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In this paper we show that 1b- treewidth and sabwidih of 8 persauta-
tion graph can be compuied ju polynomial sime. lo fact we show that, for
permutation graphs. the treewhith and pathwidth are equal. These results
make permetation graphs one of the few non-trivial graph classes for which
ai the momeit, ireewidth is kuown to be computable in polynomisl time.
Our algorithm to decide whether the treswidth (pathwidth} is at most some
given integer &, can be implemented to run in O(nk?) time, when the match-
ing diagram is giveu. We show that this algotithm cas easily e adapted to
compute the treewidih of a permutation graph in '3 nk? time, where & i3 the
treewidth.
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in advance. Much research has been done in finding efficient algorithms computing
a tree-decomposition with a reasonable small treewidth. Recent results {25, 9, 22]
show that an O(nlogn) algorithm exists to find a suitable tree-decomposition for
a graph with bounded treewidth. However, the constant hidden in the ’big oh’, is
exponential in the treewidth, limiting the practicality of this algorithm.

For some special classes of graphs, it has been shown that the treewidth can
be computed efficiently. In this paper we discuss the problem of finding tree- and
path-decompositions for permutation graphs. We also show that for these graphs,
the treewidth and the pathwidth are the same.

Permutation graphs are a well-studied and well-characterized class of perfect
graphs. They are exactly the comparability graphs of posets of dimension at most
two. Moreover, permutation graphs are exactly those graphs for which both the
graph and its complement is a comparability graph. They have many applications
in scheduling problems. See for example [14] where permutation graphs are used
to describe the memory requirements of a number of programs at a certain time
(see also [17]). Permutation graphs also arise in a very natural way in the problem
of sorting a permutation, using queues in parallel. In [17] it is shown that this
problem is closely related to the coloring problem of permutation graphs. Other
applications occur for example in VLSI layout (see e.g. [26]). There is a long list
of papers, which mainly appeared in the last ten years, studying the algorithmic
complexity of NP-complete graph problems when restricted to permutation graphs.
Indeed, there exist fast algorithms for many NP-complete problems like CLIQUE,
INDEPENDENT SET, FEEDBACK VERTEX SET and DOMINATING SET when restricted
to permutation graphs [17, 15, 11, 12]. However some problems remain NP-complete,
like COCHROMATIC NUMBER (29, 16}, and ACHROMATIC NUMBER [6].

We give a O(nk?) time algorithm which determines whether the pathwidth is at
most k, when the matching diagram is given. The algorithm can easily be adapted

such that it computes the pathwidth of a permutation graph within the same time
bound.

2 Preliminaries

In this section we start with some definitions and easy lemmas. For more information
on perfect graphs the reader is referred to [17, 13, 5].

Definition 2.1 A graph is chordal if it has no induced chordless cycle of length at
least four.

Chordal graphs are also called triangulated. There are basically two ways two define
the treewidth of a graph. One way is to use the concept of a tree-decomposition. For
more information on tree-decompositions the reader is referred to the survey paper
[10]. In this paper we introduce the treewidth of a graph by means of k-trees.



Definition 2.2 Let k be an integer. A k-tree is a graph which is defined recursively
as follows. A clique with k41 vertices is a k-tree. Given a k-tree T, with n vertices,
a k-tree with n + 1 vertices can be constructed by making a new vertez adjacent to
the vertices of a k-clique in T,. A graph is a partial k-tree if either it has at most
k vertices or it is a subgraph of a k-tree T with the same vertex set as T.

k-Trees are chordal and have w(G) = k+1 (where w(G) is the maximum clique size).
Notice that any graph is a partial k-tree for some k; take k equal to the number of
vertices minus one.

Definition 2.3 The treewidth of a graph G is the minimum value k for which G
is a partial k-tree.

Definition 2.4 A triangulation of a graph G is a graph H with the same vertez set
as G, such that G is a subgraph of H and H is chordal.

For a proof of the following lemma see for example [23].

Lemma 2.1 A graph G has treewidth < k if and only if there is a triangulation H
of G with w(H) <k +1.

It follows that the treewidth of a chordal graph is the maximum clique size minus
one. The treewidth can be defined in terms of the minimum over all triangulations
of the maximum clique size. We define the pathwidth of a graph using triangulations
of a special kind.

Definition 2.5 An interval graph is a graph of which the vertices can be put into
one to one correspondence with intervals on the real line, such that two vertices are
adjacent if and only if the corresponding intervals have a nonempty intersection.

There are many ways to characterize interval graphs. We state only one of the first
characterizations [24].

Lemma 2.2 An undirected graph is an interval graph if and only if the following
two conditions are satisfied:

1. G s chordal and

2. any three vertices of G can be ordered in such a way that every path from the
first to the third vertex passes through a neighbor of the second vertex.

Three vertices which do not satisfy the second condition are called an astroidal
triple. These are pairwise non adjacent and for any pair of them there is a path
that avoids the neighborhood of the remaining vertex.

Definition 2.6 Let k be an integer. A graph G has pathwidth < k if and only if
there is a triangulation H of G such that H is an interval graph with w(H) < k+1.
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Determining the treewidth or the pathwidth of a graph is NP-complete [2]. However,
for constant k, graphs with treewidth < k are recognizable in O(n log n) time (25, 9,
22]. The large constants involved in these algorithms make them usually not very
practical. It is therefore of importance to find algorithms which are polynomial both
in the number of vertices and in the treewidth, for TREEWIDTH and PATHWIDTH for
special classes of graphs which are as large as possible.

One of the main reasons why there exist fast algorithms for many problems when
restricted to graphs with bounded treewidth, is the existence of vertex separators of
bounded size.

Definition 2.7 A subset S C V is a a, b-separator for nonadjacent vertices a and b,
if the removal of S separates a and b in distinct connected components. If no proper
subset of S is an a,b-separator then S is a minimal a,b-separator. A minimal
separator S is a subset such that S is a minimal a, b-separator for some nonadjacent
vertices a and b.

The following lemma, which must have been rediscovered many times, appears for
example as an exercise in [17].

Lemma 2.3 Let S be a minimal a, b-separator, and let C, and Cp, be the connected
components of G[V — S|, containing a and b respectively. Then every vertez of S
has a neighbor in C, and a neighbor in C,.

Theorem 2.1 Let G be a partial k-tree. There exists a triangulation of G into a
chordal graph H such that the following three statements hold:

1. w(H) < k+1.

2. If a and b are nonadjacent vertices in H then every minimal a,b-separator of
H is also a minimal a,b-separator in G.

8. If S is a minimal separator in H and C is the vertex set of a connected com-
ponent of H[V — S, then C induces also a connected component in G[V — S].

Proof. Take a triangulation H, with treewidth at most k¥ and with a minimum
number of edges (this exists by lemma 2.1). Suppose H has a minimal vertex
separator C for nonadjacent vertices a and b, such that either C induces no minimal
a, b-separator in G, or the vertex sets of the connected components of H[V — C]
are different from those of G[V — C]. Let S C C be a minimal a, b-separator in G.
Let Ci,...,C; be the connected components of G[V — S]. Make a chordal graph
H' as follows. For each C; U S take the chordal subgraph of H induced by these
vertices. Since S is a clique in H, this gives a chordal subgraph H’ of H. Notice
that the vertex sets of the connected components of H'[V — S] are the same as those
of G[V — S]. We claim that the number of edges of H’ is less than the number of
edges of H, which is a contradiction. Clearly, the number of edges of H' does not
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exceed the number of edges of H. First assume that S # C, and let z € C\ S. By
lemma 2.3, in H, r has a neighbor in the component containing a and a neighbor in
the component containing b. Not both these edges can be present in H’. Thus we
may assume S = C. Then the vertex sets of the connected components of H[V —C]
are different from those of H'[V — C]. Since H' is a subgraph of H, every connected
component H'[V — C] is contained in some connected component of H[V — C]. It
follows that there must be a connected component in H[V — C] containing two
different connected components of H'[V — C]. This can only be the case if there is
some edge between these components in H[V — C] (which is not there in H'[V —C)).
This proves the theorem. O

Definition 2.8 We call a triangulation of which the ezistence is guaranteed by the-
orem 2.1, a minimal triangulation.

Let G = (V, E) be a graph and let C be a minimal vertex separator. Let C,...,C;
be the connected components of G[V — C]. We denote by C; (i = 1,...,t) the graph
obtained as follows. Take the induced subgraph G[C U C;], and add edges such that
the subgraph induced by C is complete. The following lemma easily follows from
theorem 2.1 (a similar result appears in [2]).

Lemma 2.4 A graph G with at least k + 2 vertices is a partial k-tree if and only if
there erists a minimal vertex separator C such that the graphs C; are partial k-trees

(=1,...,1)

In this paper we show that the treewidth and pathwidth of a permutation graph
can be computed in polynomial time. We think of a permutation 7 of the numbers
1,...,n as the sequence w7 = [my,..., 7).

Definition 2.9 If r is a permutation of the numbers 1,...,n, we can construct a
graph G[r] = (V, E) with vertex set V = {1,...,n} and edge set E:

(,j)EE & (i—j)(x7' —7;7') <0

An undirected graph is a permutation graph if there is a permutation 7 such that
G = G[n].

The graph G[r] is sometimes called the inversion graph of 7. If the permutation is
not given, it can be computed in O(n?) time [27, 17]. In this paper we assume that
the permutation is given and we identify the permutation graph with the inversion
graph. A permutation graph is an intersection graph, which is illustrated by the
matching diagram.

Definition 2.10 Let  be a permutation of 1,...,n. The matching diagram can
be obtained as follows. Write the numbers 1,...,n horizontally from left to right.

Underneath, write the numbers «,,...,m,, also horizontally from left to right. Draw
straight line segments joining the two 1’s, the two 2’s, etc.

Notice that two vertices ¢ and j of G[r] are adjacent if and only if the corresponding
line segments intersect. In figure 1 (page 6) we give an example.
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Figure 1: permutation graph and matching diagram

3 Scanlines

In this section we show that every minimal separator in a permutation graph can
be obtained by using a scanline. Recall the definition of the matching diagram. It
consists of two horizontal lines, one above the other, and a number of straight line
segments, one for each vertex, such that each line segment has one end vertex on
each horizontal line. Two vertices are adjacent, if the corresponding line segments
intersect. We say that two line segments cross if they have a nonempty intersection.

Definition 3.1 A scanline in the diagram is any line segment with one end vertex
on each horizontal line. A scanline s is between two line segments z and y if the
top point of s is in the open interval bordered by the top points of z and y and the
bottom point of s is in the open interval bordered by the bottom points of x and y.

If a scanline s is between line segments z and y then the intersection of each pair of
the three line segments is empty. Consider two nonadjacent vertices z and y. The
line segments in the diagram corresponding to z and y do not cross in the diagram.
Hence we can find a scanline s between the lines z and y. Take out all the lines that
cross the scanline s. Clearly this corresponds with an z, y-separator in the graph.
The next lemma shows that we can find all minimal «, y-separators in this way.

Lemma 3.1 Let G be a permutation graph, and let x and y be nonadjacent vertices
in G. Every minimal z,y-separator consists of all line segments crossing a scanline
which lies between the line segments of x and y.

Proof. Let S be a minimal r,y-separator. Consider the connected components
of G[V — S]. Let C, be the component containing z and Cy be the component
containing y. Clearly these must also be 'connected’ parts in the diagram, and we
may assume without loss of generality that the component containing z is completely
to the left of the component containing y. Every vertex of S is adjacent to some
vertex in C, and to some vertex in C (lemma 2.3). Notice that we can choose a
scanline s crossing no line segment of G[V — S, and which is between z and y. Then
all lines crossing the scanline must be elements of S. But for all elements of S the
corresponding line segment must cross s, since it is intersecting with a line segment
of Cs, which is to the left of s, and with a line segment of Cy, which is to the right
of s. O



If s is a scanline, then we denote by S the set of vertices of which the corresponding
line segments cross s. In the rest of this paper we consider only scanlines, of which
the end points do not coincide with end points of other line segments.

Definition 3.2 Two scanlines s; and s; are equivalent, s; = s,, if they have the
same position in the diagram relative to every line segment; i.e. the set of line
segments with the top (or bottom) end point to the left of the top (or bottom) end
point of the scanline is the same for s, and s,.

Notice that S; = S; does not necessarily imply that s; = s, (the converse implication
however holds).

Corollary 3.1 There are O(n?) minimal separators in a permutation graph with n
vertices.

We are only interested in scanlines which do not cross too many line segments,
since these correspond with suitable separators.

Definition 3.3 A scanline s is k-small if it crosses with at most k+1 line segments.
Lemma 3.2 There are O(nk) pairwise non-equivalent k-small scanlines.

Proof. Consider the matching diagram, with numbers 1,...,n written from left to
right and underneath written =y,...,7,. Consider a scanline ¢ and assume the top
end point is between i and i + 1 and the bottom end point is between 7; and Tj41.
Assume that a line segments are such that the top end point is to the left of the
top of ¢ and the bottom end point to the left of the bottom of . Then the number
of line segments crossing ¢ is i + j — 2a. Since @ < i and a < j, it follows that
t—k—1<j<i+k+1 must hold. This proves the lemma. a

4 Treewidth = pathwidth

In this section we show that a permutation graph can be triangulated optimally
such that the result is an interval graph.

Theorem 4.1 Let G be a permutation graph, and let H be a minimal triangulation
of G. Then H is an interval graph.

Proof. Assume H has an astroidal triple z,y,2. Since z,y and z are pairwise
nonadjacent, the corresponding line segments in the matching diagram pairwise do
not cross. We may assume without loss of generality that the line segment of y
is between those of z and 2. Take a path p between z and z which avoids the
neighborhood of y. Then each line of the path lies totally to the left or totally to
the right of y. It follows that there are ' to the left of y and 2’ to the right of y
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such that z’ and 2’ are adjacent in H, but neither z’ or 2’ is a neighbor of y in H.
Let S be a minimal z’,y-separator in H. Since H is a minimal triangulation, S is
also a minimal z/, y-separator in G. By lemma 3.1 S consists of all lines crossing
some scanline s between z’ and y. Clearly, the connected component of G[V — §]
containing z’ lies totally to the left of s and the connected component containing 2’
in G[V — S] lies totally to the right of s (notice 2’ & S since 2’ lies totally to the
right of y). It follows that «’ and 2’ must be in different components of G[V - S].
Since H is minimal, by theorem 2.1 they must also be in different components of
H[V — S]. But then z’ and 2’ can not be adjacent in H. It follows that there can
not be an astroidal triple, and by the characterization of Lekkerkerker and Boland
([24], stated in lemma 2.2), H is an interval graph. 0

Corollary 4.1 For any permutation graph G, the pathwidth of G is equal to the
treewidth of G.

5 Candidate components
Consider the matching diagram of G.

Definition 5.1 Let s; and s; be two scanlines of which the intersection is either
empty or one of the end points of s, and s;. A candidate component C = C(s1,82)
is a subgraph of G induced by the following sets of lines:

o All lines that are between the scanlines (in case the scanlines have a common
end point, this set is empty).

o All lines crossing at least one of the scanlines.

We identify the candidate component C = C(s;, s5) with the diagram containing s;,
82 and the set of lines corresponding with vertices of C.

Definition 5.2 Let k be an integer. A candidate component C = C(sy,s3) is k-
feasible if there is a triangulation H of C such that w(H) < k+1 and such that for
each scanline s; (i = 1,2) the set of lines crossing this scanline forms a clique in H.

Notice that, if a candidate component has at most k+1 vertices then it is k-feasible.

Definition 5.3 Let C = C(s1,3;) be a candidate component. We define the realizer
R(C) as the graph obtained from C, by adding all edges between vertices of S; and

between vertices of S, (i.e. the two subgraphs of R(C) induced by S, and by S, are
cliques).

Remark. A candidate component C = C(sy, s,) is k-feasible if and only if the realizer
R(C) has treewidth at most k.



Lemma 5.1 If C = C(s1,52) is a candidate component, then the realizer R(C) is a
permutation graph.

Proof. Consider the matching diagram. Assume s; is to the left of s;. First consider
lines that cross only s; and with top end point to the right of the top end point of
s1. Let (ay,b),...,(ar,b,) be these line segments with top end points a,...,a,.
Assume a; < a3 < ... < a,. Change the order of b,,...,b, such that b, > b, >
... > b,. This is illustrated in figure 2. Now consider the line segments crossing
8y of which the top end point is to the left of the top end point of s;. Reorder in
the same way the top end points of these line segments. The lines crossing s, are

handled similarly. The resulting diagram is a matching diagram for R(C). O
8 a; ay 82 S$1 ai as 82
bl b2 $1 S2 b2 bl 81 82

Figure 2: diagrams of candidate component and realizer

Let C = C(31,3;) be a candidate component such that C has at least k + 2 vertices.
The realizer R(C) has treewidth at most k if and only if there is a minimal vertex
separator S with at most k vertices such that all components, with S added as a
clique, have treewidth at most k (see lemma 2.4). Consider the diagram of R(C),
obtained from the diagram of C by the method described in the proof of lemma 5.1.
By lemma 3.1 a minimal separator can be found by a scanline. Let H be a minimal
triangulation of R(C) and let the scanline s represent a minimal vertex separator
in H for non-adjacent vertices a and b. The separator consists exactly of the lines
crossing this scanline s.

Definition 5.4 Let C = C(sy, ;) be a candidate component with realizer R(C). A
scanline t is nice if the top point of t is in the closed interval between the top points
of sy and s;, and the bottom point of t is in the closed interval between the bottom
points of s; and s,.

Lemma 5.2 There ts a scanline s* = s such that s* is nice.

Proof. Consider the diagram of R(C) with the scanlines s, s; and s. Without loss
of generality, we assume s, is to the left of s;. s separates non adjacent vertices a
and b. Let the line segment of a be to the left of the line segment of b. The scanline
s lies between the line segments of a and b. Assume s is not nice. Without loss
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of generality assume it crosses s;. Then a € S; and b € S (since a and b are not
adjacent). (see the left diagram in figure 3). Let s* be the line segment with top
point the top of s; and bottom point the bottom of s. We want to proof that s = s*.
This clearly is the case if there is no line segment of which the top point is between
the top points of s and s;. Assume there is such a vertex p (see the right diagram
in figure 3). Notice that, since p and a both cross s, they are adjacent. We claim

a 8 81 b a 8 p s1(s*) b

L a s b 81 p a s(s*) b

assume $ is not nice S is not minimal
Figure 3: there is an equivalent nice scanline

that S* C S. Let z be a line segment crossing s*. If the bottom end of z is to the
left of the bottom end of s*, then the segment z clearly also crosses s. Assume the
bottom vertex of z is to the right of the bottom vertex of s*. Then the line segment
also crosses s;. But then z and a are adjacent, hence the top vertex of z must be
to the left of the top vertex of a. This implies that z also crosses s. Clearly, $* is
an a, b-separator in R(C). Since p € S\ S, S can not be a minimal a, b-separator
in R(C), and since H is a minimal triangulation of R(C), it can not be a minimal
a, b-separator in H (theorem 2.1). This is a contradiction. O

This proves that all lines crossing the scanline s are in C, and the next lemma
follows.

Lemma 5.3 Let C = C(s,,3;) be a candidate component with at least k+2 vertices.
Then C is k-feasible if and only if there is a nice scanline s such that the two

candidate components Cy = C(s1,s) and C, = C(s,32) are both smaller than C and
are both k-feasible.

We are now ready to proof our main theorem.

Theorem 5.1 Let C = C(s1,32) be a candidate components with s; to the right of
81. Then C is k-feasible if and only if there exists a sequence of scanlines s; =
t1,%2,...,t, = 83 such that the following conditions are satisfied:

e t; and t;;; have an endpoint in common fori=1,...,r—1, and the other end
point of t;, lies to the right of the other end point of t;.

o Each C(t;,ti41) has at most k + 1 vertices (1 =1,...,7r —1).

10



Proof. First assume such a sequence exists. Let ty,...t, be the sequence of scanlines.
If C has at most k + 1 vertices, then C is k-feasible. Hence we may assume that
C has at least k + 2 vertices. Then r > 3. By induction we show that C(t1,1;) is
k-feasible for 1 = 2,...r. If i = 2 then C(¢),;) has at most k + 1 vertices and hence
it is k-feasible. Assume C(t;,%;—1) is k-feasible and C(1,%;) # C(t1,ti-1). Then ¢,
is a nice scanline in C(t1,;). C(t1,ti—1) and C(ti-1,t;) are both k-feasible, hence, by
lemma 5.3, also C(t;,¢;) is k-feasible.

Now assume that C is k-feasible. Consider the case that C' has at most k + 1
vertices. If s; and s, have an end point in common we can take r = 2. If s; and
s do not have an end point in common, take a scanline ¢ which has one end point
in common with s; and the other end point in common with s;. The sequence of
scanlines s,,t, s, satisfies the requirements. Assume C has at least k + 2 vertices.
Then by lemma 5.3 the is a nice scanline s* such that C(s;,s*) and C(s*, s;) are both
k-feasible. The theorem follows by induction on the number of vertices of C. O

6 Algorithm

In this section we show how to compute the treewidth (and pathwidth) of a permu-
tation graph G. Let k be an integer. The algorithm we present checks whether the
treewidth of the permutation graph does not exceed k.

We use a directed acyclic graph Wy (G) as follows. The vertices of the graph are
the pairwise non-equivalent k-small scanlines. Direct an arc from scanline s to ¢ if
the following two conditions hold:

o The intersection of s and ¢ is one end point of s and ¢, and the other end point
of t is to the right of the other end point of s, and

o the candidate component C(s,t) has at most k + 1 vertices.
We call this graph the scanline graph.

Lemma 6.1 Let sy, be the scanline which lies totally to the left of all line segments
and let sp be the scanline which lies totally to the right of all line segments. G has

treewidth at most k if and only if there is a directed path in the scanline graph from
st to sp.

Proof. Clearly sy and sg are k-small. The result follows immediately from theo-
rem 5.1. a

Lemma 6.2 The scanline graph has O(nk) vertices and each vertex is incident with
O(k) arcs.
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Proof. The bound on the number of vertices is proved in lemma 3.2. The bound
on the number of arcs incident with a vertex can be seen as follows. Let s be a
k-small scanline. First we count the number of scanlines ¢ which have an incoming
arc from s in Wi(G) and such that s and t have the same top end point. Consider
the matching diagram and assume the top point of s and ¢ is between 3 and t + 1,
the bottom vertex of s is between 7; and 7;41, and the bottom point of ¢ is between
Tpn and Tpaq1 (hence m > j). Clearly, the number of vertices in C(s,t) is at least
m — j. Since there is an arc from s to t, m — j < k+ 1. The other cases are similar.
This proves that s is incident with O(k) arcs. =]

We now describe the algorithm which determines if the treewidth of G is at most k.
Step 1 Make a maximal list £ of pairwise non-equivalent k-small scanlines.
Step 2 Construct the acyclic digraph Wi(G).

Step 3 If there exists a path in Wy(G) from si, to sg, then the pathwidth of G is

at most k. If such a path does not exist, then the pathwidth of G is larger
than k.

We now discuss the running time of the algorithm in more detail.
Lemma 6.3 The algorithm can be implemented to run in O(nk?) time.

Proof. By lemma 3.2 each k-small scanline can be characterized by two indices
and @ with 0 < i < n and —(k+1) <60 < k+1. The scanline with these indices has
top end point between ¢ and i + 1 and bottom end point between 7;.9 and miye41
(with obvious boundary restrictions). Let A(i,6) be the number of line segments of
which the top end point is to the left of the top endpoint of this scanline and which
cross the scanline. Notice that A(0,8) = 0for § =0,...,k+1. The rest of the table
follows from:

A(5,8) =

{ A(i,0-1) im0 >t g g5 min(k+1,i), and

A(i,B— 1) -1 if it S 1

. e =1 s
AG,8) = { 38 - 1313 T i Ziz fori>1A6=—min(k+1,i).
The number of line segments crossing the scanline with indices  and 6 is 2A(z, 6) +6.
It follows that the list £ of k-small scanlines can be made in O(nk) time.

We now show that the scanline graph Wi(G) can be constructed in O(nk?) time.
Consider two k-small scanlines s and ¢, which have a top end point in common, say
between i and i + 1. Assume the bottom end point of s is between 7; and 7,4,
and the bottom end point of ¢ is between 7, and Tm41. According to lemma 6.2
we must have |m — j| < k + 1, otherwise there can not be an arc between s and .
Assume without loss of generality that j < m. Notice that the number of vertices
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of C(s,t) is m — i + A(i,m — i) + A(¢,j — 7). This shows that the adjacency list for
each k-small scanline can be computed in O(k) time. Computing a path in W from
s, to sg, if it exists, clearly also takes O(nk?) time. Hence the total algorithm can
be implemented to run in O(nk?) time. m]

Theorem 6.1 Let G be a permutation graph. Then the pathwidth and treewidth of
G are the same, and there is an O(nk?) algorithm that correctly determines whether
the treewidth of G is at most k.

We end this section by remarking that the algorithm can be adapted such that it
computes, within the same time bound, the pathwidth of a permutation graph (when
the matching diagram is given). This can be seen as follows. Let the treewidth of
G be k. First compute a number L such that L < k < 2L. This can be done,
using the algorithm described above O(log k) times, in time O(nk?) (execute the
algorithm described above for L = 1,2,4,...). In fact, using the algorithm described
in [20], this step can be performed in O(nk) time. Now construct the scanline
graph W,.(G), and put weights on the arcs, saying how many vertices are in the
corresponding candidate component. Then search for a path from s; to sg, such
that the maximum over weights of arcs in the path is minimized. This maximum
weight minus one gives the exact treewidth k of G.

7 Conclusions

In this paper we described a very simple and efficient algorithm to compute the
treewidth and pathwidth of a permutation graph. In fact we have shown that, for
any permutation graph, the pathwidth and treewidth are equal. It is possible to
generalize these results to complements of comparability graphs of which the partial
order dimension is bounded by some constant [18] (then the algorithm is exponential
in this dimension). Also, these results show that, for any cocomparability graph,
the pathwidth and treewidth are equal. There are some other classes of graphs for
which the exact pathwidth and treewidth can be computed efficiently. For example
cographs [8], splitgraphs and interval graphs. The treewidth can also be computed
efficiently for chordal graphs, circular arc graphs (28] and chordal bipartite graphs
[21). In this respect we like to mention the result of [19] which shows that the
pathwidth of chordal graphs is NP-complete. Permutation graphs are exactly the
graphs that are comparability and cocomparability. It is easy to see that treewidth
is NP-complete for bipartite graphs. Hence our result can not be generalized to
the class of comparability graphs. However, an open problem is whether the results
of this paper can be generalized to the class of cocomparability graphs (when the
partial order dimension of the complement is not bounded). One of the other open
problems we like to mention is whether the running time of our algorithm can be
improved. Notice that there is a linear time (i.e. O(nk)) approximation algorithm
for treewidth and pathwidth of permutation graphs with performance ratio 2 ([20]).
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