect.

3

Another class of perfect graphs is the class of convex graphs (in fact all bipartite
graphs are perfect).

Definition 2.2 Let G = (X,Y, E) be a bipartite graph. An ordering of X has the
adjacency property, if for each y € Y, the neighbors of y in X are consecutive in
the ordering of X.

Definition 2.3 A bipartite graph G = (X,Y, E) is convex, if there is an ordering
of X or of Y with the adjacency property.

A bipartite graph G = (X, Y, E) is biconvez if there is an ordering of X and Y with
the adjacency property. Convex graphs contain the bipartite permutation graphs.

Notice that convex graphs can be recognized in linear time, using for example the
PQ-tree algorithms of Booth and Lueker [13] (see also [14]).

Definition 2.4 An undirected graph G = (V, E) is called a comparability graph,
or transitively orientable graph, if there exists an orientation (V,F) of the edges
satisfying:

FNF'=0AF+F'=EAF*CF

where F? = {(a,c)|3ev(a,b) € FA(b,c) € F}. Such an orientation is called a tran-
sitive orientation. A cocomparability graph is the complement of a comparability
graph.

If a graph G is a comparability graph, then this holds for every induced subgraph of
G. There exists a complete list of critical non-comparability graphs [24]. Compara-
bility graphs, as well as triangulated graphs, are also perfect and can be recognized
in polynomial time [41]. By the perfect graph theorem, also cocomparability graphs
are perfect. For our algorithm we shall need the concept of a height function defined
in [26]. Let F be an acyclic orientation of an undirected graph G = (V, E). A height
function h assigns a non-negative integer to each vertex as follows: h(v) = 0 if v
is a sink; otherwise, h(v) = 1 + max{h(w) | (v,w) € F}. In other words, h(v) is the
maximal length of a path from v to a sink. A height function can be assigned in
linear time [26], and represents a proper vertex coloring of G. If F' is a transitive ori-
entation, the coloring by A is optimal (i.e. uses the least possible number of colors)
[26].

We also need a coloring of the cocomparability graph. In [26] a method is
described to find an optimal coloring of a cocomparability graph by using a minimum
flow algorithm. It follows that this coloring can be found in O(n?®) time.

Cocomparability graphs are intersection graphs [40].

Lemma 2.1 A graph G with n vertices is a cocomparability graph if and only if G
is the intersection graph of n continuous functions F;: (0,1) — R.

We only use this lemma implicitly.
We think of a permutation 7 of the numbers 1,...,n, as the sequence

T = [%1,...,7,). We use the notation 7! for the position of the number 7 in this
sequence.

Definition 2.5 If 7 is a permutation of the numbers 1,...,n, we can construct an
undirected graph G[r] = (V, E) with vertez set V = {1,...,n}, and edge set E:

(hi)eEEs (i—j)(# ' —n71) <0

An undirected graph is called a permutation graph if there exists a permutation m

such that G 2 G[r].

Notice that we can obtain the complement of G[r], by reversing the sequence =.
Hence the complement of a permutation graph is also a permutation graph. It is
also easy to see that a permutation graph is a comparability graph. Pnueli, Lempel
and Even ([35]) showed that a graph G is a permutation graph if and only if both
G and G are comparability graphs. It follows that permutation graphs are perfect.
They can be recognized in time O(n?) (see [41]). There exist fast algorithms for
many NP-complete problems like CLIQUE, INDEPENDENT SET, FEEDBACK VERTEX
SET and DOMINATING SET when restricted to permutation graphs [26, 22, 16, 15].

In this paper we assume that the permutation 7 is given, and we show some
results on the pathwidth and treewidth of G[r], which is sometimes called the in-
version graph of . If the permutation = is not given, transitive orientations of G
and G can be computed in O(n?) time [41]. Given these orientations, a permutation
can be computed in O(n?) time [26].

A permutation graph G[r] is an intersection graph, which is illustrated by the
matching diagram of = [26].

Definition 2.6 Let r be a permutation of 1,...,n. The matching diagram of =
can be obtained as follows. Write the number 1,...,n horizontally from left to right.

Underneath, write the numbers w1, ..., 7,, also horizontally from left to right. Draw
n straight line segments joining the two 1’s, the two 2’s, etc.

An example of a matching diagram of a permutation graph G[r] is illustrated in
figure 1 (page 6). Notice that two vertices ¢ and j of G[r] are adjacent if and only if
the corresponding line segments in the matching diagram of 7 intersect. Matching
diagrams are often useful in visualizing certain concepts.

Definition 2.7 A tree-decomposition of a graph G = (V, E) is a pair D = (S,T)
with T = (I, F) a tree and S = {X; | € I} a collection of subsets of vertices of G,
one subset for each node in T, such that the following three conditions are satisfied:

1. UO'EIX" = V.

Figure 1: permutation graph and matching diagram

2. For all edges (v,w) € E there is a subset X; € S, such that both v and w are
contained in X;.

3. For each vertex x, the set {t € I |z € X;} forms a connected subtree of T'.

A path-decomposition of a graph G is a tree-decomposition (S,T') such that T is a
path. We also use the notation (X;,X,...) for a path-decomposition. The width of
a tree-decomposition (S,T), with S = {X; | ¢ € I}, is max;er (| Xi| — 1).

Definition 2.8 The treewidth of G is the minimum width over all tree-
decompositions of G. The pathwidth of G is the minimum width over all path-
decompositions of G.

An alternative way to define the class of graphs with treewidth at most k is by
means of partial k-trees. A k-tree is defined recursively as follows: A clique with
k + 1 vertices is a k-tree. Given a k-tree T, with n vertices, a k-tree with n + 1
vertices is constructed by making a new vertex z,4; adjacent to a k-clique of T,
and nonadjacent to the n — k other vertices of T,. A partial k-tree is a subgraph
of a k-tree. Notice that k-trees are triangulated, and have maximum clique size
k + 1. It can be shown that the class of graphs with treewidth at most k is exactly
the class of partial k-trees (see e.g. [32]). There exist linear time algorithms for
many NP-complete problems, when restricted to the class of partial k-trees for some
constant k and when a tree-decomposition with bounded width is given [1, 5, 8, 3].
There are also results stating that large classes of problems can be solved in linear
time, when a tree-decomposition with bounded width is given [17, 18, 19].
Determining whether the treewidth or pathwidth of a given graph is at most a
given integer k is NP-complete [2]. In view of this, the results of Robertson and
Seymour on minor closed classes of graph are of great interest. Robertson and
Seymour proved that every minor closed class of graphs is recognizable in O(n?)
time [37]. Since for every fixed k, the class of graphs with treewidth (pathwidth)
at most k is minor closed, it follows that for every constant k there is a polynomial
algorithm that recognizes graphs with treewidth (pathwidth) at most k. In fact, for
these minor closed classes faster algorithms exist. We list some of the results.

6

1. For k = 2,3 there is a linear time algorithm for the treewidth problem using
rewrite rules [4, 34].

2. For fixed £ > 4 an O(nlogn) algorithm exists which constructs a tree-
decomposition with width k [36, 11, 31].

3. If an (approximate) tree-decomposition with bounded width is given, the exact
treewidth, and a corresponding tree-decomposition, can be computed in linear
time [11]. In this case, when also the pathwidth is bounded, also the pathwidth
and an optimal path-decomposition can be computed in linear time.

For an introductory overview of recent results dealing with treewidth and pathwidth,
the reader is referred to [7].

3 An approximate path-decomposition for cotri-
angulated graphs

For triangulated graphs the treewidth is equal to the maximum clique size minus
one. It follows that, for triangulated graphs, the treewidth can be computed in
linear time. Computing the pathwidth of a triangulated graph is an NP-complete
problem, as shown in [27].

It is unknown if the treewidth or pathwidth of cotriangulated graphs can be
computed efficiently. We show how to find good approximations for the treewidth
and pathwidth of cotriangulated graphs. Let G be a cotriangulated graph with
treewidth at most k. We show that the pathwidth of G is at most 3k + 4 and there
exists an O(n?) algorithm that finds a path-decomposition with this width. The
following lemma is easily checked. For a similar result see e.g. [38].

Lemma 3.1 Let G = (V,E) be a triangulated graph with n vertices. There is a
clique C, such that every component of G[V — C| has at most [3(n — |C|)] vertices.

The following lemma will also be useful (see also e.g. [12]).

Lemma 3.2 For the complete bipartite graph G = K(m,n), the treewidth is
min(m,n).

Proof. Assume m < n. Let V be the set of vertices of G. Let V] be the independent
set with n vertices and let V, = V' \ V. If we add all edges between vertices in V;
(making a clique of V;), then we obtain a m-tree. Thus the treewidth of G is at
most m. Since K,,4) is a minor of G, the treewidth of G is at least m. 0

Let C be a clique in G as mentioned in the lemma 3.1. The vertices of V'\ C can be

partitioned in two set A and B such that no vertex of A is adjacent to a vertex of
B, and both A and B have at most [2(n — |C|)] vertices. Notice that the subgraph

7

induced by A and B has a complete bipartite subgraph in G, since every vertex of

A is adjacent to every vertex of B. Since the treewidth of G is at most k and by
lemma 3.2:)

[3(n ~ CD] < min(|],B) < k
Hence |AU B| < 3(k + 1). We can triangulate G by adding edges such that AU B
becomes a clique. Since C is a stable set in G, the result is a splitgraph. For a
splitgraph, the following lemma is easily checked.

Lemma 3.3 Let G be a splitgraph with cligue number c. If G is an interval graph,
the pathwidth is ¢ — 1, otherwise, the pathwidth is c.

This proves the following theorem.

Theorem 3.1 If G is a cotriangulated graph with treewidth at most k, then the
pathwidth is at most 3k + 4 and there exists an O(n?) algorithm which produces a
path-decomposition with this width.

As a consequence, we have O(n?) approximation algorithms for the treewidth and
for the pathwidth of cotriangulated graphs with performance ratio 3+« for all ¢ > 0.

4 An approximate path-decomposition for con-
vex graphs

Let G = (X,Y, E) be a convex graph, with |X| = m, and assume the vertices of X
have been ordered 1,2,...,m such that this ordering fulfills the adjacency property
(i.e. for each y € Y the neighbors in X are consecutive). Let k be some integer. In
this section we describe an O(nk) algorithm which produces a path-decomposition
with width at most 2k + 1 or shows that the treewidth of G is larger than k.

Consider the case where k > m. If we add edges such that X becomes a clique,
then the result is a splitgraph with cliquesize at most k + 1. Hence, according to
lemma 3.3, we find a path-decomposition with width at most k¥ + 1. Hence we may
assume without loss of generality that k¥ < m — 1. Let Y’ be the set of vertices of
Y with degree at least k + 1. Consider the subgraph G’, induced by vertices of X
and the vertices of Y’'. We construct a path-decomposition for G’ as follows. For
t=1,...,m — k let Z; be the subset with:

ZzinX = {i,i+1,...,i+k}
ZinY = {yeY|Z,nNnXC N(y)}
Where N(y) is the neighborhood of y € Y. Notice that Z;,UY CY".

Lemma 4.1 Assume k < m — 1. If the treewidth of G’ is k then the pathwidth of
G’ is at most 2k and (Z,,...,2Zn-k) is a path-decomposition for G' with width at
most 2k.

Proof. Notice that each Z; has k + 1 vertices of X. Each vertex y € Y’ which is in
Z; is adjacent to all vertices of Z; N X. This show there can be at most k vertices
of Y in Z;, otherwise G’ has a complete bipartite subgraph K(k+ 1,k + 1), which is
forbidden by lemma 3.2. Obviously, (Z;, ..., Z,-k) is indeed a path-decomposition.

a

We now show how to extend this path-decomposition to a path-decomposition for G.
Consider a vertex y € Y, with at most k neighbors. Notice that there exists a subset
Z; containing N(y). Take such a subset Z; containing N(y) with at most 2k + 1
elements. Make a new subset Z;; = Z; U {y}, and make a new path-decomposition
(Z1y.-.9ZiyZity Zigry e - oy Zin—k). This clearly is a path-decomposition for the sub-
graph of G induced by the vertices X UY’ U {y}. By induction the following lemma
follows.

Lemma 4.2 Let G = (X,Y, E) be convex with treewidth k. Then the pathwidth of
G is at most 2k + 1.

We now show that the algorithm described above can be implemented to run in
O(nk) time. We assume that the vertices of X are ordered 1,...,m such that this
ordering has the adjacency property. Assume Y = {y1,...,3:}.

Step 1 First assume that £ > m. Then make a subset Z, = X U {y} for each
vertex y € Y. The sequence (Z,,,Z,,,...,2,,), (for any ordering y,...,y; of
the vertices of Y') is a correct path-decomposition. Stop.

Step 2 Assume k < m — 1. Check if the number of edges does not exceed nk —
1k(k +1). If it does, then stop; the treewidth of G is larger than k.
2

Step 3 Otherwise, for each y € Y, determine the maximum and minimum neighbor
in X, say min(y) and max(y). If a vertex y has degree 0 then we set min(y) = 0
and max(y) = —1. The result of this step is that the set of neighborsof y € Y,
with degree at least one, is {z € X | min(y) < ¢ < max(y)}.

Step 4 Calculate for each vertex y € Y the degree, max(y) — min(y) + 1, and make
a list Y’ of vertices of degree at least k + 1.

Step 5 Initialize subsets Z; = {¢,...,min(m,i+ k)}, for i = 1,...,m. For isolated
vertices of Y, we initialize Zy = 0.

Step 6 For each y € Y/, put y in the subsets Z;, for ¢ = min(y),...,max(y) — k
If one of these subsets, say Z;, gets more than 2k + 1 vertices, then stop; the
treewidth of G exceeds k. The vertices of Z; induce a K(k + 1,k + 1).

Step 7 For each y € Y \ Y’, make a subset Z] = Zny) U {y}.

Step 8 Fori = 0,...,m, let yi,y,... be the vertices y € Y \ Y’ with min(y) = i.
Then the path—decomposmon is (2o, Z! W Z! I 21,z e z! W ey Zay ..).

9

The discussion above proves the following theorem.

Theorem 4.1 Let G be a conver graph and let k be an integer. There ezists an
O(nk) algorithm which either determines that the treewidth ezceeds k, or produces
a path-decomposition of G with width at most 2k + 1.

5 An approximate path-decomposition for per-
mutation graphs

In this section, let G[r] be a permutation graph with n vertices and with treewidth k.
We show there exists a path-decomposition of width at most 2k, and we give a linear
time algorithm to compute this. The algorithm outputs a set X; for 1 <: <n. A
vertex j is put in all sets X}, with 7rj'1 <k<jorj<k< 7rj‘1. The precise algorithm
is given below.

Procedure Pathdec (input 7; output X)
fori—1ltondo X; 0
for j —1tondo
if 7!';'1 =j then X, « X, U {]}
if 7rj'1 > 7 then
for k — j to n;' =1 do Xi — Xp U {j}
if 77! < j then
for k — 77! to j — 1 do X; « X, U {j}

The next lemma shows that the constructed sets form indeed a path-decomposition.

Lemma 5.1 Let S = {X; |1 < i < n} be the subsets of vertices constructed by
the algorithm. Let P = (1,...,n) be the path with n vertices. Then (S,P) is a
path-decomposition for the permutation graph G[r].

Proof. We first show that each vertex is in at least one subset of S. Consider a
vertex i. If 7! > ¢ then i is in the subset X;. If #;! < i then ¢ is in the subset
Xi—1. Notice that the subsets containing i are consecutive. The only thing left to
show is that every edge is in at least one subset. Consider again a vertex : and let
J be a neighbor of ;. Assume without loss of generality that ¢ < j. In the matching
diagram, the line segment corresponding with j must intersect the line segment of
t. Since 1 < j, this implies that 7l'j-1 < n;'. We consider the different orderings of i,
j, 77! and Ty 1 Hi<j< 7rj°1 < 77!, then both ¢ and j are contained in the subset
X; If: < 7rJ-°l < j < 77! then both are contained in X,J_-x. If: < 7!'1-_1 <7t <y,
then both are contained in Xﬂ,j-l. If r;' < < x7' < 4, then both are contained in

X;. Finally, if 1rj'l < 7r,~'l < i< j, then both ¢ and j must be in X 1. (]

We now show that the width of this path-decomposition is at most 2k.

10

Lemma 5.2 Each subset produced by the algorithm has at most 2k + 1 elements.

Proof. Consider a subset X;. Notice that X; C S; U S; U {i} where S; and S, are
defined by: Sy = {j|j < i< n;'}and S; = {j|7;' <i < j}. Note that, as =
is a permutation, there must be as many lines in the matching diagram with their
upper point left of ¢ and their lower point right of ¢, as lines with their upper point
right of ¢ and their lower point left of ;. Hence |S;| = |S2|. Every vertex in S is
adjacent to every vertex in Sz, hence the subgraph induced by S; U S; contains a
complete bipartite subgraph K(m,m), with m = |S;|. By lemma 3.2, this implies
that k£ > m. Hence | X;| < [S1] +|S2} +1 < 2k + 1. a

Notice that the algorithm can be implemented to run in O(nk) time, since at each

step one new element is put into a subset. Hence we have proved the following
theorem:

Theorem 5.1 If G[r] is a permutation graph with treewidth at most k, then the
pathwidth of G[r] is at most 2k, and the O(nk) time algorithm Pathdec produces a
path-decomposition with width at most 2k.

Using results of [11] this shows that, if the treewidth is bounded by a constant,
an optimal path-decomposition and tree-decomposition can be computed in linear
time. Also, it follows that we have O(nk) approximation algorithms for pathwidth
and treewidth with performance ratio 2. In a forthcoming paper [10] we show that
the pathwidth and treewidth are equal, and can be computed in O(nk?) time.

6 An approximate path-decomposition for
cocomparability graphs

In this section, let G be a cocomparability graph with treewidth at most k. We
start with an informal discussion of the algorithm. Recall lemma 2.1. There exist n
continous functions, F; : (0,1) — R, such that two vertices are adjacent if and only
if the corresponding functions intersect. First make a vertex coloring of G, such that
no two adjacent vertices have the same color. Since the treewidth of G is at most
k, this can be done by using at most k + 1 colors. Fix any position L at the line
z = 0. This partitions the vertices of G into two sets: one set of vertices for which
the correponding functions start below L, and one set for which the correponding
functions start at position at least L. For each of these positions L we make a subset
X as follows. For each colorclass C;, take the top most k + 1 functions which start
below L, say C; (take all if there are less than k + 1). Notice that the functions
correponding with a colorclass do not intersect, hence the ’topmost functions’ are
well defined. For functions starting at position at least L, take those which are
adjacent to k + 1 vertices of Cy, say F,. Notice that F; is empty if |C;| < k. Also
notice that if [C¢| = k + 1, then each vertex of F; is adjacent to all vertices of C..

11

In this last case |F;| < k, otherwise there is a K(k + 1,k + 1) subgraph. It follows
that X has at most (k 4+ 1)(2k + 1) vertices, since there are at most k + 1 color
classes and for each color class C; we have |C| + |F;| < 2k + 1. Notice that we only
used the ordering of the functions at position z = 0. We can find a suitable ordering
using the height function of G.

We now give the formal description of the algorithm and proof the correctness,
without using the function model. We assume that a height function h of the
complement G with transitive orientation F, and a coloring of G are given. Let
Cy,...,C, be the color classes of G, where s = x(G) is the chromatic number of G.
Since a partial k-tree can always be colored with k + 1 colors, we may assume that
the number of color classes s < k + 1.

The first step of the algorithm is to renumber the vertices.

Definition 6.1 Let G = (V, E) be a cocomparability graph with n vertices and let h
be a height function of the transitively oriented complement G. A height labeling of
G is a bijection L : V — {1,...,n}, such that h(z) > h(y) implies that L(z) > L(y).

A height labeling clearly can be computed in O(n) time, if the height function 4 is
given.

Definition 6.2 For ¢ = 1,...,n and for t = 1,...,s, let Cy(i) be the set of
vertices in color class C, with label at most i: Cy(:) = Cy N {z | L(z) < i}.
Write Cy(i) = {z1,...,2m}, with i > L(z1) > L(z3)... > L(z,). We define for

t=1,...,nandt=1,...,s:

F,(i)={ Ci(i) ifm<k+1

{z1,...,xk41} otherwise

Notice that, ii_nce C, is a clique in G, all heights of vertices in C, are different. It
follows that C(z) is uniquely determined as the set of k + 1 vertices of Cy(z) with
the largest heights.

Definition 6.3 Fori=1,...,nandt=1,...,s, define

Fi(?) = {z | L(z) > i A |Adj(z) N Cy(3)] > k + 1}
where Adj(z) is the set of neighbors of z.
We can now define the subsets of the path-decomposition:

Definition 6.4 Fori=1,...,n, let X; be the following set of vertices:
Xi= U (Rl UT(i)

1<t<s

In the rest of this section we prove that each subset X; has at most (2k + 1)x(G)
elements and we show that (Xj,...,X,,) forms indeed a path-decomposition. The
following lemma is crucial.

12

Lemma 6.1 Each y € F,(i) is adjacent to all vertices of Cy(7).

Proof. Suppose not. Let y € F;(i) be not adjacent to every vertex in Cy(:). Let
Ci(z) = {z1,...,2m} with h(z1) > h(x2) > ... > h(zm). f m < k + 1, then by
definition F(i) = 0. Hence we may assume m > k + 1 and C;(¢) = {z1,...,Zks1}-
Let z,, € Ci(i) (with 1 < w < k + 1) be not adjacent to y. Consider the comple-
ment G with the transitive orientation F. C,(i) is a clique in G and (z,,z,) € F
for all z, and z, in Cy(i) with p < ¢. Since y is adjacent to z,, in G, we must
have h(y) # h(zw). Since L(y) > L(z), it follows that A(y) > h(z,) and hence
(y,Zw) € F. Since F is transitive, we find that y is adjacent in G to all vertices z,
with w < p < m. So y can have at most w — 1 neighbors in C,(7) in G, hence it can
not be in F(7), contradiction. m]

Corollary 6.1 A vertez y with L(y) > ¢ is in Fy(2) if and only if it is adjacent to
the vertez in Cy(i) with the smallest label.

Theorem 6.1 If G is a cocomparability graph with treewidth at most k, then
IC:())| < k+1 and |F,(3)| < k+ 1.

Proof. Notice that [Ci(z)] < k + 1, by definition. If [C;(:)] < k + 1, then C,()
contains less than k + 1 elements, and then, by definition F;(z) = 0.

Now assume that C,(i) contains at least k + 1 vertices. Then |C;(i)| = k+ 1. By
lemma 6.1 all vertices of F;(i) are adjacent to all vertices of Cy(3).

The treewidth of G is at most k. Hence G can not have a complete bipartite
subgraph K(k + 1,k + 1). This implies that |F,(z)] < k + 1. o

Corollary 6.2 V; | X;| < (2k + 1)x(G).

Corollary 6.2 shows that, if (X,...,X,) is a path-decomposition of G, then the
width of this path-decomposition is at most 2k? + 3k. The next three lemmas show
that (X;,...,X,) is indeed a path-decomposition.

Lemma 6.2 For every vertex x of G: & € Xy (s).
Proof. Let z be in the color class C,. By definition, = € Co(L(z)) € X L(z)- m)

Lemma 6.3 Let {z,y} € E be an edge of G. Then there is a subset X; such that x
and y are both in X;.

Proof. Assume L(x) < L(y). Notice that « and y are not in the same color class,
since they are adjacent. Consider the color class of z, say Cp, = {z1,...,Zm}, and
let L(z1) > L(z3) > ... > L(xn). Let z = z; for some 1 < j < m. Clearly, if
j < k+1, then z and y are both contained in Xy since z € Cp(L(y)) C Xi(y)-
Now assume that j > k + 1. Consider z = z;_. If L(y) < L(z) then z and y are
both contained in Xy, since z € Cp(L(y)). If L(y) > L(z), then z € Cp(L(2)) and
y € Fp(L(2)). a

13

Lemma 6.4 The subsets X; containing a given verter x, are a consecutive subse-
quence of (X,...,X,).

Proof. Assume Ly < Ly and ¢ € X;, N X,. Let Ly < L < L;. We prove that
z € X1. We consider three cases:

case 1 L(z) > L,. Since ¢ € X,, * must be adjacent to at least k£ + 1 ver-

tices of some color class which are in X, . Clearly, this also holds for every
L, £ L < L(z). Hence z € X|.

case 2 L(z) < L;. Since ¢ € X[,, £ must be among the vertices in its color class
with the k + 1 largest heights which are in X;,. But, then clearly this must
hold for every L(z) < L < L.

case 3 L, < L(z) < L;. The argument of the first case shows that z € X
for all Ly < L < L(z). In the second case it is shown that z € X, for all

0

By lemmas 6.2, 6.3, and 6.4 the sequence of subsets (Xi,...,X,) is a path-
decomposition for the cocomparability graph G. According to corollary 6.2, the
width of this path-decomposition is at most (2k + 1)x(G) — 1. In the following
theorem we summarize these results.

Theorem 6.2 Let G be a cocomparability graph. The sequence (Xi,...,X,)
with X; defined in definition 6.4, is a path-decomposition for G. If the tree-
width of G is at most k, then the width of this path-decomposition is at most
(2k +1)x(G) — 1 < 2k?* + 3k.

Consider the time it takes to compute the sets X;. We can sort all the color
classes according to increasing labels in O(nk) time. Then each set Cy(i) can be
computed in O(k) time. Now notice that F,(:) C F(i + 1)U {z | L(z) =i+ 1}. If
we use an adjacency matrix to represent G, we can compute each set F¢(¢) in time
O(k): An element y in F(: + 1) U {z | L(z) = ¢ + 1} is in F(¢) if and only if y is
adjacent to the vertex with the smallest label in C;(z) (corollary 6.1). The sets Cy(%)
and F;(i) have at most k + 1 elements and there are at most k + 1 of each for each
i. Hence we can easily compute each set X; in time O(k?).

Corollary 6.3 Let G be a cocomparability graph with treewidth k. Assume a vertezx
coloring of G is given (with at most k + 1 colors), and a transitive orientation F
of the complement G. If an adjacency matriz is used to represent G, then a path-
decomposition of G with width at most 2k* + 3k can be computed in time O(nk?).

14

We end this section with some remarks concerning the complexity of finding ap-
proximations for the treewidth of bipartite graphs. As all bipartite graphs are
comparability graphs, the same remarks hold for comparability graphs. Given a
graph G, let S(G) be the subdivision graph (see [29, pages 79-80]). Clearly, S(G)
is bipartite. It is easily seen that the treewidth of S(G) is equal to the treewidth
of G. Given a tree-decomposition for S(G), this can easily be transformed into a
tree-decomposition for G with the same width. This shows that finding an approxi-
mation for the treewidth of bipartite graphs (within a constant factor) is as hard as
finding approximations for the treewidth in general.

7 Conclusions

In this paper we described very simple and efficient algorithms to approximate path-
width and treewidth of cotriangulated graphs, permutation graphs, convex graphs
and cocomparability graphs. There are classes of graphs for which the exact path-
width and treewidth can be computed efficiently. For example cographs [12], split-
graphs (lemma 3.3) and interval graphs. Also, in a forthcoming paper [10] we show
that the pathwidth and treewidth of a permutation graph are equal and can be
computed in O(nk) time. In fact, in this paper we show that part of this can
be generalized to cocomparability graphs; i.e. for any cocomparability graph the
treewidth and pathwidth are equal. However, computing the exact treewidth for
cocomparability graphs in polynomial time remains an open problem. The tree-
width can also be computed efficiently for chordal graphs and circular arc graphs
[42]. Also for chordal bipartite graphs (containing the convex graphs), the treewidth
can be computed in polynomial time [30]. It would be of interest to know, if there
exists a fast algorithm which computes the treewidth for cotriangulated graphs. In
this respect we like to mention again the result of [27] which shows that the path-
width of chordal graphs is NP-complete. Another interesting conclusion from this
paper is that, for the considered graph classes, if the treewidth is at most & then
the pathwidth is at most some polynomial of k. It would be of interest to know for
which other classes of graphs such a relation between the pathwidth and treewidth
exists. Finally, in [9] it is shown that there is a polynomial algorithm that finds a
tree-decomposition of G with treewidth at most O(k log n), where k is the treewidth
of G and n the number of vertices. We have shown that there are many graph
classes for which there is a polynomial algorithm that finds a tree-decomposition
with width at most some fixed polynomial of k. It would be very interesting to
know if this could be generalized.

8 Acknowledgements

We like to thank D. Seese, D. Kratsch and B. Reed for valuable discussions.

15

References

[1] S. Arnborg, Efficient algorithms for combinatorial problems on graphs with
bounded decomposability — A survey. BIT 25, 2 — 23, 1985.

[2] S. Arnborg, D.G. Corneil and A. Proskurowski, Complexity of finding embed-
dings in a k-tree, STAM J. Alg. Disc. Meth. 8, 277 — 284, 1987.

[3] S. Arnborg, J. Lagergren and D. Seese, Easy problems for tree-decomposable
graphs, J. Algorithms 12, 308 — 340, 1991.

[4] S. Arnborg and A. Proskurowski, Characterization and recognition of partial
3-trees, SIAM J. Alg. Disc. Meth. 7, 305 — 314, 1986.

[5] S. Arnborg and A. Proskurowski, Linear time algorithms for NP-hard problems
restricted to partial k-trees. Disc. Appl. Math. 23, 11 — 24, 1989.

[6] C. Berge and C. Chvatal, Topics on Perfect Graphs, Annals of Discrete Math.
21, 1984. .

[7] HL. Bodlaender, A tourist guide through treewidth, Technical report
RUU-CS-92-12, Department of computer science, Utrecht University, Utrecht,
The Netherlands, 1992. To appear in: Proceedings Tth International Meeting

of Young Computer Scientists, Springer Verlag, Lecture Notes in Computer
Science.

[8] H.L. Bodlaender, Dynamic programming algorithms on graphs with bounded
treewidth, Proceedings of the 15th International colloguium on Automata, Lan-
guages and Programming, 105 — 119, Springer Verlag, Lecture Notes in Com-
puter Science, vol. 317, 1988.

[9] H. Bodlaender, J. Gilbert, H. Hafsteinsson and T. Kloks, Approximating tree-
width, pathwidth and minimum elimination tree height, In G. Schmidt and
R. Berghammer, editors, Proceedings 17th International Workshop on Graph-
Theoretic Concepts in Computer Science WG’91, 1 — 12, Springer Verlag, Lec-
ture Notes in Computer Science, vol. 570, 1992.

[10] H. Bodlaender, T. Kloks and D. Kratsch, Treewidth and pathwidth of permuta-
tion graphs, Technical report RUU-CS-92-30, Department of computer science,
Utrecht University, Utrecht, The Nehterlands, 1992.

[11] H. Bodlaender and T. Kloks, Better algorithms for the pathwidth and treewidth
of graphs, Proceedings of the 18th International colloquium on Automata, Lan-
guages and Programming, 544 — 555, Springer Verlag, Lecture Notes in Com-
puter Science, vol. 510, 1991.

16

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]
[21]
[22]
[23]
[24]

[25]

H. Bodlaender and R.H. Mohring, The pathwidth and treewidth of cographs,
Proceedings 2nd Scandinavian Workshop on Algorithm Theory, 301 — 309,
Springer Verlag, Lecture Notes in Computer Science vol. 447, 1990.

K. Booth and G. Lueker, Testing for the consecutive ones property, interval
graphs, and graph planarity testing using PQ-tree algorithms, J. of Computer
and System Sciences 13, 335 — 379, 1976.

A. Brandstadt, Special graph classes—A survey, Schriftenreihe des Fachbereichs
Mathematik, SM-DU-199 (1991) Universiat Duisburg Gesamthochschule.

A. Brandstadt and D. Kratsch, On the restriction of some NP-complete graph
problems to permutation graphs, Fundamentals of Computation Theory, proc.
FCT 1985, 53 — 62, Lecture Notes in Comp. Science vol. 199, Springer Verlag,
New York, 1985.

A. Brandstadt and D. Kratsch, On domination problems for permutation and
other perfect graphs, Theor. Comput. Sci. 54, 181 — 198, 1987.

B. Courcelle, The monadic second-order logic of graphs I: Recognizable sets of
finite graphs, Information and Computation 85, 12 — 75, 1990.

B. Courcelle, The monadic second-order logic of graphs III: Treewidth, forbid-
den minors and complexity issues, Report 8852, University Bordeaux 1, 1988.
To appear in: Informatique Théoretique et Applications.

B. Courcelle, Graph rewriting: an algebraic and logical approach. In
J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Vol. B,
192 — 242, Amsterdam, 1990. North Holland Publ. Comp.

G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25, 71 —
76, 1961.

S. Even, A. Pnueli and A. Lempel, Permutation graphs and transitive graphs,
J. Assoc. Comput. Mach. 19, 400 — 410, 1972.

M. Farber and M. Keil, Domination in permutation graphs, J. Algorithms 6,
309 — 321, 1985.

D.R. Fulkerson and O.A. Gross, Incidence matrices and interval graphs, Pacific
J. Math. 15, 835 — 855, 1965.

T. Gallai, Transitive orientierbaren Graphen, Acta Math. Sci. Hung. 18, 25—66,
1967.

Gilmore and Hoffman, A characterization of comparability and interval graphs,
Canad. J. Math. 16, 539 — 548, 1964.

17

[26] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic
Press, New York, 1980.

[27) J. Gustedt, Pathwidth for chordal graphs is NP-complete. Technical report
221/1989, Technical University Berlin, Berlin, Germany, 1989. To appear in:
Discr. Appl. Math.

[28] A. Hajnal and J. Surdnyi, Uber die Auflésung von Graphen in vollstindige
Teilgraphen, Ann. Univ. Sci. Budapest Eétvés. Sect. Math. 1, 113 — 121, 1958.

[29] F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969.

[30] T. Kloks and D. Kratsch, Treewidth of chordal bipartite graphs, Technical
report RUU-CS-92-28, Department of Computer Science, Utrecht University,
Utrecht, The Netherlands, 1992.

[31] J. Lagergren and S. Arnborg, Finding minimal forbidden minors using a fi-
nite congruence, Proceedings of the 18th International colloquium on Automata,
Languages and Programming, 532—543, Springer Verlag, Lecture Notes in Com-
puter Science, vol. 510, 1991.

[32] J. van Leeuwen, Graph algorithms. In Handbook of Theoretical Computer Sci-
ence, A: Algorithms an Complexity Theory, 527—631, Amsterdam, 1990. North
Holland Publ. Comp.

[33] L. Lovdsz, Normal hypergraphs and the perfect graph conjecture, Discrete
Math. 2, 253 — 267, 1972.

[34] J. Matousek and R. Thomas, Algorithms Finding Tree-Decompositions of
Graphs, Journal of Algorithms 12,1 — 22, 1991.

[35] A. Pnueli, A. Lempel, and S. Even, Transitive orientation of graphs and iden-
tification of permutation graphs, Canad. J. Math. 23, 160 — 175, 1971.

[36] B. Reed, Finding approximate separators and computing treewidth quickly,
24th Annual ACM Symposium on Theory of Computing, 221 — 228, 1992.

[37] N. Robertson and P.D. Seymour, Graph minors—A survey. In 1. Anderson,
editor, Surveys in Combinatorics, 153 — 171. Cambridge Univ. Press 1985.

[38] N. Robertson and P.D. Seymour, Graph minors II. Algorithmic aspects of tree-
width. J. Algorithms 7, 309 — 322, 1986.

[39] F.S. Roberts, Graph theory and its applications to problems of society, NFS-
CBMS Monograph no. 29 (SIAM Publications, Philadelphia, PA. 1978).

[40] D. Rotem and J. Urrutia, Comparability graphs and intersection graphs, Dis-
crete Math. 43, 37 — 46, 1983.

18

[41] J. Spinrad, On comparability and permutation graphs, SIAM J. Comp. 14, No.
3, August 1985.

[42] R. Sundaram, K. Sher Singh and C. Pandu Rangan, Treewidth of circular arc
graphs, Manuscript 1991.

19

