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Abstract

The complexity of motion planning algorithms highly depends on the complexity
of the robot’s free space, i.e., the set of all collision-free placements of the robot.
Theoretically, the complexity of the free space can be very high, resulting in bad
worst-case time bounds for motion planning algorithms. In practice, the complexity
of the free space tends to be much smaller than the worst-case complexity. Motion
planning algorithms with a running time that is determined by the complexity of
the free space therefore become feasible in practical situations. We show that, under
some realistic assumptions, the complexity of the free space of a robot with any fixed
number of degrees of freedom moving around in a d-dimensional Euclidean workspace
with fat obstacles is linear in the number of obstacles. The complexity results lead
to highly efficient algorithms for motion planning amidst fat obstacles.

1 Introduction

Autonomous robots are one of the ultimate goals in the field of robotics. An autonomous
robot must accept high-level descriptions of tasks and execute these tasks without further
intervention from its environment. A user of such a robot is only responsible for specifying
the tasks; he is not bothered with how these tasks are executed.

An obvious task for an autonomous robot would be to move from one place to another.
While moving, the robot must avoid collision with the obstacles that are present. The
problem of finding such a collision-free motion is referred to as the motion planning problem.
(An overview of the state-of-the-art in robot motion planning is given in [8].) In this paper,
we consider the following version of the general motion planning problem.

*Research is supported by the Dutch Organization for Scientific Research (N.W.0.) and partially sup-
ported by the ESPRIT III BRA Project 6546 (PROMotion).



Given a robot B moving amidst a collection of obstacles £ , and an initial
placement Z, and a desired final placement Z; for B, find a continuous motion
for B from Z, to Z, during which the robot avoids collision with the obstacles,
or report that no such motion exists.

In the next section we present a mathematical formulation of the motion planning
problem. This commonly used mathematical formulation is referred to as the configuration
space formulation of the motion planning problem [8]. In this formulation, a placement of
the robot B is mapped to a point in an appropriate space. The obstacles map to point
sets in this space. The mapping transforms the problem of planning the motion of a
dimensioned object B into the problem of planning the motion of a single point in the,
usually higher-dimensional, appropriate space. In Section 3 we discuss the commonly used
approaches for solving the motion planning problem. In Section 4 we introduce the notion
of fatness for shapes. In Sections 5 and 6 we show that the complexity of the solution space
for the motion planning problem is low if the obstacles that the robot is moving amidst
are fat. Finally, in Section 7 it is shown that fatness reduces the time complexity of the
well-known algorithm by Schwartz and Sharir for planning the motion of a ladder amidst
polygonal obstacles in a two-dimensional workspace from O(n®) to O(n?). The algorithm
is then modified so that its running time is further reduced to O(nlog?n).

2 Configuration space formulation of the motion plan-
ning problem

A robot B moves around in a workspace, or physical space, W. This workspace W usually
corresponds to the Euclidean space of dimension two or three (R? or R®), since these are
the most interesting cases from a practical point of view.

The collection of obstacles € is a closed, possibly unbounded, subset of W. A connected
component E of the set € is referred to as an obstacle.

Generally, the robot B is an m-tuple of rigid bodies. A rigid body is a compact con-
nected subset of W. A rigid robot is a robot consisting of a single rigid body (m = 1).
A nonrigid robot consists of more than one rigid body (m > 1). The motions of the m
different components of a nonrigid robot are usually not independent from each other. In
most practical situations the components are in some way attached to each other. These
couplings of the components constrain the relative placements and motions of each of the
components. Figure 1 shows four examples of robots. The robots in Figure 1(a),(b) live
in a two-dimensional Euclidean workspace (R?); the robots in Figure 1(c),(d) move in
three-dimensional Euclidean space (R?). Robots 1(a),(d) are examples of nonrigid robots,
the other two robots are rigid (assuming that the plane does not have movable parts).
Both nonrigid robots are examples of so-called robot arms. A robot arm is a set of rigid
bodies, or links, that are attached to each other in a chain. Two links are attached to each
other by joints. A joint can be either revolute (rotating) or prismatic (sliding). Robot 1(a)
consists of five links, three revolute joints, and one prismatic joint. The three-dimensional
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Figure 1: Examples of robots: robot arm (a) is a 4-DOF robot in R?, point robot (b) is a
2-DOF robot in R?, plane (c) is a 6-DOF robot in R®, and robot arm (d) is a 2-DOF robot
in R3.

robot 1(d) consists of three links, one revolute joint, and one prismatic joint. Many known
motion planning algorithms only consider (a class of) rigid robots.

In most situations it is not sufficient to characterize a placement of the robot in the
workspace, by the position of some chosen reference point on the robot in the workspace.
Consider for example the simple situation where a line segment PQ moves around in RZ.
Characterizing a placement of PQ by the position of, for example, the endpoint P is not
sufficient, because then robot PQ can still be placed in infinitely many ways. (Endpoint
@ can be chosen on a full circle in R?). If we add another parameter 6 giving the angle
between PQ and, say, the positive z-axis, then the triple (z,y,6) determines one single
placement of the robot PQ. Instead of two parameters z and y, we need three parameters
z, y, and 6 in the line segment case to characterize a placement. Hence, a placement
for the robot PQ is mapped to a point in R? x [0,27). Such a space C of parametric
representations of robot placements is called configuration space. The parameters that are
needed to specify a robot placement are referred to as the degrees of freedom (DOF) of



the robot. The number of degrees of freedom of a robot determines the dimension of its
configuration space. A point Z in the configuration space C is a placement. A placement
Z € C of the robot B corresponds to a set of points (covered by B) in the workspace W.
This point set is denoted by B[Z].

Let us reconsider the example robots in Figure 1 in order to see a few examples of
configuration spaces.

(a) The two-dimensional robot arm has four degrees of freedom. Assuming that the two
lower revolute joints cover the full angular sector [0, 27), the upper revolute joint can
establish all angles in the range [7,27), and the length of the upper (fork) link is
2, then a suitable configuration space is C = [0,27)? x [0,7) x [0,2]. A placement
Z = (o, p,v,L) gives the angle a between the first and second link, the angle 8
between the second and third link, the angle between the third and fourth link, and
the length £ of the overlap of the fourth and fifth link; Z = (éﬁ’—', %”, 331, 1) is a valid
placement.

b) The point robot has two degrees of freedom, its z-coordinate and its y-coordinate.
p g
A suitable configuration space is C = R2.

(c) The plane has six degrees of freedom. First we fix the back end of the plane’s body
as its reference point. The position of this reference point is a point (z,y,2) € R,
The front end of the plane can now be chosen on a full sphere in R3. Like specifying
a point on earth this can be done by a point in [0,27) x —Z,%]. Finally, the plane
can fully rotate around its own length axis. A suitable configuration space for the
plane is therefore C = R? x [0,27) x [—Z,Z] x [0, 27).

(d) The three-dimensional robot arm lives in a three-dimensional Euclidean workspace
but two parameters are sufficient to specify a placement of the arm. We can choose
C =[0,27) x [0, L], where L is the length of the extreme link.

A point Z in the configuration space C' can correspond either to a placement of the
robot B in the workspace W in which it intersects no obstacle, B[Z]N € = 0, or to a
placement of B in W in which is has non-empty intersection with the obstacle set £. The
first type of placement is called a free placement. The free space FP is the set of all free
placements of the robot B, hence

FP={Z e C|B[ZInE=10}.

Sometimes it is more appropriate to allow the robot to move while being in contact with
an obstacle. Then, the intersection of the robot with the obstacle set £ is non-empty but
the intersection of B with the interior int(£) of £ is empty. A placement Z such that
B[Z]Nint(£) = 0 is called a semi-free placement. The semi-free space SFP is the set of all
semi-free placements of the robot B, hence

SFP = {Z € C|B[Z]nint(E) = 0 ).
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A collision-free path or collision-free motion, or path or motion for short, for a robot B
from an initial placement Z, to a final placement Z; is a continuous map:

7:[0,1] — FP,

with
7(0)=2, and 7(1)=Z,.

Semi-free motion can be allowed by changing the range of the map 7 into SFP. Hence,
the problem of motion planning is equal to the problem of finding a continuous curve
completely lying inside the free portion FP of the configuration space. The effort that is
required to find such a curve is obviously highly dependent on the complexity of the free

space FP. In the next sections we will discuss the complexity of the free space in more
detail.

3 Approaches to solving the motion planning prob-
lem

Motion planning algorithms are either approximate or exact. The main difference between
both classes is that approximate motion planning methods may fail to find a collision-free
path for the robot even if such a path exists, whereas the exact motion planning algorithms
always find a path if one exists. Another important characteristic of approximate methods
is that, in general, the efficiency of such methods is not related to the complexity of the
free space. Approximate methods can behave very well in situations with high free space
complexity but also very bad in situations with a low complexity free space. We restrict
ourselves to exact motion planning methods, since these methods can benefit from the
reduced free space complexities that we will prove for situations satisfying some realistic
assumptions.

The cell decomposition approach (see e.g. [2,6, 7,9, 15]) is an exact motion planning
technique that partitions the space FP into a finite number of simple connected cells, such
that planning a motion between any two placements within a single cell is straightforward
and such that uniform crossing rules can be defined for B crossing from one cell into
another. Each cell defines a vertex in the connectivity graph CG. Two vertices in CG are
connected by an edge if their corresponding cells share a common boundary allowing direct
crossing of the robot B. Given the connectivity graph CG, the problem of motion planning
1s reduced to a graph problem: find the cells Cq and C; in which the placements Zy and Z,
lie and determine a path in CG between the vertices corresponding to the cells Cy and C,,
or report that no such path exists. Next, the resulting sequence of cells and the crossing
rules for each pair of consequent cells are used to find a path for the robot B from Z, to
Z;.

Applications of the cell decomposition technique include an O(n®) algorithm by Schwartz
and Sharir [15] for planning the motion of a non-convex polygonal robot B moving amidst
polygonal obstacles £ in the plane (with a total number of n edges). Leven and Sharir [9]
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present a more efficient version of the algorithm by Schwartz and Sharir for the special case
of a ladder moving amidst polygonal obstacles. Their algorithm runs in time O(n?logn).
Other results for motion planning in the plane are given by Kedem and Sharir [7] and
Avnaim, Boissonnat, and Faverjon [2]. Both algorithms have high worst-case time bounds:
they run in roughly quadratic and cubic time respectively. In practical situations, some of
the algorithms show better performance though.

A different exact approach to motion planning is the retraction method (see e.g. [11,
12, 16]). In this approach we define a lower dimensional subspace FP’ of FP and show
that there exists a retraction function Im from FP to FP’. The retraction function Im
maps each placement in FP onto a placement in FP'. Hence, motion planning in FP is
reduced to motion planning in FP’. By repeated retractions we obtain a one-dimensional
network N C FP. Motion planning is again reduced to graph searching if we represent the
one-dimensional network N as a graph.

(j’DL'mlaing and Yap [11] and O’Dﬁnlaing, Sharir, and Yap [12] present algorithms for
planning the motion of a disc and a ladder, based on retractions onto Voronoj diagrams.
The algorithms run in time O(nlogn) and O(n?log nlog* n)! respectively. Sifrony and
Sharir [16] apply a variant of the retraction technique. They use a retraction that maps
placements in FP onto particular vertices on the boundary of FP. The resulting algorithm
runs in O(K logn), where K is the number of feature pairs that are less than the length
of the ladder apart. The complexity of this algorithm is determined by the complexity
of the free space. Hence, not too much time is spent on other things than producing a
description of the free space. Apparently, algorithms that have this property are close to
optimal, because algorithms that run in less time than the time needed to produce an
efficient representation of the free space can only be obtained in special cases where it is
sufficient to compute only part (e.g. a single cell) of the free space. So, we must strive for
algorithms with a complexity that is determined by the complexity of the free space.

As stated above, the complexity of a cell decomposition or a retraction network highly
depends on the complexity of the free space FP. The complexity of the free space, as
we will see in the next section, is determined by the number of multiple contacts of the
robot B and the obstacles. A multiple contact of the robot B is a placement in which it
touches more than one obstacle feature (e.g. edge, corner). Unfortunately the number of
multiple contacts, and, hence, the complexity of the free space, can be very high. If n is the
number of obstacle features and f is the number of degrees of freedom of the robot (i.e., the
dimension of the configuration space) and the number of robot features is bounded by some
constant, then this complexity can be Q(nf). So, theoretically, these cell decomposition
and retraction techniques are very expensive. Fortunately, in many practical situations
the complexity of FP is much smaller and, hence, these methods might become feasible
[3] (assuming that the algorithms are sensitive to the size of FP, like e.g. the algorithm of
Sifrony and Sharir [16]). A study of properties that limit the number of multiple contacts
for the robot (and hence the complexity of FP) is therefore of obvious importance.

Ylog" n = min{i > 0| log®n < 1 }, where log®®) stands for the logarithm function applied i times in
succession [4].



4 The free space complexity and the number of mul-
tiple contacts

The complexity of a collection of connected sets is determined by the complexity of its
boundaries. Since FP is a collection of connected subsets of the configuration space C, the
complexity of FP is determined by the complexity of the boundary of FP. The set FP is
an open subset of the configuration space. The set SFP is the closure of the set FP, so the
difference BFP = SFP - FP of these sets is the boundary of the set of free placements. By
the definitions of FP and SFP we obtain:

BFP={Z e C|B[ZINnint(E)=0 A B[ZINE#0).

Hence, the boundary BFP of the free space is the set of placements in which the robot only
touches the obstacles and not really intersects them. We examine the set of placements
in which the robot touches, or, is in contact with, one or more obstacles, since this set
determines the complexity of FP.

Let us assume that the configuration space C' has dimension f. The set of all robot
placements in which a specific robot feature (vertex, edge, face) is in contact with a specific
obstacle feature is an (f — 1)-dimensional subset, or hypersurface, in the f-dimensional
configuration space. Each combination of a robot feature and an obstacle feature defines
such a hypersurface. If the total number of features (the complexity) of the robot and the
obstacles is O(1) and n respectively, then the total number of hypersurfaces equals O(n).

The contact hypersurfaces described above can obviously intersect each other. A point
on the intersection of two hypersurfaces corresponds to a double contact of the robot B.
The intersection of two hypersurfaces is an (f — 2)-dimensional subset in the configuration
space. All points in this subset correspond to placements in which the same two contacts
exist. Any pair of hypersurfaces can theoretically be involved in such an intersection, so
the total number of intersections is O(n?). Moreover, a point on the intersection of ]
hypersurfaces corresponds to a j-fold contact of the robot with the obstacles. Such a j-fold
contact defines a (f — j)-dimensional subset of the configuration space. The number of
Jj-fold contacts is O(n?). An f-fold contact defines a point in the configuration space. The
number of f-fold contacts is O(nf). Contacts that involve more than f feature pairs only
appear occasionally and can be regarded as an f-fold contact placement in which the robot
accidentally touches one or more additional obstacle features.

The complexity of the boundary of the free space, and, hence, of the free space itself,
is determined by the total number of subspaces defined by the O(n) contact hypersurfaces
that constitute the boundary. This number of subspaces equals the sum of the number
of hypersurfaces and the number of multiple contacts for the robot B , provided that the
intersection of each multiple of hypersurfaces consists of only a constant number of con-
nected sets. The latter requirement will generally be satisfied. Theorem 4.1 states this
result on the relation between the complexity of the free space and the number of multiple
contacts.



Theorem 4.1 Let B be a constant complezity robot with f degrees of freedom and let € be
a set of obstacles with total complezity O(n). Then the complezity of the free space of the
robot B is O(n + Ya<i<s N (7)), where N(j) is the number of j-fold contacts for the robot
B.

In many practical cases the relative positions and the shapes of the obstacles are such
that the number of multiple contacts for the robot B is very low. Obstacles that are
relatively far apart compared to the size of the robot, clearly result in less multiple contacts
for B than obstacles that are cluttered. Similarly, obstacles that have no long and skinny
parts will induce less multiple contacts than obstacles that do have such parts. We may
therefore expect that the actual complexity of the free space will remain far below the
worst case complexity in those situations.

An obstacle that has no long and skinny parts is called fat. This informal description
of fatness can be formalized in many different ways (see e.g. [10] and [1]). Our (slightly
different) definition (see [17] and the next section) results in a free space with a complexity
that is linear in the total obstacle complexity for a constant complexity robot moving
amidst fat obstacles. The proof of the result is based on the following idea: we consider
the smallest obstacle and prove a constant upper bound on the number of larger obstacles
that lie close enough to this smallest obstacle so that both can be involved in a single
multiple contact, and repeat this argument for every next smallest obstacle. Using this
idea, we obtain a linear number of multiple contacts.

The importance of the linear complexity result becomes clear if we reconsider the
O(K log n)-algorithm of Sifrony and Sharir [16]. Our result shows that the number of
feature pairs that is less than the length of the ladder apart is linear in case of fat obsta-
cles. As a consequence, the algorithm then runs in O(nlogn) time, whereas it might take
O(n?logn) time for non-fat obstacles.

5 Fat obstacles

Fatness turns out to be a very interesting property in computational geometry. Alt et al.
[1] and Matousek et al. [10] show that the upper bounds on the combinatorial complexity
of the union of certain geometric figures are lower if these figures are fat. The union
of geometric figures plays a role in many computational geometry applications. Fatness
can lead to efficient algorithms. Overmars [14] shows that point location queries in fat
subdivisions (no cell has long and skinny parts) in d-dimensional space can be performed
in a simple way in O(log?™! n) time with a data structure that uses O(nlog? ' n) storage.
Our definition of fatness [17] in a d-dimensional Euclidean workspace involves d-dimensional
closed spherical regions centered at some arbitrary point in an obstacle E. The closed spher-
ical region with radius r centered at m will be denoted by Sia,ry SO

Sms = {z € R¥d(z,m) <r};
the boundary of this region will be denoted by 35, r, so
Sy = {z € R¥|d(z,m) =r}.
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Spherical regions centered at a point m with a boundary that has non-empty intersection
with an obstacle E play a central role in our notion of fatness. Therefore, the following
definition is useful.

Definition 5.1 [U,, g, Ug]
Let m € R? and let E C R? be an obstacle. The set Un,g is defined as:

Ung = {Smy C BR*|8S,., NE # 0}

The set Ug is defined as:
U= Ung
meE

So, Ug is the set of all spherical regions with center inside E that do not fully contain E.
Figure 2 shows a two-dimensional example of a circular region Sp that does not belong
to Ug and a circular region S; that does belong to Ug. Region S, does not belong to
Ug because the obstacle E lies entirely inside it. Region S; is an element of Ug since its
boundary has non-empty intersection with the obstacle E.

Figure 2: Illustration of the definition of Ug: Sy € Ug and S; € Ug.

We define fatness in such a way that obstacles are not only “compact” but also do
not have extremely thin protuberances. The definition of fatness involves some positive
number k. This number is a measure for the actual fatness of the obstacle. If the value of
k is increased then the obstacle is allowed to be less fat. For obstacles with a boundary
with infinitesimally thin protuberances (e.g. line segments) it is impossible to find such a
k, so these obstacles can never be fat.

Definition 5.2 [k-fatness]
Let E C R? be an obstacle and let k be a positive constant. The obstacle E is k-fat if:

VS € Ug k - volume(E N S) > volume(S).



Informally, an obstacle E is k-fat if the part of any spherical region S (with a boundary
that intersects E and its center inside E) covered by the obstacle E is at least a %th of S.
The choice for spherical regions in the definition of fatness is rather arbitrary. In fact we
could have used any compact region, e.g. hypercubic regions, regions bounded by simplices
etc. Any k-fat obstacle according to one definition is easily seen to be k'-fat according to
another definition for some k' that is only a constant multiple of k. Note that there is a
straightforward property that an obstacle that is k-fat is also k’-fat for &' > k.

No lower bound on the value of k is given in the definition of fatness. In fact the
lower bound on k differs from dimension to dimension. There are for example no 1-fat
obstacles at all; there can be 5-fat obstacles in a two-dimensional workspace but 5-fat
obstacles in a three-dimensional workspace do not exist. This is inherent to the definition
of k-fatness. Suppose we have a k-fat obstacle E with diameter §. The volume of this
obstacle is bounded from above by the volume of a hypersphere with diameter § (or radius
6/2). The diameter of E is §, so there is a pair of points on the boundary of E that
is a distance é apart; let m,m’ € E be these two points. The spherical region S,,5 is
an element of Ug since m’ € 8S,,5 and m’ € E. (Similarly, spherical region St 18 an
element of Ug.) Hence, the set Ug contains an element S with radius §. We know that
volume(E N §) < volume(E) < Cq - (6/2) and volume(S) = Cy - 6%, where Cy is the
dimension-dependent multiplier in the volume formulae for hyperspheres 2. Combination
with Definition 5.2 (E is k-fat and S € Ug) yields k > 29. The boundary value 2%-fatness
is only obtained for spherical obstacles; spherical obstacles have maximal fatness.

The definition of k-fatness given in Definition 5.2 has a very “local” character: a certain
portion of the proximity of every point in the obstacle must be covered by the obstacle too.
As stated before, this locality prohibits obstacles with infinitesimally thin protuberances,
even if these protuberances are extremely short. A huge spherical obstacle with a very
short line segment sticking out of its boundary will not be k-fat for any value of k. A more
natural way to define fatness might be the more “global” type of fatness given in Definition
5.3. For convenience, we will refer to it as thickness. Here, we only compare the volume of
the entire obstacle to the volume of its minimal (volume) enclosing hypersphere: the volume
of the obstacle should be at least a certain portion of the minimal enclosing hypersphere
of the obstacle. This more liberal definition allows obstacles with small protuberances. If
E is an obstacle then we denote the minimal enclosing hypersphere of E by M ESE.

Definition 5.3 [k-thickness]
Let E C R? be an obstacle and let k > 1 be a constant. The obstacle E is k-thick if:

k- volume(E) > volume(MESE).

The definition of k-thickness involves just one hypersphere instead of infinitely many. Note
that not necessarily MESg € Ug: the minimal enclosing hypersphere of an obstacle can
have its center outside the obstacle. Again we have the straightforward property that an

2For even dimension Cy = C3, = Z.. For odd dimension Cj = Csppq = 28 ",,. See, e.g., [5,
n! + (2n41)" g
Section 394].
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obstacle that is k-thick is also k’-thick for &’ > k. Spherical obstacles are 1-thick, because
the minimal enclosing hyperspheres of such obstacles are the obstacles themselves.

Unfortunately, the notion of k-thickness does not result in low complexities of the free
space. Hence, the definition is too general for our purposes. We could restrict ourselves
to convex obstacles but, as we will see below in Theorem 5.4, in that case thickness is
equivalent to fatness. Therefore, we have chosen to use the definition of fatness stated in
Definition 5.2 because it also allows for non-convex obstacles.

Theorem 5.4 Let E C R? be a convex obstacle. Then
E is k-fat = E s k'-thick,
where k is only a constant multiple of k'.

We refer to [17] for the proof of this theorem.

A consequence of Theorem 5.4 is that the complexity results that we prove for convex
obstacles that are k-fat also hold for convex obstacles that are k-thick. In the rest of this
paper we will only consider fatness, not thickness.

Let us consider some examples of fat shapes. Spherical obstacles are obviously fat, because
we have shown earlier that a d-sphere has maximal achievable 2¢-fatness. Other shapes
that are fat (in two-dimensional space) include squares, rectangles with bounded aspect
ratio, and triangles with angle restriction.

In [1] an approximate motion planning algorithm is given for a rectangular robot. The
complexity of the algorithm decreases as the ratio of the rectangle’s sides gets closer to
1. It is obvious that a (non-degenerate) rectangle is fat according to our definition. The
actual fatness obviously depends, like the complexity of the algorithm, on the ratio of the
rectangle’s sides. The value of k will increase as the rectangle becomes “narrow”. The
largest spherical region in Ug (centered at a rectangle corner and enclosing the rectangle)

has radius va? + b%, so a rectangle with sides a and b is ﬁ%{—&-fat. Clearly, we get
maximal fatness for squares and no fatness if either a = 0 or b = 0.

In [10] a different notion of fatness is introduced for triangles by imposing a restriction
on the angles in the triangle. There, a triangle is called §-fat if each of its three internal
angles is at least 6. A é-fat triangle is also fat according to our definition. Assume that we
are given a 6-fat triangle with a longest edge e. The triangle has minimal area if the other
two angles have magnitudes § and = — 2§. This minimal area is %|e|2 tan 6. The largest
spherical region in Ug (centered at one of the end-points of e and enclosing the triangle)
has radius |e|. Therefore, each §-fat triangle is 2% -fat according to our fatness definition.
Maximal fatness is obviously obtained for equilateral triangles and there is no fatness if -
6 = 0. The latter triangle will also be non-fat in [10].

Many other classes of shapes are fat. In three-dimensional space we can think of cubes,
boxes with bounded aspect ratio’s in each of their bounding rectangular faces, equilateral
tetrahedra etc.
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6 Multiple contacts for a robot

Let us now return to determining the complexity of the free space for some motion planning
problem involving fat obstacles. The actual complexity of the free space depends on the
number of intersections of hypersurfaces that bound the free space. Such a hypersurfaceis a
set of placements of the robot B in which a certain feature of B is in contact with a certain
teature of the boundary of £. Each hypersurface can intersect any other hypersurface.
Intersections of hypersurfaces correspond to multiple contacts of the robot B with the
boundary of £. The intersections define faces on the hypersurfaces. The set of faces forms

a description of the free space FP. If the number of possible multiple contacts of the robot
B is low then the complexity of the free space is also low.

We consider the situation where a robot B moves amidst k-fat obstacles £ C €. The
robot B is not required to be fat. We assume that the obstacles are not infinitesimally small.
Let the diameter of the smallest minimal enclosing hypersphere of any obstacle be d,yiy.
The robot B is assumed to be relatively small compared to the obstacles E: the diameter
of B is at most b - dyuin, where b is some positive constant. Both assumptions are quite
realistic. The assumption on the size of the obstacles basically rules out point obstacles,
whereas the assumption on the size of the robot forbids unboundedly large robots. If we
do not make the second assumption then one may choose a very large robot that would
make the obstacles into “point” obstacles relative to the robot. In practical situations,
both assumptions will be satisfied.

We assume that the number of features of the robot B is bounded by a constant and
the number of features of the obstacle set € is n. As a consequence, the total number
of hypersurfaces is O(n). The hypersurfaces are assumed to be algebraic and of bounded
degree, so that the number of intersections of two hypersurfaces is also bounded by a
constant. This requirement for the degree of the hypersurfaces mainly means that the
boundary of the robot and the obstacles must not be too irregularly shaped. As the
hypersurfaces are of bounded degree this implies that the total complexity of the free
space FP is bounded by O(nf), where f is the dimension of the configuration space. The
dimension of the configuration space equals the number of degrees of freedom of the robot.
Each obstacle E C € is assumed to have only a constant number of features, so the number
of obstacles is 2(n).

The assumptions in the previous two paragraphs are sufficient to prove that the number
of multiple contacts for a robot B is at most linear in the number of obstacles. We
summarize these assumptions below.

e The workspace of the robot B is the d-dimensional Euclidean space (R9).
e The workspace of the robot B contains n k-fat obstacles E C £ C R?.

o The diameter of the smallest minimal enclosing hypersphere of any obstacle E C £
is dm,'n.

o The diameter dg of the robot B is bounded: dg < b+ dyin (constant b > 0).
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e The robot B has constant complexity.
e Each obstacle E C € has constant complexity.

e The set of robot placements (hypersurface in the configuration space) in which a
certain robot feature is in contact with a certain obstacle feature is algebraic and of

bounded degree.

6.1 The proximity of an obstacle

In this subsection we consider the proximity of a k-fat obstacle as a first step in finding
an upper bound on the number of multiple contacts for a robot B. It is obvious that two
obstacles that are far (more than the diameter of the robot) apart can not be involved in
any multiple contact for B. Hence, obstacles that do cause such a contact must lie in each
other’s proximity.

A strategy for proving a linear upper bound on the number of multiple contacts for
the robot B could be to prove that the number of multiple contacts involving a certain
obstacle is only constant. Straightforward application of this strategy, however, would yield
no result. If we have a situation with O(n) equally sized k-fat obstacles and one much
larger k-fat obstacle, then considering the proximity of this large obstacle does not result
in a constant upper bound on the number of obstacles that can participate in a multiple
contact involving the large obstacle: all O(n) smaller obstacles might lie in the proximity of
the large obstacle. Note, however that this strategy contains some redundancy: a multiple
contact is counted more than once.

To avoid counting a single multiple contact more than once, we only count the number
of larger obstacles that can participate in a multiple contact involving E. By starting with
the smallest obstacle and repeatedly considering the next smallest obstacle we will count
each multiple contact m for the robot exactly once. It turns out that the number of such
multiple contacts involving any obstacle E is constant.

Any k-fat obstacle E’ that participates in some multiple contact with a given k-fat
obstacle E must lie close to this obstacle E. Lemma 6.1 (see [17] for the proof of this
result and all other results in this section) states that the number of obstacles that lie
in the proximity of the obstacle E;, with the smallest minimal enclosing hypersphere is
bounded by a constant.

Lemma 6.1 Let £ C R? be a set of k-fat obstacles. Let Eni C € be the obstacle with
the smallest minimal enclosing hypersphere; the diameter of this hypersphere is assumed
to be dyin. If the diameter dg of the robot is at most b+ diin then the number of obstacles
E C R? that lie close enough to Ei, so that B can touch Enin and E simultaneously is

at most 24 - k- (b+ 1)4.

It is not surprising that the number of obstacles that can participate in a multiple contact
of the robot B increases when the obstacles become less fat (k increases) or when the
diameter of the robot increases (b increases).
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6.2 A linear number of multiple contacts for B

The proximity result given in Lemma 6.1 is the key to successful application of the proof
strategy presented in the previous subsection. Using that strategy we start with the obsta-
cle with the smallest enclosing hypersphere and repeatedly consider the obstacle with the
next smallest minimal enclosing hypersphere. For each obstacle E we count the number of
multiple contacts for the robot B involving E and obstacles with larger minimal enclosing
hyperspheres. Lemma 6.1 guarantees that we find a constant upper bound on this number
for each obstacle. The resulting overall number of multiple contacts will be linear, which
is stated in Theorem 6.2.

Theorem 6.2 Let £ C R?% be a set of n k-fat obstacles of constant complezity. The
diameter of the minimal enclosing hypersphere of each obstacle E C £ is at least dwin. Let
B be a robot of constant complezity with f degrees of freedom and with diameter dg < b-dpin.
For each j (2 < j < f), the number of j-fold contacts N(j) of the robot B is linear in the
number of obstacles: O(n).

Note that the value of j in Theorem 6.2 ranges from 2 to f. The number of single contacts
is also linear; a different hypersurface corresponds to each contact between a robot feature
and an obstacle feature, giving a total of O(n) hypersurfaces since there are n obstacles
and because of the constant complexity of the robot and each obstacle.

The (f — j)-dimensional subspace defined by a single j-fold contact is not necessarily
connected. Figure 3 shows an example for f = 3 and j = 2, where it is impossible for the
robot to move from Zg to Z; without losing contact with either the upper or the lower
obstacle feature. The 1-dimensional subspace induced by the contact with both features
is therefore non-connected. Our assumption that all contact hypersurfaces are of bounded
degree, however, implies that the number of different connected subspaces induced by a
single multiple contact is bounded by some small constant. The complexity of the free
space is now solely determined by the number of multiple contacts. Variable j in Theorem
6.2 can only have f — 1 different values, so the total number of multiple contacts is linear,
and, hence, the free space has linear complexity.

Corollary 6.3 Let £ C R? be a set of n k-fat obstacles of constant complezity. The
diameter of the minimal enclosing hypersphere of each obstacle E C & s at least dypin -
Let B be a robot of constant complezity with f degrees of freedom and with diameter dg <
b-dpmin. The free space for the robot B moving amidst the k-fat obstacles of set € has linear
complezity.

7 Efficient motion planning amidst fat obstacles
In this section we show that we can use the results and techniques from the previous section

to obtain a near-linear algorithm for a ladder (3-DOF) moving in the plane amidst k-fat
polygonal obstacles. The algorithm is a modified version of the famous ladder algorithm
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Figure 3: There is no continuous motion of the robot from Zg to Z; during which it remains
in contact with both features.

by Schwartz and Sharir. The ladder algorithm runs in O(n®) time in the case of arbitrary
polygonal obstacles, where n is the number of obstacle edges. We show that the unmod-
ified algorithm runs in O(n?) in our case of a not too long ladder moving amidst k-fat
polygonal obstacles with constant complexity. Finally, we modify the algorithm to obtain
an O(nlog?n) algorithm for planning the motion of the ladder.

The method by Schwartz and Sharir decomposes R? into so-called noncritical regions,
then lifts these regions into three-dimensional cells (in R? x [0,27)), and finally captures
the adjacency of these cells in a connectivity graph. We will go into more detail on each of
these steps and, while doing so, focus on the consequences of fatness of the obstacles for
each of these steps. We emphasize that we will not give an extensive explanation of the
ladder algorithm. For a more extensive explanation of the results presented in this section,
the reader is referred to [18].

The noncritical regions in the robot’s workspace W = R? are defined by critical curves.
The meaning of these curves is not important in our analysis, so we restrict ourselves to
summarizing the different types of critical curves. We adopt the classification of the critical
curves used in [8]. Let P and Q be the endpoints of the ladder B and let ds be its length.
Choose P as the robot’s reference point. Figure 4 illustrates the various critical curve types
that are defined below.

e An obstacle edge is a critical curve of type 0.

e Let e be an obstacle edge. The line segment at a distance dp from the edge e is a
critical curve of type 1. The length of the critical curve equals the length of the
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Figure 4: The six types of critical curves.

edge e.

Let z be an obstacle corner and let e; and e; be the edges emerging from z. The
circular arc with radius dg centered at 2 running between the half-line starting at =
and containing the edge e; and the half-line starting at « and containing the edge e;
is a critical curve of type 2.

Let z be a convex obstacle corner and let e be one of the edges emerging from z.

The line segment traced out by P while B slides along e, so that Q touches e and z
touches B, is a critical curve of type 3.

Let z; and z, be convex obstacle corners such that the line passing through z; and
z, is tangent to the obstacle set € in both z; and ;. The line segment traced out by
endpoint P, while B slides along z, and z, is a critical curve of type 4. Note that
the distance from z; to z2 must be less than dg.

Let x be a convex obstacle corner and let e be an obstacle edge such that z is not an
endpoint of e. The curve traced out by P while Q slides along e and while B remains
in contact with z, is a critical curve of type 5. The curve is a part of a fourth degree
curve known as the conchoid of Nicomedes. Note again that the distance from z to
e must be less than dp.

16



The (intersecting) critical curves form an arrangement in the plane. The part of a critical
curve between two points of intersection with other critical curves is called a critical curve
section. A position (z,y) of the robot B is admissible if there exists an orientation 6, such
that (z,y,8) € FP. A noncritical region is a maximal subset of admissible robot positions
intersecting no critical curves. Hence, the critical curves determine a set of noncritical
regions in the robot’s workspace.

If we fix the endpoint P of the robot at a certain point (z,y) in some noncritical region
R, then some orientations 6 of B = PQ correspond to free placements whereas other
orientations correspond to non-free placements. Let ©,, = {8|(z,y,0) € FP} be the
set of free orientations with P fixed at (x,y). The set ©,, consists of a finite number of
open maximum connected intervals. For each such interval (;,6;) € O, both the robot
placement (z,y,6;) and the robot placement (z,y,6,) are placements in which the robot
touches the obstacle set ((,y,61),(z,y,02) € BFP). The unique stop touched by B in
the contact placement (z,y,6:) (resp. (z,y,02)) is denoted by s(z,y,61) (resp. s(z,y, 6,)).
The set of all pairs [s(z,y,61), s(z,y, 82)] such that (61,8;) € O, is referred to as o(z,y).
The critical curves are defined so that for each pair of points (z,y) and (z',3’) in a single
noncritical region R, the sets o(x,y) and o(z2',y’) are equal. We refer to [15] for a proof of
this statement. In the sequel, we use the abbreviation o(R) = o(z,y), where (z,y) is any
position in the noncritical region R. Each pair of contact positions [s1,s;] € o(R) defines
a cell in the cell decomposition of the free space FP.

Schwartz and Sharir’s method first computes all critical curves, and then all intersec-
tions of the curves, resulting in a collection of intersection points and a collection of critical
curve sections. With each intersection point, we store the critical curve sections that are
incident at this intersection point. The sections are stored sorted by outgoing tangential
direction. Each critical curve section 8 separates two regions; we arbitrarily call one of the
regions left(3) and the other one right(3). Next, we compute o(left(8)) and o(right(B)),
define a connectivity graph node for each cell [sq, s3] induced by the regions left(8) and
right(8), and build the adjacency relation (based on the adjacency of the corresponding
cells) between the nodes induced by both regions. (Note that each node is generated by a
single critical curve section.) If we repeat this procedure for every critical curve section,
each cell is represented in the connectivity graph as many times as there are critical curve
sections bordering the region that induced the cell. All nodes that correspond to the same
cell are then circularly connected such that two nodes are linked if and only if the critical
curve sections that generated these nodes are incident at the same intersection point. The
orderings of the sections incident at an intersection point are used to determine these node
adjacencies.

7.1 The complexity of the cell decomposition

We recall the assumption that the number of obstacle edges and corners is O(n). It is easy
to see that each obstacle edge defines one critical curve of type 0 and one critical curve of
type 1. The total number of type 0 and type 1 curves is therefore O(n). Each obstacle
corner defines one critical curve of type 2 while each convez obstacle corner defines two
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critical curves of type 3. Hence, the number of type 2 and type 3 curves is O(n).

In the general case of arbitrary polygonal obstacles, the number of type 4 curves is
O(n?) since each pair of corners may define such a curve. The same number applies to
type 5 curves since each pair of one edge and one (convex) corner may induce such a curve.
As a result, the total number of critical curves is O(n?). Each curve possibly intersects
any other curve, so that there can be up to O(n*) critical curve intersections, and, hence,
O(n*) critical curve sections.

Things change if we assume the obstacles to be k-fat. Let us first observe one important

property of all critical curves. The property follows from the definitions of the critical
curves.

Property 7.1 Each point on a critical curve is less than the length dg of the ladder away
from the obstacle features (corners, edges) that define this curve.

Another important tool in the analysis of the “fat” case is the following generalization of
Lemma 6.1.

Lemma 7.2 Let & C R? be a set of k-fat polygonal obstacles. Let Epin © € be the
obstacle with the smallest enclosing circle; the diameter of this circle is assumed to be
doin. Furthermore, let ¢,¢’ > 0 be two constants. If the diameter dg of the robot is at
most b+ d i then the number of obstacles E C R? having non-empty intersection with any
square region C with side length ¢ - duin +¢' - dp s bounded by a constant.

The number of critical curves of types 0-3 is obviously not influenced by the fatness
of the obstacles: O(n). Now let us consider the smallest obstacle E,.i.. We count the
number of type 4 and 5 curves with at least one of their defining features on Epin. Let
f1 be a feature of E,y. If this feature induces a type 4 or type 5 curve together with
some other feature f,, then f; must be less than a distance dg away from f;, because the
curve is defined by the positions of B’s reference point, while B moves in simultaneous
contact with both f; and f;. Moreover, such a feature f will have non-empty intersection
with a square region C with side length dmin + 2dp, that is obtained by first taking a
square region with side length dpin enclosing E,.n and subsequently pushing the sides
outward by a distance dg (see Figure 5). Lemma 7.2 with ¢ =1 and ¢ = 2 shows that the
number of obstacles with non-empty intersection with C is bounded by a constant. Since
all obstacles have constant complexity, the number of obstacle features in C is constant,
and, hence, the number of candidates for f; is bounded by a constant. The number of
type 4 or type 5 curves induced by a feature f; is therefore bounded by a constant. The
constant complexity of obstacle E,, then guarantees that the number of type 4 or type
5 curves involving Enin is constant. Repeating these arguments for every next smallest
obstacle, results in an overall O(n) number of type 4 and type 5 curves. Adding all the
linear numbers of different critical curves, we obtain Lemma 7.3.

Lemma 7.3 The number of critical curves in the workspace of a ladder moving amidst
k-fat obstacles is O(n).
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Figure 5: The square region C obtained by first taking a square region with side length

dpmin (the diameter of Enin) and subsequently enlarging this square region by a distance
ds .

Let 8 be a critical curve that is induced by at least one of the features f; of Ein. The
distance from f; to a possible intersection point p of 8 with some other critical curve B is
at most dg by Property 7.1. Let F be the set of features defining 4'. Again by Property
7.1, the distance from p to all f, € F is bounded by dg. The distance from feature f; to all
f; € F is at most 2dg. Moreover, these features f, will have non-empty intersection with
a square region C with side length dmiy + 4ds, that is obtained by first taking a square
region with side length dpin enclosing Epin and subsequently pushing the sides outward
by a distance 2dg. Lemma 7.2 with ¢ = 1 and ¢/ = 4 and the constant complexity of
the obstacles establish that the number of possible sets F' is bounded by a constant, and,
hence, the number of critical curves 3’ intersecting 3. Since all critical curves are algebraic -
and of low degree, i the number of intersection points on f is bounded by a constant.
Repeating these arguments for each of the critical curves induced by FE,,;, and then for
each next smallest obstacle, yields the result stated in Lemma 7.4 and Corollary 7.5.

Lemma 7.4 The number of critical curve intersections in the workspace of a ladder moving
amidst k-fat obstacles is O(n).

Corollary 7.5 The number of critical curve sections in the workspace of a ladder moving
amidst k-fat obstacles is O(n).
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In the introductory part of this section, we have explained that the number of connec-
tivity graph nodes added by the critical curve section 3 equals the number of cells induced
by the region left(8) plus the number of cells induced by the region right(83). If 3 is a type
0 curve, only one of the two regions is noncritical, in all other cases both regions will be
noncritical. A region that is not noncritical will induce no connectivity graph nodes.

We analyze the number of cells induced by a single noncritical region R. In Schwartz
and Sharir’s method, each pair [sq, s3] € o(R) defines a cell. Hence, the number of cells
induced by a noncritical region R is determined by the number of pairs in o(R). Each pair
in o(R) on its turn, consists of two different contact placements for B with its endpoint P
fixed at some point in R. The number of cells induced by R is therefore also determined
by the number of different contact placements for B when we fix its endpoint P at some
point (z,y) in R and vary its orientation 6. In the case of general polygonal obstacles, we
can easily construct examples where the robot can touch any of the O(n) obstacle features,
each at a different orientation . A noncritical region R can therefore result in O(n) cells.
Since the number of noncritical regions is O(n*), we obtain a total number of O(n®) cells.
As before, things are different in our fat setting. It is easy to see that an obstacle feature
f touched by B with P fixed at (z,y) in some contact position has non-empty intersection
with the square region C with side length 2dz and center (z,y) (the intersection point of
both diagonals). The region C with diameter 2dg centered at (x,y) € R satisfies again the
constraints of Lemma 7.2 (¢ = 0,¢ = 2). Hence, the number of obstacle features f that can
be touched by B with P fixed at (z,y) is bounded by a constant. Moreover, the number
of pairs in o(R) is bounded by a constant. This leads to the result stated in Lemma 7.6.

Lemma 7.6 Each noncritical region in the workspace of a robot moving amidst k-fat ob-
stacles induces only O(1) cells in the configuration space.

The result of Lemma 7.6 shows that each critical curve 8 adds at most twice a constant
number of nodes to the connectivity graph. By Lemma 7.5, we conclude that the total
number of nodes is O(n). The number of graph edges also turns out to be O(n). Let
N be a node added by a critical curve 3 and assume without loss of generality that N
corresponds to a cell induced by left(8). Then N can be adjacent to the nodes added by 3
and corresponding to cells induced by right(8), and to nodes that N is circularly connected
to and correspond to the same cell. By Lemma 7.6 the first set contains only a constant
number of nodes, whereas the second set contains at most two nodes. Hence, each cell is
adjacent to O(1) nodes, resulting in a total of O(n) graph edges.

Theorem 7.7 The connectivity graph corresponding to the cell decomposition of the free

space of a ladder moving amidst k-fat obstacles has O(n) nodes and edges.

7.2 Computing the cell decomposition

Although the complexity of the connectivity graph of the cell decomposition is O(n), a
straightforward application of Schwartz and Sharir’s method would result in O(n?) time
to compute the decomposition. This bound is due to three steps in the algorithm: a first
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step where all critical curves are computed, a second step where all critical curve sections
are computed, and a third step where all cells induced by a single noncritical region are
determined. The first step would make the algorithm run in 8(n?).

We have shown in the previous subsection that the number of type 4 and type 5 curves
is linear in the case of fat obstacles. Each of these curves is determined by two features.
We could naively try all possible pairs of features to find out which pairs generate a curve.
This strategy would require Q(n?) time to find the O(n) curves. Instead we should use the
knowledge that only two features that lie close enough to each other can define a curve.
Our approach is to start with the smallest obstacle En, and compute all critical curves
involving a feature f; of Ein. The analysis in the previous subsection shows that obstacles
supplying the second feature f; - such that fi and f, together define a type 4 or type 5
curve - have non-empty intersection with a square region C with side length dpin + 2dg,
obtained by growing an enclosing square of E,.;, by the robot’s diameter dg. If we first
compute this set of obstacles, then we are left with a constant number of candidates for f;.
From this constant size set, we can obviously compute the critical curves involving Epin
in constant time. The time required for computing these curves is therefore determined by
the time to find the set of candidates. After having computed the critical curves involving
Epnin, we forget obstacle E;, and repeat the procedure with the remaining obstacles.

The problem that we are now left with is the problem of finding for each obstacle E
all larger obstacles that have non-empty intersection with a square region C enclosing E.
The region C is not uniquely defined; it is obtained by taking any enclosing square of the
obstacle with diameter equal to the diameter of the obstacle and subsequently growing this
enclosing square in all directions by the diameter of the robot. The region C can have any
orientation, since the initial enclosing square can be chosen with any orientation. Finding
a solution to the problem is simplified if we choose all square regions to have the same
(axis-parallel) direction.

The axis-parallel square intersection problem can be solved using the following theorem
from [13].

Theorem 7.8 Given a set of n non-intersecting line segments in the plane, we can store
them using O(nlogn) storage such that those K segments visible in a given azis-parallel

square can be determined in O(K + log?n) time. The structure is dynamic and can be
updated in O(log? n) time.

Let Vg be the set of obstacles that are larger than F and have non-empty intersection
with the square region related to E. Our approach is the following. We order the, say
n, obstacles in £ by increasing size of their enclosing squares: Ej ... Ey, where E; is the
obstacle with the smallest enclosing square. Assume that we are given the data structure of
the theorem storing the boundary edges of the obstacles Eiy; ... E,,. We will now determine
the set Vg,, by first computing the square region C; related to E; (this is an axis-parallel
enclosing square of E; grown by the diameter dg of the robot). Then we can search with
the square region C; in the data structure containing the boundary edges of the obstacles
Eiy1...E, and find the constant number of intersecting obstacles (K = O(1) by Lemma
7.2) in O(log?n) time. Subsequently we add the constant number of boundary edges of
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obstacle E; to the data structure in O(log? n) time. Next, the entire procedure is repeated
for obstacle E;_;. Using this approach, we can determine all sets Vg (E C £) in time
O(nlog® n).

Having the sets Vg at our disposal, we can efficiently compute all critical curves. We
start with the smallest obstacle E,n;» and compute all critical curves involving a feature f;
of E,in. If such a critical curve involves a second feature fz, then f, will be feature of one
the members of Vg, . The constant size of all the sets V¢ guarantees that, if we repeat this
procedure for every next smallest obstacle, the total number of feature pairs considered is
O(n), and therefore equal to the number of critical curves (Lemma 7.3). The most time
consuming part so far is the computation of the sets Vi, taking overall O(nlog®n) time.

After having computed the critical curves, we encounter a similar problem when we
compute the curve intersections (and the resulting critical curve sections). We could naively
take each critical curve and intersect it with all other critical curves, but this would require
O(n?) computations to find only O(n) intersections. Instead we should use the knowledge
that the features that define two intersecting curves must lie close enough to each other,
i.e., less than 2ds apart. Again we start with the smallest obstacle E,;, and compute
all critical curves A’ intersecting a critical curve f induced by at least one feature f of
Epnin. The set of features F' defining 8 must have non-empty intersection with the region
C obtained by taking an enclosing square of E,,;, and growing it by 2ds. Applying the
same ideas as above for these (larger) boxes results in a sequence of constant size sets Vg
that can be obtained in O(nlog®n) time. With these sets we can find all critical curve
intersections, and, hence, all critical curve sections, in linear time.

For each of the O(n) critical curve sections 3, we have to compute o(left(5)) and
o(right(B)). Computing o(left(B)) is done by taking a point (z,y) € left(B), fixing the
robot’s endpoint P at (x,y), and reporting all features that can be touched by B and
the orientations in which they are touched. We could naively try all n features, but then
it would require O(n?) to find all connectivity graph nodes. Instead we should use the
knowledge that a feature that can be touched by B with P fixed at (z,y), must lie close
to (z,y). Such a feature obviously has non-empty intersection with the the axis-parallel
region C with (z,y) as its center (intersection point of its diagonals) and side length 2dg.
The (simpler) approach we use this time is slightly different from the one we used in the
preceding two steps: we do not need the dynamic aspects of the data structure now, since
we query with O(n) squares with equal side lengths 2dz. We build the data structure
for all obstacles in O(nlog®n) time, and then query for each critical curve section 3 with
the squares induced by a point (z,y) € left(8) and a point (x',y") € right(8). The query
time is again O(log?n). Both queries yield a constant size set of features by Lemma 7.2.
From these sets we can obviously compute o(left(3)) and o(right(f)) in constant time,
and therefore also the connectivity graph nodes defined by A. Finding the adjacencies
of these nodes takes constant time as well. Repeating the process for all critical curve
sections A results in O(nlog® n) computation time for finding all connectivity graph nodes.
Additional O(n) computation time for circularly linking the nodes corresponding to the
same cell (using the ordering by outgoing tangential direction of all curves incident at
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a single intersection point), guarantees that all connectivity graph edges are found in
O(nlog? n) time as well.

The description of the algorithm given above is certainly not complete in the sense that
is makes implementation of the algorithm trivial. A few minor details are not explained,
e.g. finding a point (z,y) in a region left(B) or right(8). These details, however, are not too
difficult to fill in and do certainly not influence the time complexity of the entire algorithm.

Combining the complexity of each of the three steps mentioned above results in an
O(nlog? n) algorithm for computing the connectivity graph for the cell decomposition of
the free space of a not too long robot moving amidst k-fat obstacles. The algorithm presents
a considerable gain in in efficiency for fat motion planning compared to the original O(n®)
algorithm by Schwartz and Sharir.

8 Conclusion

In this paper we have shown that, under some realistic assumptions, the complexity of the
free space of a robot B moving amidst k-fat obstacles is linear. The assumptions include
constant complexity requirements for the robot and the obstacles, a lower bound on the
size of the smallest obstacle, and an upper bound on the diameter of the robot. In most
practical situations, all these constraints will be satisfied. The assumption on the size of
the smallest obstacle in fact only forbids point obstacles. The upper bound on the size of
the robot depends on the size of the smallest obstacle. It basically states that the robot
should not be too big compared to the obstacles. The constant complexity requirement and
an additional bound on the degree of the hypersurfaces defined by robot-obstacle contacts
can be translated into a requirement that the boundary of the obstacles and the robot
do not have a too complex shape. Both assumptions are common assumptions in motion
planning.

If an obstacle does not meet the complexity assumption, the linear complexity result
presented in this paper can still be applicable. First of all, it may very well be possible
to partition the obstacle into a constant number of sub-obstacles, such that each sub-
obstacles satisfies the complexity assumption for obstacles. After the partitioning, each
sub-obstacle is treated as a separate obstacle. If the complexity is too high to apply this
procedure, an adequate constant complexity outer approximation of the obstacle might
be found with a volume that is not too much larger than the volume of the obstacle
itself. If we can find such an outer approximation then we can do motion planning for this
approximation at the cost of a relatively small reduction of the number of solutions. A
constant complexity outer approximation is certainly superior to a simple approximation
like a minimal enclosing hypersphere with respect to minimizing the reduction of the
solution space. Similar procedures can be applied if the complexity of the robot is too
high.

The combinatorial result implies better bounds for motion planning algorithms with
a running time that is dependent on the complexity of the free space, like the algorithm
by Sifrony and Sharir [16] for planning the motion of a ladder in two-dimensional space.
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Another algorithm for planning the motion of a ladder in the plane is the well-known
O(n®) algorithm by Schwartz and Sharir [15]. It can be proven that the complexity of
their cell decomposition and the connectivity graph of this cell decomposition is linear
in the number of obstacle edges and corners. Although the complexity of Schwartz and
Sharir’s algorithm is not fully determined by the complexity of the free space we have shown
that we can modify the algorithm so that it computes the O(n) complexity connectivity
graph in O(nlog?n) time for a ladder moving amidst k-fat obstacles.
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