Drawing Planar Graphs Using the

Imc-ordering

Goos Kant

RUU-CS-92-33
October 1992

Utrecht University

f (2 Department of Computer Science
&~
TS \g) Padualaan 14, P.O. Box 80.089,

K5 N 3508 TB Utrecht, The Netherlands,
Tel. : ... + 31- 30 - 531454

Drawing Planar Graphs Using the

Imc-ordering

Goos Kant

Technical Report RUU-CS-92-33
October 1992

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 09243275

Drawing Planar Graphs Using the
Imc-ordering*

Goos Kant!
Dept. of Computer Science, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands

Abstract

We introduce a new method to optimize the required area, minimum angle
and number of bends of planar drawings of graphs on a grid. The main tool is
a new type of ordering on the vertices and faces of triconnected planar graphs.
With this method linear time and space algorithms can be designed for many
graph drawing problems.

® We show that every triconnected planar graph G can be drawn planar
on an (2n — 6) X (3n ~ 6) grid with minimum angle larger than 75
radians and at most 5n — 15 bends, with d the maximum degree.

¢ If G has maximum degree four (three), then G can be drawn orthogonal
with at most | 32| +3 (at most || +1) bends on an nx n grid (131x121
grid, respectively).

o Every triconnected planar graph G can be drawn convexly with straight
lines on an (2n — 4) X (n — 2) grid.

These results give in some cases considerable improvements over previous
results, and give new bounds in other cases. Several other results, e.g. con-
cerning visibility representations, are included.

1 Introduction

The problem of “nicely” drawing a graph in the plane has received increasing atten-
tion due to the large number of applications [9, 33]. Examples include VLSI layout,
algorithm animation, visual languages and CASE tools. Several criteria to obtain

*This work was supported by the ESPRIT Basic Research Actions program of the EC under
contract No. 4171 (project ALCOM II). An extended abstract of this paper was presented at the
33th Annual IEEE Symp. on Found. of Comp. Science, Pittsburgh, 1992.

'Email: goos@cs.ruu.nl

a high aesthetic quality have been established. Typically, vertices are represented
by distinct points in a line or plane, and are sometimes restricted to be grid points.
(Alternatively, vertices are sometimes represented by line segments [19, 27, 29, 35].)
Edges are often constrained to be drawn as straight lines [13, 11, 15, 29, 30] or as a
contiguous set of line segments [31, 32, 34, 36] (e.g., when bends are allowed). The
objective is to find a layout for a graph that optimizes some cost function, such as
area, minimum angle, number of bends, or satisfies some other constraint.

It is well-known ([11, 40]) that every planar graph can be drawn planar with
straight lines, and by recent algorithms ([6, 13, 15, 30]), this can be done in linear
time and space on a grid of size O(n) x O(n) (m and n denote the number of
edges and vertices of the graph, respectively.) Planar drawings require (n?) area
in the worst-case [13]. However, a drawback of all these drawing algorithms is
that the minimum angle between lines can be very small, which makes the drawing
unattractive. In [26] it was shown that every d-planar graph G can be drawn planar
such that the minimum angle is at least o radians, where 0 < a < 1 is a constant
(a d-planar graph is a planar graph of degree at most d) [31]. However, the proof
is non-constructive, ard the minimum angle is still quite small. On the other hand,
G can be drawn non-planar with straight lines such that the minimum angle is at
least (1) [12].

A lot of work has been done for the case that all angles are a multiple of 7 /2
[12, 31, 32, 34, 36]. These so-called orthogonal drawings have numerous important
applications in the field of VLSI-design and graphics [31]. Storer presented three
heuristic algorithms for minimizing the bends of 4-planar graphs [31]. Tamassia
& Tollis presented linear implementations of it [34]). The results are that every
biconnected 4-planar (3-planar) graph can be drawn orthogonal and planar on a
grid of size at most . x n such that there are at most 2n + 4 (at most n + 2)
bends [31, 34]. (Biccnnectivity (triconnectivity) means that deleting any vertex
(two vertices) preserves the connectivity.) This bound is tight for biconnected 4-
planar graphs [36]. Tamassia also presented an O(n?log n) exact algorithm to draw
every embedded 4-planar graph on an n x n grid with a minimum number of bends
[32]. An embedding means that the edges around each vertex are given in clockwise
order with respect to a planar drawing.

In [38], Tutte showed that every triconnected planar graph can be drawn with
straight lines such that every interior face is convex (a so-called conves drawing).
This criteria is quite essential for the readability of this class of planar graphs, and
has therefore gained a lot of interest [4, 37, 38, 39]. Thomassen [37] characterized the
class of planar graphs with admit a convex drawing, and Chiba et al. [4] presented
a linear drawing algorithm for it. However, the coordinates of the vertices can be
reals.

A lot of these drawing algorithms are based on the so-called st-ordering of bi-
connected planar graphe [29, 34]. The st-ordering, invented originally in [9] as a
first step for testing plavarity [24, 2], has also nice features for the dual graph and
for visibility representations [29]. Very recent research established that using the

2

| max. degr_ee_l tric. | grid angle bends reference

[d 1o [(2n—6)x(3n—6) | 1/(d—2) | 5n — 15 | this paper
4 yes nxn /2 [22] + 3 | this paper

no nxn T[2 2n+ 4 (31, 34]
3 no 51 x [2] /2 2] +1 | this paper

no nXxn /2 n+2 (31, 34]

Figure 1: Summary of important results with bends.

st-ordering, a new and simple characterization of planar graphs can be given [28].

In this paper we introduce a new ordering on the vertices and faces of a tricon-
nected planar graph. We call this ordering the leftmost canonical ordering, or the
Imc-ordering. It generalizes the orderings in [13, 21, 23]. Every Imc-ordering is also
an st-ordering and has direct consequences for the Imc-ordering of the dual graph.
Using special techniques an Imc-ordering can be obtained in linear time and space.
This leads to a general framework for drawing triconnected d-planar graphs G on a
grid, and implies several further results.

We show that every triconnected planar graph G can be drawn planar with at
most 5n — 15 bends on an (2n — 6) x (3n — 6) grid with minimum angle > ;1.
radians, with vertices and bends placed on grid points. This seems to be the first
practical drawing algorithm, having good bounds on the grid size, number of bends,
and on the minimum angle for general planar graphs (see section 7 for the extension
to general planar graphs). On the negative side, we prove the following theorem
(proof can be found in the appendix):

Theorem 1.1 Deciding whether a biconnected planar graph can be drawn planar
with straight lines with minimum angle > K is NP-hard.

If G is triconnected and 4-planar, then G can be drawn with at most 12n] +3
bends on an n X n grid. This improves the best known bound of 2n + 4 considerably
in the triconnected case. For any 3-planar graph G we show that G can be drawn
with at most [%] +1 bends on an [3] x [2] grid. A nice characteristic is that G has
a spanning tree using n — 1 straight-line edges, and all non-tree edges have at most
1 bend. These bounds match the lower bounds and improve the best bound on the
grid size by a factor 4 and the best bound on the number of bends by a factor 2
[31, 34]. For clarity, figure 1 summarizes the results.

We also show that the planar straight-line grid drawing algorithm of De Frays-
seix, Pach & Pollack [13] can be implemented in linear time. (In [6] an alternative
linear implementation is described, where the planar graph must be triangulated.)
For our algorithm, it is sufficient that the input graph is triconnected instead of
triangulated. In particular we show that, using the Imc-ordering, all interior faces
can be made convex. This result outperforms the algorithms of [4, 39] and is not

3

only of theoretical interest, but also leads to more pleasing pictures (see figure 12).
This also gives a new and rather simple proof that every triconnected planar graph
admits a convex planar drawing.

We can also use the Imc-ordering to construct visibility representations of a d-
planar graph G on a grid of size at most (2n —5) x (n —1), which drawings seems to
be more compact than the drawings of the existing algorithms [19, 27, 29] (see figure
14). All algorithms mentioned above can be implemented to run in linear time and
space.

The paper is organized as follows: in section 2 we introduce the Imc-ordering, the
general drawing framework and some definitions. In section 3 we show how to use
this algorithm for drawing d-planar graphs in the grid with minimum angle > -
In section 4 we inspect the orthogonal drawings of triconnected 4-planar graphs.
In section 5 we present the results of orthogonal drawings of 3-planar graphs. In
section 6 we present the algorithm for the convex drawings. In section 7 we present
extensions, combinatorial aspects and optimizations. Section 8 contains some final
remarks and open questions.

2 The general framework

In this section we introduce the leftmost canonical (Imc—) ordering for triconnected
planar graphs, which will be used in various ways to get better planar drawing
algorithms. Let an embedding of a triconnected planar graph G be given. (Such
an embedding is unique for triconnected planar graphs, and can be constructed in
linear time [3].) We first introduce the canonical ordering for G. This ordering
generalizes the orderings described in [13, 21, 23]. G denotes the subgraph of G,
induced on the vertices vy, ..., v;.

Theorem 2.1 The vertices of a triconnected planar graph G can be ordered in a
Sequence vy, ..., vn such that v; and v, are neighbors of v; and share a common face,
and for every k,k > 3:

1. either vy is in the exterior face of Gy and has at least two neighbors in Gi-1,
which are on the outerface of Gx—y. v has at least one neighbor in G — Gy.
G ts biconnected,

2. or there exists an | > 1 such that v,...,vep 8 a chain in the exterior face
of Gr41 and has ezactly two neighbors in Gi_y, which are on the outerface of
Gi-1. Every vertez vi,...,vy has at least one neighbor in G — Giyi. Giyy s
biconnected.

Proof: The vertices vn,vn-1,...,vs will be defined by reverse induction. Let an
embedding of G with un arbitrary outerface be given. Let vy, v; and v, be arbitrary
vertices of the outerface, with v; and v, neighbors of v;. Let G,_; denote the

4

subgraph of G after deleting v,,. By triconnectivity of G, the outerface C,_; of G,_;
is a cycle.

Let 7 < n be fixed, and assume that v, has already been determined for every
k > ¢ such that the subgraph Gy induced by V(G)\{vk41,...,vn} satisfies the
conditions of theorem 2.1. Let C; denote the boundary of the exterior face of G;.
Notice that by this construction, if there are vertices v € G; of degree 2, then v € C;.
Notice also that by triconnectivity of G, there are at least 3 vertices ca, ¢, ¢, € C;,
having edges to vertices in G — G;.

Assume first that C; has no interior chords. If there is a maximal chain P of
vertices Ca,,...,Cay (@2 2) of degree 2 on C;, then we take P as the next chain
in our ordering, if vi,v3 € P. If this is not the case, then all vertices v of C; have
deg(v) > 3, except one possible chain of vertices cq, ;- .. ,Cay (a2 > 1) of degree
2, with v1,v; € {cay-1,...,Caz4+1}. At least one vertex of c,,cg,c,, 5ay cq, is N0
element of {ca,~1,...,Cay41}, because this would imply that G — {cay—1,Cagt1} is
not connected. co # v1,v3, deg(c,) > 3 and ¢, & P (if there is a maximal chain P
with vy, v; € P). Hence we take ¢, as the next vertex in our ordering.

Assume finally that C; has interior chords. Let (c,,¢),b > a+1 be a chord such
that b — a is minimal. Let also (c4,c.) be a chord with e > d > b such that e — d
is minimal. (When there is no such chord then (c;,) = (c4,¢.) and we number
the vertices in clockwise order around C; such that a =1 <b=d<e=n+1.)
By triconnectivity of G, there are vertices ca,cs, @ < a@ < b,d < f < e on C;,
having edges to vertices, deleted in a step j > i. co and cg are not adjacent and by
planarity, have no internal chords. Assume w.l.o.g. that vy, vs & {Cag1,...,0-1}. If
deg(ca) = 2, then we con take a maximal chain P of vertices cq,,...,Cq, of degree
2 (with ¢ € P, and ¢ < oy € a3 < b) as the next chain P in our ordering,
otherwise we take ¢, as the next vertex in our ordering. It can easily be verified
that G; — {cay,---,Cay}, if we take chain P, or G; — {ca}, if we take vertex cq,
satisfies the constraints of theorem 2.1.]

This means that starting with an edge (v1,v;) one can add in every step either
a vertex vx or a face {which is implied by the chain wvg,...,vi4; and the involved
vertices of Gx_1). We call this face Fy.

Theorem 2.2 The canonical ordering can be computed in linear time and space.

Proof: Let an embedding of the triconnected planar graph G be given. We
store for each vertex v and face F an edge-list, which is a circular list of edges, in
clockwise order of visiting them around each vertex or face. We store for each vertex
v and face F a variable interval, which can have the value (a), which means: not
yet visited, (b), which means: visited once, or (i), which means: visited twice or
more and the visited edges form : intervals in the edge-list of this vertex or face
(see also [13] for this idea). Every vertex v has a counter chords, denoting the
number of incident chords of v. We take an arbitrary face as outerface. Let us

call this F,,; during the algorithm. Assign v; with neighbors v; and v, on Fo.
For each edge e on F,, let F' be the other face, where ¢ belongs to. We mark
e in edge-list(F') and update interval(F’) (if e # (v1,v3)). Updating the variable
interval(F'), when visiting e = (v,v’) is done as follows: if interval(F') = (a), then
interval(F') becomes (b). If interval(F') = (b), and e is adjacent to the visited edge
in edge-list(F'), then interval(F') becomes (1), else it becomes (2). Finally assume
that interval(F') = j,(j = 1). If the two adjacent edges of e are visited in edge-
list(F'), then interval(F') becomes (j —1). If none of these two edges is visited, then
interval(F') becomes (j + 1), otherwise tnterval(F') remains unchanged. Analog
follows for updating interval(v). It is clear that interval(F’) means that the edges
already visited and incident to F' are composed of j intervals in the circular order
of edges at F'.

We now delete vertex v,. For each neighbor v’ of v,, we mark edge (v,,v’) in
edge-list(v') as being visited and update interval(v’). For each edge ¢/, which becomes
part of F,y, we mark €’ in edge-list(F') as being visited and update interval(F'),
with F’ the other face, where ¢’ belongs to. For each vertex v, which becomes part
of Fou now, we count the neighbors of v, which are part of F,,; as well. Except
two edges, neighbors of v on Foy, these are chords, incident to v, and chords(v) is
initialized accordingly. If v has a chord to v’, then we also increase chords(v’) by
one.
In each step we delete either a vertex or a face. A face F with interval(F) = (1)
can be the next face in the ordering, otherwise a vertex v (unequal to v; and v,)
with interval(v) = (b) or (1) and chords(v) = 0. (Such a vertex or face exists by
theorem 2.1.) When we delete a vertex v or face F, then we update the variables
in the same way as when deleting v,: we update interval(v'), if v’ is a neighbor
of v, or if v’ is one oi the two neighbors of the new chain P, implied by F. We
also visit all edges ¢’ and vertices v’, which become part of F,y in this step. We
update interval(F') and chords(v’) as described above. Notice that if the deleted
vertex v had exactly two neighbors, v, and v, and there was an edge (v,,v3), then
(va,vs) was a chord, which disappears now, i.e., chords(v,) and chords(vy) must be
decreased by one. Also when we delete a face F, i.e., we delete a chain wy, ..., Wy,
and there was an edge (w},w,) between the neighbors w} of w; and w), of w,, then
(w},w,) was a chord as well, and disappears now.

Computing chords(v) requires O(deg(v)) time, when v becomes part of F,..
When edge e becomes part of Fou, we only have to update interval(F’), which can
be done in constant time. Deleting a vertex or face can be done constant in the
number of deleted edges. Since ¥ deg(v) = 2m, and m = O(n), this yields a linear
time and space algorithm. o

Let there be K stegs total, in which we add either a vertex v or a face Fj,
implied by the added vertices w,,...,w,. In step 1 and 2 we add vertex v, and v,
and in step K vertex v, is added. We call the added vertices in step k new; the
vertices € Gy, are caded old. Let Cy_; : vy = ¢;,¢3,¢3,...,¢ = v; be the outerface

Figure 2: The Imc-ordering.

of Gy_1, and assume w.l.o.g. that v, is drawn most left and v; is drawn most right.
When adding a face F} or vertex vg, let ¢; and c; be two adjacent vertices of v (of
Fi) on Gi_1, with ¢ and j as small and as big as possible, respectively. We call ¢; the
leftpoint and c; the rightpoint of vy or Fi. The other adjacent vertices ¢ (i < I < j)
of v on Ci_; are called internal vertices. All these edges to v; are called incoming
edges of v, the other edges of vy are called the outgoing edges of vi. inc(v;) and
out(vg) denote the number of incoming and outgoing edges of vy, respectively. As a
concequence, every vertex has at most one internal outgoing edge.

The general idea is to place the vertices in such a way on the grid that for a
vertex vy, the direction for the incoming edges of v, is horizontal or downwards.
Moreover, we want to maintain the invariant z(c;) < z(¢c3) < -+ < z(¢,) during
each step of the drawing algorithm, hence when adding vx or Fi, maybe c;,...,c,
must be “shifted to the right”. Of course, also several vertices, not on the outerface,
must be shifted to the right as well. Updating all these distances in every step will
take us too much time. Therefore, we use lazy evaluation: we compute the exact
coordinates of a vertex only when we need them. This means that only the exact
coordinates of the vertices on the outerface are essential during the insertions. As a
first step, we refine the canonical ordering to the leftmost canonical ordering, which
we will call the Imc-ordering from now on. (In section 7.3.1 it is described how to
compute the coordinates of the drawing without refining the canonical ordering to
the Imc-ordering, by applying Chrobak & Payne’s drawing technique [6].)

Definition 2.1 A canonical ordering is a leftmost canonical ordering if at any step
k, if v; (or face F;) has rightpoint c, and v; (or face F;) has leftpoint cg (co and
cg € Ci-1), with a < B, then k < ¢ < j (or if vi,...,Visa and vj,... V4 are the
new vertices of F; and Fj, resp., thenk <i+a < j).

This means that at any step k during the canonical ordering, when we can add
both v; (or F;) and v; (or Fj), then we take this vertex or face, for which the

7

rightpoint ¢ is minimal with respect to I. The algorithm for computing the Imc-
ordering is as follows: assume that every vertex v; and face F; in the Imc-ordering
has pointers to its rightpoint. We maintain a stack OS of vertices on the outerface
from left to right, and we test whether vertex c; is the rightpoint of a vertex or face,
which can be inserted, with ¢; the top element of OS. Every time we pop vertices
¢; from OS, until we have a vertex c; on top of OS, for which the consecutive edge
of (cj_1,¢;) in edge-list(c;), say (c;j,v), has rightpoint(v) = c;. Vertex v or face F (if
v belongs to a chain of new vertices wy, ..., wp) is the next one in our ordering. We
add v or wp,...,w; (in this order) to OS.

Theorem 2.3 Given a canonical ordering, this algorithm computes in linear time
an Imc-ordering.

Proof: Suppose that this algorithm does not compute an Imc-ordering, i.e., at
a step k, instead of a vertex v; (or face F;) with rightpoint c,, a vertex v; (or face
F;) with leftpoint cg, 8 > @, is inserted. Inspect the moment that c, is deleted from
OS. Then the consecutive edge of (ca—1,Cq) in edge-list(c,) has endpoint v;, with
rightpoint(v;) = co. Hence v; (or F;) can be inserted, which is a contradiction.

Only new vertices will be added to OS, hence every vertex will exactly once be

on OS. Since every test can be done in constant time, this yields a linear time
algorithm. o

In figure 2 an example of the Imc-ordering is given, which will serve as an example
for all drawing algorithms in this paper.

In the drawing algcrithms, we distinguish the insertcoordinates of v (when we in-
sert vi by the Imc-ordering), and the endcoordinates of vy (in the complete drawing).
We introduce a boolean variable correci(v), denoting whether z(v), with v € Cy, is
recalculated. shift(c;) denotes the value, which must be added to all z(cx),j < k < r.
When we insert v, we set correct(v) to false and shift(v) to zero. When adding a
vertex v or face F, we walk on the outerface towards ¢; until we find the first true
marked correct(c,). Let ¢; be the rightpoint of v or F. We walk from c, to c;. When
visiting g (a < B < j), we add Lo shift(ck) to z(cg) and set correct(cg) to true,
since z(cg) is recalculated. We add Y, cr<; shift(ck) to shift(c;). This approach is

correct by the following three lemmas:
Lemma 2.4 All vertices cg, a < 8 < r, have correct(cg) false.

Proof: Suppose not. Inspect the first time that a vertex ¢, on the outerface
has correct(c,) = false and correct(c,+1) = true. correct(cy41) is true means that in
a step k', we updated z{c,+1) and correct(c,41), due to the insertion of a vertex or
face with leftpoint ¢;,+ > v + 1. But correct(c,) is false means that in a step k > k'
we added a vertex or face with rightpoint ¢,. This contradicts with the definition
of the Imc-ordering. a

Lemma 2.5 j > a holds for rightpoint c;.

Proof: Suppose not. correct(c,) = true means that in a step k' < k, we
updated z(c,), due to the insertion of a vertex or face with leftpoint ¢;,i > a.
Adding a vertex v (or a face Fi) with rightpoint c; in step k implies that ¢ >
holds. Since k' < k, this contradicts with the definition of the Imc-ordering. O

Lemma 2.6 The total time for visiting the false marked vertices and updating
shift(v), z(v) and correct(v) for all vertices is O(n).

Proof: When we insert a vertex or face in step k, with leftpoint ¢; and right-
point c;, extra time is required for walking towards ¢, to find the first true marked
correct(c,). All correct-values of the vertices c,,...,cj—1 are marked true after we
visit them. If in a step 1,1 > k, correct(cg),a < B < j— 1, becomes false again, then
a vertex (or face) with rightpoint ¢s is added, with 8 < i. Contradiction with the
Imc-ordering, hence every correct(cg) is at most once false and becomes true after
visiting cg again. Updating requires constant time, hence the total time for visiting
the false marked vertices and updating shiff(v), z(v) and correct(v) for all vertices
is O(n). o

These three lemmas show that we can compute the new coordinates of the
vertices on the outerface correctly, when we insert a vertex v; or face Fi. Let
P(v) = (Tinsert(v), Yimsert(v)) be the coordinates of v at the time of insertion of v.
Computing the final coordinates is done as follows: we visit all vertices and faces in
reverse lmc-order, and set initially shift(v) = O for every vertex v. When visiting
vertex v then (depending on the algorithms in the next sections) we assign shift(v)
to the shift of all its internal vertices and add at least shift(v) to its rightpoint. Then
we add shift(v) to Zinsert(v), leading to the final coordinates of v. All this work can
be done in linear time totally. We call this method the shift-method. This method
will serve as a general framework for planar graph drawings on a grid. The idea of
shifting vertices is widely used, e.g., in the grid drawing algorithm of Chrobak &
Payne [6]. This technique will be explained in section 7.3.1.

In the next sections we will fill in the details for the different classes of planar
graphs, which leads to several linear time algorithms and better (and sometimes

new) bounds for the number of bends, minimum angle and grid size, and for convex
drawings.

3 Drawing d-planar graphs

In this section we use the general framework, introduced in section 2, to draw
any triconnected d-planar graph G on an (2n — 6) x (3n — 6) grid such that there
are at most 57 — 15 bends and minimum angle > ﬁ radians. All vertices and

bendcoordinates will be placed on grid points only. Every edge will have at most 3
bends and length O(n). Let the Imc-ordering be given. Let out(v) = p, then we place
the p outgoing edges from v, say to wy,...,w, (in this order from left to nght), such
that they will go through the points (z(v) -5 +i-1,y(v)+[52]),1<i<p
We call these points the out-points of the corresponding edges. Let znc(v) P/, with
p' > 3, then we place the incoming edges to v, say from wy,...,wy (in this order
from left to right), such that they will go through the points (z(v) - 1552],y(v) -
i+1),ifl <i< [1'], through (z(v),y(v) — [2'—"—]), if i = [], and through
(z(v) + ["——] ,¥(v) — p'+1), otherwise. These points are called the inc-points of the
corresponding edges. See figure 3(a) for the corresponding drawing of the inc- and
outpoints. Every edge has one out-point and one inc-point, which can be connected
by a vertical and horizontal line, which gives one extra bend, hence at most 3 bends
in every edge. Every edge (u,v) has the form: from u to the next out-point of u,
then > 0 steps in vertical direction, then > 0 steps in horizontal direction to the
next inc-point of v, and then finally to v.

Vertex c; has out-point (z(c;) + [2252=1], y(c;) + [2#5)-17) and vertex ciy has
out-point (z(¢i41) — [3“—'-(&{*)"—] y(ci1) + fﬂt-(g'*—‘)'—l]) To preserve planarity, let
dicx (cey 1) = (2491 1 | 2465021 | then 2(ciyr) 2 2(c;) + i (ci,ci42) + 1 must
hold, if y(c;) = y(ci41). Otherwise assume y(ci+1) > y(c;) and, hence, there is an
outgoing edge from ¢; to ci41, thus x(c.-+1) > z(¢;) + dix(ci, ¢i41) must hold.

In Y-direction, let v have incoming edges from w,,...,w,. The out-points
of w; are on height y(w;) + [——-(ﬂ)——], and the mc-pomts of v; are on height

y(vs) — [2=37 thus y(va) > maxygigp{y(ws) + [2HZL2]} 4 [2ABI=3] mygt
hold. Notice that if ¥(w;) > y(wi-1), then y(w;) > y(wi-1) + [—(ﬂ‘—‘)—] holds.
Hence w; (1 < ¢ < p) has one outgoing edge or y(w;) < y(w..H) or y(w,) < y(wi-1)
holds. Let diy(vi) = max{l + ['m("‘)_a] |'°"‘('"‘) 1, I'M ©e)=11} then y(vx) >
max;<i<p{y(wi)} + diy(vi) must hold to preserve pla.nanty The complete algo-
rithm to compute the insertcoordinates is now as follows:

P(v) := (0,0); P(vy) := (dix(v1,v2),0);
for k:=3 to K do
update z(c;) and shift(c;);
assume we add w,...,w, from ¢; to c;, with p > 1;
if p=1: let u;,...,u, be the incoming edges of w;;
z(vx) := z-coordinate of last out-point of urg;;
y(ve) == ma.x1<,<,.{y(u,)} + diy (wn);
if p>1: y(wn) o=+ - 1= y(w,) ==max{y(a) + [2HP],y(;) + [*F)
() 1= 2(cs) + dix (w,)
z(wis) := z(wi) + 1 + dix(wi, wisa); (1 < i < p)
:hiﬂ(cj) := max{shift(c;), z(c;) + dix(ci, ¢;) — 1 + Lycigp(out(wi) +1) — z(cj)};
ro

10

In this algorithm only the coordinates of the vertices are given. The edges are
placed on the grid via the inc- and outpoints. For the out-points of v; we use two
pointers, say l; and rg. li starts at (z(ve) — [—-(3‘)"—j,y(vk) + [—(3*)'—]), and ry
starts at (z(ve) + [M'-;‘);—],y(vk) + [——(2‘)"—]) When a vertex v; is added with
leftpoint (rightpoint) vk, then edge (v, vi) goes via ry (via li) and z(ri) is decreased
by one (z(li) is increased by one, respectively).

The final coordinates are computed by visiting the vertices and faces in reverse
Imc-ordering, and computing and adding the corresponding shifts.

for all vertices v;, shift(v;) := 0;
for k := K downto 2 do
if p=1:let u,...,u, be the incoming edges of wy;(uy = ¢, u, = ¢;)
2(w1) := Tinsert(w1) + shift(wn);

shif(urg) := ... 1= shift(u,—1) :=
max{0, z(w1) — z(c) — shift(c;) — dix (e, w1)};
if p>1: 2(w;) 1= ... := Tinsert(wi) + Traci shift(w); (1 < ¢ < p);
shift(c;) := max{shift(c;), z(c;) — z(wp) — dix (wp, ¢;)};

rof

Let d be the maximum degree of all vertices. The maximum number of incoming
(outgoing) edges of all vertices is at most d—1 (at most d—2, resp.). Let wy, ..., w4—2
be the outgoing edges (in this order), then the smallest angle o is between the
outgoing edges to w4_3 and w4_y of vk, visiting the out-points (z(vx) + [%52] —

Ly(on) + [E2]) and (o(on) + (4571 o(on) + [521). Let k = [553], then' e =
§ —arctan(5) = arctan(zly 1)— BT — S 3@ 7(5?—‘17’"‘ > g5
which proves the follewing lemma:

Lemma 3.1 The smallest angle has size > 7.

Lemma 3.2 The gridsize is at most (2n — 6) x (3n — 6).

Proof: For the X-direction holds in every step that z(ciy1) = z(c;)+ 2251114
[""—'(‘iﬂl'—_l on the outerface, if y(ci41) # y(ci), and otherwise z(ciy1) = z(c) +
[M;—‘l—] + [—-(&g-*-)—'—'—J + 1. But if y(ciy1) = y(a), then (¢, ciy1) is not an out-
going edge of any vertex. Let us call (¢;,ci41) unmarked. Counting leads to a
horizontal distance of at most T, ¢icn [M(;‘)'l] + L““"‘;l)'lj + |unmarked edges| =
Yigicn(out(vi) —1) = 2n — 6.

Adding a vertex vy requires more increase in Y-direction per vertex than adding
a face, hence assume we add a vertex vy in every step. Let the incoming edges of
vertex vg come from u , ..., up, then y(vi) > maxi<icp{y(ui)} + max{1+ |'-'—"—°-(3‘-)'—]

[0"'(“‘) 11, [Wt("’) 11 holds The increase for every vertex v during the insertions

1With thanks to Maarten Pennings.

11

the out-points of ,,

the inc—points of

(a) Example of ino~ and out—points. (b) Drawing the graph of figure 2.

Figure 3: Drawing the graph of figure 2 with bends.

is at most 1 4 [Hmela)=3) 4 [ouin)=1] < [_ML;"’-IJ Summarizing this for all vertices
leads to a total distance in Y-direction of at most 3n — 6 units.]

Lemma 3.3 There are at most 5n — 15 bends. Every edge has at most 3 bends and
length O(n).

Proof: All outgoing edges of vertex v, except the one going straight upwards,
requires one bend in worst-case to go in vertical direction. We assign these bends to
the insertion step of v. Adding a face requires less bends per vertex than adding a
vertex, so assume we only add vertices vg. If inc(vi) = 2, and assume y(c¢;) > y(c;),
then there will come at most 1 bend in (c;, vx) and 2 bends in (c;, vx). In each edge,
one bend was already assigned to the insertion step of ¢; and c;, hence adding v
with inc(vi) = 2 requires at most one bend for the incoming edges. If inc(vi) > 3,
then at most 2 - inc(vi) — 4 extra bends are required for the incoming edges. Edge
(v1,v2) requires no bends. Counting this leads to totally at most 5n — 15 bends.
Every edge goes at most once vertical and once horizontal, hence requiring 3 bends
in worst-case and by lemma 3.2, has length O(n).]

Corollary 3.4 There is a linear time and space algorithm to draw a triconnected
d-planar graph planar on an (2n —6) x (3n — 6) grid with at most 5n — 15 bends and
mintmum angle > 3%5, where every edge has at most 8 bends and length O(n).

In figure 3(b) the drawing of the graph of figure 2 is given.

12

(a) the graph G ¢ (b) the graph G

Figure 4: Lowerbound of §(n — 1) + 3 bends.

4 Orthogonal Drawings of 4-Planar Graphs

In this section we consider the problem of drawing a triconnected 4-planar graph
G on a rectilinear grid with orthogonal edges, i.e., the edges are polygonal chains
of horizontal and vertical segments. The vertices are represented by points. This
problem has important applications in VLSI-design, and has received therefore a lot
of attention during the last years [31, 32, 34, 36]. Using a variant of theorem 2 of
[36], we can obtain the following lowerbound:

Theorem 4.1 There are embedded triconnected 4-planar graphs G, with 3n + 1
vertices and 6n + 1 edges, for which any layout requires at least 4n + 2 bends.

Proof: Consider the triconnected planar graph G, with 3n + 1 vertices, and
its layout in figure 4(a), which has 4n + 3 bends. Notice that there are no bends in
the edges between two white vertices. Deleting these edges and deleting the white
vertices of degree 2 while connecting the incident edges leads to a biconnected planar
graph G, with 2n + 2 vertices (see figure 4(b)). It is shown in corollary 4 in [36]
that the shown layout in figure 4(b) is best possible with respect to the minimum
number of bends, which is 4n + 2. If there was a layout for G,, with fewer than
4n + 2 bends, then there was a better layout of G/, with fewer than 4n + 2 bends,
which is a contradiction with corollary 4 of [36]. o

Let an Imc-ordering of G be given. deg(v) < 4, thus every vertex v has at most
2 outgoing edges. We introduce a variable mark(v;) for each vertex vy, which is
important when adding vi to Gx—1. If vy is the rightpoint of 2 vertices, or if vy is
the rightpoint of a vertex and has an internal outgoing edge, then we set mark(vi)
= left, otherwise we set mark(vi) = right. There are four directions to connect an
edge at v, viz., left, right, up and down of v, denoted by I(v),r(v),u(v) and d(v),
respectively. A direction is called free if there is no edge connected in that direction

13

of v yet. We add v to Gi—; such that d(vi) is not free in Gi. Let ¢; and c; be the
left- and rightpoint of vx. We connect (c;, vi) at r(c), if r(¢;) is free, otherwise at
u(c;), if u(c;) is free, osherwise at I(¢;). The opposite direction is followed for c;. We
want to add v such that when mark(vy) = left, I(vx) and u(ve) are both free after
addition, since this implies only a few bends. Similar we want to have both d(v:)
and r(vi) to be free, when mark(vy) = right. The algorithm, which tries to achieve
this as much as possible, can be described as follows:

edge (v1,v;) via d(vy) and d(vy);
fork:=2to K—-1do
o if we add v; with inc(vi) = {ai, a, ¢;} then
(ci,vx) via l(ve); (a,vk) via d(vk); (cj, ve) via r(ve);
o if we add v; with inc(vx) = {ci, ¢;} then
if mark(vi) = left or (I(c;) free and r(c;) not free) then
(vk, ¢;) via d(vi) and (vk,¢;) via r(vk)
else
(v, ¢;) via l(ve) and (vk,c;) via d(vi);
¢ if we add w,,...,w, (p > 1) from ¢; to c; then
if 7(c;) is free then (w, ¢;) via l(w,) else via d(w,);
forl:=2to pdo
if d(w;-;) is free then (w1, w;) via d(w;-1) else via r(w;_,);
if mark(w;) is left then (wi—,,w;) via d(w;) else via I(w;);
if I(¢c;) is free then
(wp-1,wp) via d(wp) and (wp, ¢;) via r(wp)
else
(wp-1,wp) via I(wp) and (wp, ¢;) via d(wp)
rof; '
edges from ¢;, cq, Cg, ¢j t0 v, Via u(v,), I(va), d(vs) and r(v,), resp.;

From these connections we have to come to a correct planar drawing, such that
if (vi,v;) goes via r(v;) and I(v;), then (v;,v;) is a straight line, i.e., z(v;) > z(v)
and y(v;) = y(vi). When (v;,v;) goes via u(v;) and [(v;), then one bend b must be
introduced at place P(b) = (z(v;),y(v;)) and z(b) < z(v;) and y(b) > y(v;) must
hold. (Similar when (v;,v;) goes via u(v;) and r(v;).) Finally, when (v;, v;) goes via
d(v;) and d(vj), then Z bends b; and b, are introduced. (Similar when (v;, v;) goes
via r(v;) and r(v;) or via l(v;) and {(v;).)

To calculate the coordinates of the vertices and bends we use instead of the
shift-method (which may also lead to a linear implementation) a new approach: We
define 2 directed graphs X and Y. Every time when we add a vertex v or face
Fi., we add all new vertices and bends as a node to both X and Y, and we add
some directed edges. A directed edge (v;,v;) in X (in Y') means that z(v;) < z(v;)
(y(vi) < y(vj), resp.) must hold. If (v;,v;) and (vj,v;) are both present in X (in
Y), then z(v;) = z(v;) (y(vi) = y(v;), resp.) must hold. When we add a vertex vy
or face Fi, then we know the free directions of the vertices on the outerface, hence

14

we know precisely where bends are required, and the involved (in)equalities. Since
G is planar, X and Y are planar as well and constructed during the Imc-ordering.
Afterwards we construct from X and Y two new directed acyclic graphs X’ and Y".
Every node V' in X’ (in Y”) corresponds with a set of nodes {v,,...,v} of X (of),
which must have the same z-coordinate (y-coordinate). A directed edge (V', V")
in X’ (in Y’) means that for every vertex v’ € V' and v” € V": z(v') < z(v")
(y(v") < y(v")) must hold. Since X and Y are planar, X’ and Y’ are planar as well,
and thus have only O(n) vertices and edges. We now want to compute a topological
ordering for the vertices of both X’ and Y’, whose numbering corresponds with the
coordinates in X- and Y-direction. X’ and Y’, however, need not to be a lattice,
i.e., there can be > 2 vertices initially in X’ (in Y”’) without incoming or outgoing
edges.

More precisely, this happens only when we have edges with 2 bends. E.g., as-
sume edge (v;,v;) goes via r(v;) and r(v;), hence via 2 bends, b; and b;, then the
corresponding node V' in X', with b,,b; € V', has no outgoing edges. Using an
arbitrary topological ordering may lead to a numbering with V’ numbered maximal,
which give bends in (v;, v;) in the orthogonal drawing of G (see figure 5(a)). Similar
when (v;,v;) goes via I(v;) and {(v;), then node V'’ in X', with b;,b; € V' has no
incoming edge. Wher. (v;,v;) goes via d(v;) and d(v;), then node V' in Y’, with
by, b, € V/, has no incoming edge.

Let us call the 2 bends in an edge (v;, v;), going from r(v;) to r(v;) rightbends.
Correspondingly leftbends and downbends are defined. We now visit all faces F' of
G. Let by,...,b, be the rightbends of F (in this order), belonging to different edges
(see figure 5(a)). Let by be adjacent to v; € F, and let there be a directed edge
(Vi, V) in X', such that v; € V; and v} € V with v € F. Similar let b, be adjacent
to v; € F, and let there be a directed edge (V;,V]) in X', such that v; € V; and
v; € V] with v} € F. We add edges (ba;bas1) and (bat1,00) to X (1 < a < 1),
and we add the edges (b1, v]) and (b,,v}) to X (see figure 5(b)). Adding these edges
has the effect that all rightbends will have the same z-coordinate, which is smaller
than all remaining z-coordinates of these vertices in F, having no path to or from
bi,...,b.—1 in X (see figure 5(c)).

We apply the same method to the leftbends and downbends in each face, and
update X’ and Y’. We compute a topological ordering for X’ and Y’. We start
with this node of X', containing a bend of (v;,v,), and this node of Y’, containing
a bend of (v1,v;). Let V;/ and V}” denote the topological ordering of the vertices of
X’ and Y’, then vertex v, € V; and v, € V]’ has coordinates P(vs) = (i,7). One
easily verifies the following result (see also figure 5).

Lemma 4.2 The topological ordering of X' and Y' corresponds with a planar or-
thogonal drawing of G.

Lemma 4.3 The number of bends is at most L%n] + 3. Every edge has at most 8
bends.

15

Figure 5: Adding extra edges to maintain planarity.

Proof: Assume first that we add p vertices wy,...,w, from ¢; to ¢;. For each
vertex w; we use its d{w;) connection and either I(w;) or r(w;). Using d(w;) always
implies one extra bend in the corresponding edge (1 < i < p). Using l(w;) or r(w;)
implies no extra bends. If the edge (c;, w;) goes via u(¢;) and d(w,), then one extra
bend is required for the outgoing edge via I(c;) when mark(w,) = right. Similar
when edge (cj, w,) goes via u(c;) and d(w,) and mark(w,) = left. This gives at most
p bends when adding a face Fj with p new vertices.

When we add one vertex, vi, then it easily follows by case analysis that this
implies at most 2 bends if inc(vg) = 3. If inc(vx) = 2, then in at most one incoming
edge a bend is required. If mark(vy) = left and r(c;) and u(c;) are both free, then the
connections [(vx) and d(vi) are used, hence this gives 1 extra bend for the outgoing
edge of vx via r(vi). Similar when mark(vi) = right and u(c;) and I(c;) are free. In
both cases we assign the cost of this extra bend to the insertion step of vx. Adding
v, implies at most 4 bends. mark(v,) = right, but v, has 3 outgoing edges (except
the edge to v, via d(v1)), hence we use I(v,), which requires one extra bend, which
we assign to the insertion step of v;. Similar for using r(vs), hence starting with
(v1,v2) implies 4 bends. Summarizing this leads to the following table:

step # vertices | # edges | # bends
Vg, tnc(vg) = 2 1 2 1
Uk, tnc(vg) = 3 1 3 2
face Fy, p p+1 P

Notice that every vertex v has deg(v) < 4, thus m < 2n. Hence adding a vertex v
with inc(vk) = 3 occurs at most [3]—2 times. This leads to a total of n+| 22|43 <

16

|2n| + 3 bends. (v1,v,) has at most 3 bends, all other edges have at most 2 bends.
O

Lemma 4.4 The gridsize is at most n X n.

Proof: Inspect again the increase in X- and Y-direction, when adding the
vertices and faces. When we add p vertices, then it follows that the increase in
Y-direction is at most p. In X-direction the distance between z(w;_1) and z(wy) is
1 (1 <1 < p). The distance between z(wp—;) and z(w,) can be > 1, but this implies
z(¢;) —z(¢;) > p—1, hence this gives no increase in X-direction. Notice that (c;, w;)
is either horizontal or vertical. If (¢;, wy) is horizontal, then this means an increase
in X-direction; if (¢;,w;) is vertical and mark(w,) = right, then one outgoing edge
of w, will go via I(w,), hence this means also an increase in X-direction later. We
assign this to the insertion step. Similar holds for (wp,c;). Since z(c;) > z(ci) +1
holds initially, we have a total increase in X-direction of at most p units.

Consider the case of adding v with inc(vg) = 2. In X-direction the increase is at
most 1, due to the fact that one extra bend might be necessary for an outgoing edge
of vg. The increase in Y-direction is at most 1. If inc(vi) = 3, then the increase in
X-direction is 0 and tae increase in Y-direction is 1.

For (v, v3) we have outgoing edges via l(v,) and r(v;). We assign the correspond-
ing increase in X-direction to the insertion step of (vy,v;). This means that starting
with (v1,v;) implies 3 units in X-direction and 1 unit in Y-direction. Adding v,
only implies 2 units in Y-direction. The steps 3,4,..., K — 1 give the following
increases in X- and Y-direction:

step # vertices | # X-dir. | # Y-dir.
Vg, tnc(v) = 2 1 1 1
Uk, inc(vg) = 3 1 0 1
face Fi p p P
This leads to a grid of size at most n x n. o

Corollary 4.5 There is a linear time and space algorithm to draw every tricon-
nected 4-planar graph G orthogonal on an nxn grid with at most n+|3(m—n)|+3 <
|3n] + 3 bends, in which every edge has at most three bends and length O(n).

In figure 6 an example is given of the graph G of figure 2, minus the edge (6,7).

17

9
8 |7
6 S |4
aQ 3 2
1

Figure 6: Orthogonal drawing of a 4-planar graph.

5 Orthogonal drawings of 3-planar graphs

5.1 Introduction

In this section we inspect the problem of drawing a 3-planar graph orthogonal on
a rectilinear grid. In [31], Storer inspected the problem of embedding a 3-planar
graph in the grid, and obtained the following negative result:

Theorem 5.1 There are $-planar graphs that require at least an § x 3 grid; there

are S-planar graphs that require at least 3 + 1 bends in any orthogonal grid drawing.

On the positive side he presented several polynomial-time heuristics to draw
a 3-planar graph with at most n bends. Tamassia [32] presented an O(n?logn)
algorithm that, given an embedded 3-planar graph, computes a drawing with a
minimum number of bends on an n X n grid. In [34], Tamassia & Tollis presented a
linear algorithm to draw every 3-planar graph with at most n+2 bends on an n xn
grid. In this section we present a linear time and space algorithm to draw every
3-planar graph with at most |3] + 1 bends on an [%] x [§] grid. This improves
all previous bounds and matches the worst-case lower bounds and, hence, is best

18

possible. An interesting side-effect is that there is a spanning tree using n — 1
straight-line edges. All m — n + 1 non-tree edges have at most one bend.

5.2 Triconnected 3-planar graphs

Assume first that G is triconnected. By Euler’s formulae, n is even, m = 3n and
f = 2+ 2. Let an Imc-ordering of G be given. Similar as in section 4 there are
four directions to connect an edge at v, viz., left, right, up and down of v, denoted
by I(v),r(v),u(v) and d(v), respectively. Every vertex v (except v;,v; and v,) has
one outgoing edge, and we connect this edge via u(v) at v. We start with placing
v; and vy at (0,1) and (1,1). edge (v1,v;) goes via d(v;1) and d(v;), hence via (0,0)
and (1,0). We place the first face on the horizontal line between v, and v, i.e., via
r(v1) and I(vy). When we add a face F, with vertices wy,...,w, from leftpoint c;
to rightpoint ¢;, then we place these vertices on the horizontal line on height 1 +
max{y(c),y(c;)}, with z(w;) = z(¢;), and if p > 1, we shift ¢; such that z(w,) =
z(c;). The connections inbetween go via d(w,), r(w1), I(wa), r(ws),. .., {(wp), d(wp).
The complete (and simple) algorithm can now be described as follows:

P(v1) := (0,1); P(v2) := (1,1);
fork:=3to K—-1do

assume we add Wy, .., Wy (p 2 1), from ¢; to c;;

y(wy) :=- - :=y(wp) := 1 + max{y(c;), y(c;) };

update z(¢;) and shift(c;); z(w1) := z(c);

if p > 1 then z(wp) := max{z(w1) + p — 1, z(¢;) + shift(c;)};

for l:=2top—1do z(w) :=z(w)+1-1;

shift(c;) = max{shift(c;), o(:) + p — 1 — 2(c;)}
rof;
P(vn) i= (a(r), 1 + max{y(c), y(c), y(es)}), where inc(v) = {6, 5
for k := K downte 2 do

assume we added w,,...,w, from ¢ to c¢;;

2(13) = Tinprt(105) + Tnyes shift(17); (1 < i < p)

if p = 1 then shift(c;) := shift(w;) else shift(c;) := z(wp) — Tingert(c;);
rof

Lemma 5.2 The number of bends is at most § + 2.

Proof: Since m = 2n, we add at most £ — 2 times a vertex v with inc(v) = 2,

each one introduces 1 bend. The edge (v, v;) introduces 2 bends, as well as adding
Uy 0

Lemma 5.3 The gridsize is at most § x .

19

Figure 7: Orthogonal drawing of a 3-planar graph.

Proof: Edge (v;,v;) gives 1 unit in X- and Y-direction. Then we add § — 1
times a face with p > 1 vertices, increasing the X-direction with at most p — 1 units
and the Y-direction (except the first time) by 1 unit. Adding v, increases the X-
direction by 1 unit. Counting this together leads to at most 2 units in X-direction
and § units in Y-direction. o

In figure 7(b), an example is given of a triconnected 3-planar graph from [21].
We can change the drawing as follows, such that there is one bend less, and there
is a spanning tree, using only straight-line edges (if n > 4). Let the vertices of the

first drawn face be numbered vy, v;, v;-1,. .., v3, v2. We place vy, v;,v;-1,...,v30n a
horizontal line, and place v; on (z(v3),y(vs) — 1). Let F' be the other face, where
(v2,v3) belong to. Let vj,...,vx be the other vertices of F'. We draw v;,...,v; on

a horizontal line on height y(vs), as shown in figure 7(c). The remaining faces are
drawn similar as before. Notice that using this strategy, every triconnected planar
graph G with n vertices can be drawn orthogonal on a grid of size at most % x (2—1),
with at most § + 1 bends, in which there is a spanning tree, using only straight-line
horizontal and vertical edges (if n > 4).

Finally we notice that better bounds can be obtained if the dual graph H of
G is a 4-connected planar graph in which the outerface is a quadrangle, and every
other face is a triangle. It has been shown by Bhasker & Sahni [1] that in this
case G can be drawn in linear time orthogonal such that there are at most 4 bends.
By a related canonical ordering for 4-connected planar graphs, and applying the
placement method of He [16], we can achieve the same orthogonal drawing in a very
simple way in linear time.

20

5.3 Arbitrary 3-planar graphs
5.3.1 Definitions

In this section we generalize the results of section 5.2 to arbitrary 3-planar graphs G
in the same way as described in [21]. We assume first that G is biconnected. We start
with some definitions with respect to triconnectivity, as described in [17]. If the pair
of vertices {v,4,v5} disconnects G then {v,,v} is called a separation pair. Let the
edges E of G be divided into equivalence classes E, Ey, ..., E,, and let E' = U5, E;
and E" = Ui, Bi. ¥ G, = (V(E'),E' U (a,})) and G; = (V(E"), E" U (a,b)),
then the graphs G, and G, are called the split graphs of G with respect to {v,, vs}.
Replacing a graph G by two split graphs is called splitting G. The new edges (vq4, v),
added to G; and G, are called virtual edges. Reassembling the two split graphs G
and G; into G is called merging. Merging is the inverse of splitting. Suppose a graph
G is split, the split graphs are split, and so on, until no more splits are possible (each
remaining graph is triconnected). The graphs constructed in this way are called split
components of G. The split components of a graph G are of three types: triple bonds
(i.e., a set of three multiple edges), triangles (i.e., a cycle consisting of three edges),
and triconnected graphs. The bonds and cycles are obtained from triple bonds and
triangles, respectively, by merging as far as possible. We call these bonds, cycles
and triconnected graphs the triconnected components of G. The split components
of a graph G are not necessarily unique, but the triconnected components of G are
unique. Suppose finally that {v,, v} is a separation pair of a graph G and that G is
split at {v,,vs}, the split graphs are split at {v,, v}, and so on, until no more splits
are possible at {vs,vs}. A graph constructed in this way is called an {v,,vs}-split
component of G if it has at least one real (i.e., non-virtual) edge.

Let the triconnected components of G be given. From these components we con-
struct a 2-subgraph tree T (as introduced in [22]?): for every triconnected component
Vi we create a node v; in T'. Let one node v,, not representing a bond or K, be the
root of T. Let these nodes v; be the children of v,, for which V; has at least one
edge in common with V,. Repeating this we make these nodes v} children of v;, for
which V has at least one edge in common with V}, etc. Notice that the triconnected
components, which are leaves of T', have exactly one virtual edge, which is between
its separation pair {v,,vs}. Every vertex has degree 2 or 3, hence the only bonds
which can occur are triple bonds. Every separation pair has 2 or 3 split compo-
nents. Every vertex v, of a separation pair {v,,vs} has degree 3 in G by definition.
If {va,vp} has 3 split components, then the components have one incident edge with
v, and one edge with v;. By definition of the triconnected components at least 2 of
these 3 are cycles. The third component is a cycle or a bond. In the drawing algo-
rithm, we merge the third component with one of the two other cycles. This merged
graph is a cycle in which v, and v, are not necessarily neighbors. This eliminates all
bonds from the 2-subgraph tree. More precisely, we can do it such that this merged

’Independently, a simil.u: tree was also introduced as the SPQR-tree in [7].

21

graph is a child of the other {vg,v}-split component in T'. ¥ {v,,vy} has 2 split
components, then one is a triconnected graph and the other one is a cycle.

5.3.2 Drawing Biconnected 3-planar Graphs

The drawing algorithm for biconnected 3-planar graphs follows the structure of
the reduced 2-subgraph tree. Every triconnected component V; has exactly the
separation pair in common with the triconnected component Vj, if v; is the parent
of v; in T. We call the common vertices of V; and V; the parent vertices. We draw
the triconnected component with parent vertices v, and vy as follows:

e A triconnected graph with n’ vertices is drawn using the algorithm, described
in section 5.2 such that the parent vertices are v; and v,. This means that after
deleting virtual edge (v1,v;) the used area is at most -'%i X (1'2i -1). y(vn) = y(v)
and z(vy) — z(v,) = %’

e A cycle C with n' vertices will be drawn on an area of size at most [2] x
([-'51'[—1). v, is placed in the corner, and v, is drawn such that y(v) = y(va)

(or y(va) + 1, if (va, vs) & C), and z(vs) = z(va) + [%].

We draw each triconnected component V; after all triconnected components V;,
for which v; is a child of v; in T, are drawn. We want to replace the virtual edge
(va,) in V; by V; such that we again use an area of size at most [M%'Y‘-l] X
([J!'-I%'-IY-'-I] —1). If Vj is a cycle, then replacing the virtual edge by the triconnected
graph or cycle V; is straightforward as follows: assume (v,,v) is a straight line. By
the algorithm of section 5.2 y(va) = y(vs) and v, and v, are placed on cornerpoints
in Vi. Thus I(v,),d(v,) and r(vp),d(vs) are free in V;, hence we can stretch virtual
edge (va,vs) (which has length > 1 already in V;) to length z(v) — z(v,), and add
V; inside the drawing of V. This increases the X- and Y-direction both by at most

%l — 1. A similar follows if (va,vs) has one bend.

Assume finally that Vj is a triconnected graph, thus V; is a cycle. Assume w.l.o.g.
that V; also contains one other virtual edge (v.,vq) of a triconnected graph Vi, v
child of v; in T. We consider first the case that v; consists of the cycle on the vertices
Va, U, Vc and vq. After replacing (v, vq) by Vi we assume that v, and vg are placed
on the cornerpoints of the rectangle of size 1‘—2"1 X (%l — 1) of the drawing of V], with
z(va) = z(ve) + n;d There are several possibilities for the virtual edge (v4,v) in
the drawing of V;, which has to be replaced by the edges (v,,v.), (vs,v4) and the
drawing V;. The Y-direction of V; has size JY2_d — 1, hence we can place edge (v,, v.)
in Y-direction of V; and (vs,v4) in direction of the virtual edge (v,,v3). Doing the
replacements as showr in figure 8 for the different cases of (v,4,vs), this leads to an
increase in X- and Y-direction of at most I%d = 1%'1 -1

Let us now inspect the different situations in figure 8 in more detail. Situation
(a) occurs when we add one vertex. Situation (b) and (c) are the cases for adding

22

Ya
Va

a v,
() }“ - o —‘H‘* - ’

;b
V‘ vd
%
©) o V.Hv._.
——
% %

Vb l_ v "
(e — % ® T -
© \4L.' 4? _é'%

%
%

Ya
v Y
(® h)
T+ — % —
%

Figure 8: Replacing virtual edges by triconnected components.

a chain with at least 3 vertices. Situation (d) occurs when we add in V; a chain of
length 2. But here we may place a bend in the incoming edge of v,, because we
still have a path, using only straight-line edges from v, to v,. Also the increase in
X-direction by adding a chain of length 2 is 1. Hence lemma 5.2 and lemma 5.3 still
holds.

Situation (e) occurs when vertex v, is also the parentvertex of V;. A similar
situation can occur for vertex v,. From this replacement it follows that though the
size of the total drawing is at most [w] X ([MI%J-YLI] — 1), the parentvertices v,
and vy of V; are not necessarily the cornerpoints of this rectangle. But still d(v}), I(v))
and d(vp),r(v;) are free, and drawing straight lines from these connections does not
cross any other vertex or edge of V;. Hence we can still use the given replacements
for drawing V; inside another component. Situation (f) occurs when the virtual edge

is a horizontal edge, belonging to the first added chain between the parentvertices
of Vj.

23

When the virtual edge (v,, vp) is the internal incoming edge of v, of V;, then we
have 2 situations. Situation (g) occurs when |V;| > 4. Then either {(v,) or r(vp) is
free, and we can use a similar replacement. If |V;| = 4, then I(v,) and r(vs) are not

- free, hence the only.possible replacement is as shown in situation (h). Though this
leads to-a-drawing of size I'M'%'Y‘-l] X (f]ﬂ%ll’z.l] —1), z(v}) = z(v})+ [4] -1 holds.
But adding V; inside another triconnected graph by drawing the 2 connecting edges
horizontal (as in situation (h)) already solves the problem.

We only considered the case yet that |V;| = 4. If V; contains more virtual edges,
then we can replace these virtual edges by the triconnected graphs or cycles by the
replacements described above. Also if V; contains more real edges, then we can draw
them alternatingly horizontal and vertical. This implies no bends and is correct with
respect to the gridsize, thereby completing the following lemma:

Lemma 5.4 After replacing a virtual edge (v,,vs) by the corresponding orthogonal
74 : g

drawing of V; in an orthogonal drawing of V;, the total required grid size is at most

"IV-'HZ-IVJ'I] x (I'IV.’I-;lel'I _ 1).

This means that after replacing all virtual edges of V; by the triconnected
components Vj, we obtain an orthogonal drawing of size [%] x ([%] — 1), with
n' = |Vi|+|UVj,v; a descendant of v; in T'|. We continue this approach until we are
at root V.. If V; is a triconnected graph, then V; is drawn as shown in figure 7(c).

One can now verify the following theorem:

Theorem 5.5 There is a linear time and space algorithm to draw a biconnected
3-planar graph on a [3] x [§] grid with at most | 3] + 1 bends, such that there is a
spanning tree of n — 1 straight-line edges, all non-tree edges have at most 1 bend (if
n > 4).

In figure 9 an example is given of a biconnected 3-planar graph G, the 2-subgraph
tree of G, and the corresponding orthogonal drawing of G.

5.3.3 Drawing general 3-planar graphs orthogonal

Finally we extend the orthogonal drawing algorithm to arbitrary 3-planar graphs.
Assume that all biconnected components V; of G are drawn orthogonal on a grid
of size at most [L‘;—'l] X ([l%l‘] —1). We construct a block tree T: every biconnected
component (block) and every cutvertex v, is represented by a node in T. There is an
edge between a blocknode b; and a cutnode ¢;, if ¢c; € V;, with V; the corresponding
block of b;. Let one blocknode b, be the root of T. For every block V;, label this
cutvertex ¢;, which is the parent of b; in T. We assume that the cutvertex ¢; of
block B; is drawn in one corner of the orthogonal drawing of B; (this can easily be
obtained by letting v, and v; be the two neighbors of ¢; in B;). Let ¢; be the other
neighbor of ¢;, then ¢; is a cutvertex as well. ¢; has one or two sons in T. We first

24

(c) Drawing the triconnected components (d) The complete drawing

Figure 9: Orthogonal drawing of a biconnected 3-planar graph.

draw these 2 corresponding blocks, and then merge it into one drawing, as shown in
figure 10.

It follows that there will be no extra bends included in the drawing. Also the
required area for drawing blocks V; and V; is again at most [M—;J—Vl-l] X [M%M],
which completes the following theorem:

Theorem 5.8 There is a linear time and space algorithm to draw a $-planar graph

on a [§] x [§] grid with at most |2| + 1 bends, such that there is a spanning tree
of n — 1 straight-line edges, all non-tree edges have at most 1 bend.

25

€

1.

Figure 10: Drawing the blocks orthogonal.

6 Convex drawings

The Imc-ordering is a generalization of the canonical ordering of De Fraysseix et al.
[13]. We can apply the Imc-ordering and the shift-method to get a linear implemen-
tation of the straight-line grid drawing algorithm of triangulated planar graphs [13].
Moreover, we will show that we can modify this algorithm such that we can draw
every triconnected planar graph with convex faces on a grid. (In [6] another linear
implementation of [13] is described, in which the input graph must be triangulated.)

The algorithm maintains a straight-line embedding during every step k of the
Imc-ordering such that

1. v, is at (0,0), vy is at (2k — 4,0).

2. f vy = ¢1,¢3,...,6 = v; is the outerface of Gy in step k, then z(c1) < z(eg) <
s K m(cr).

3. The edges (c;, ¢;.-1) have slopes +1 or —1.

Assume first that G is triangulated, in which case we can add a vertex v; in
every step k of the Imc-ordering [13]. Let L(v) be a set of vertices. The idea of the
algorithm is the following: when we add vertex v, then all vertices c;y1,...,cj-1
are shifted 1 to the right, the vertices c;,...,c, are shifted 2 to the right (and of
course, several internal vertices of Gx—; must be shifted 1 or 2 to the right as well).
The crossing point of the line with slope +1 from ¢; and the line with slope —1 from
c; denotes the place for vertex v;. All vertices c;,...,c; are visible from this point,
see figure 11 for the corresponding picture. The exact algorithm is as follows:

{ In each step k, let c;,...,c, be the outerface,

and ¢; and c; the left- and rightpoint of v, resp.}
#((21,91), (22,42)) = 3(21 — 1 + T2 + y2, —T1 + 11 + T2 + 12);
P(vy) := (0,0); L(v1) .= {n1 };
P(vz) := (2,0); L(vz) := {va};

26

P(v3) := (1,1); L(vs) := {vs};
for k:=4tondo
for v € U;; L(a) do z(v) := z(v) + 2;
for v € UiZ;,1 L(ar) do z(v) := z(v) + 1;
P(ve) := p((z(ci), y(e)), (2(¢5), ¥(c5)));
) L(vk) == {ve} U Ui L@);

Figure 11: Idea of the straight-line drawing algorithm.

The correctness of this algorithm is described in [13]. There are shifts of 1 and
2 in the algorithm, and therefore we introduce 2 variables. The complete algorithm
can now be implemented to run in linear time as follows:

P(v) := P(vg) := (9,0);
for k:=3 ton do
update z(c¢;) and shift(c;);
shift(c;) := shift(c;) + 2;
tl'D (ve) := u((2(es), (), (2(c;) + shift(c;), y(e;));
rof;
shift(v) := rshiftf(v) := 0 for all v € V;
for k := n downto 2 do
for all internal vertices v; of v do shify(v;) := shift(vi) + rshift(vi) + 1;
rshift(c;) := rshift(c;) + rshift(v;) + 2;
z(Vk) := Tinsert(Vk) + shift(vi) + rshift(vi);

rof

Moreover, using the Imc-ordering, it is already sufficient that the planar graph
is triconnected, because when adding a face Fj with new vertices wy,...,wp, we can
draw wj,...,w, on a horizontal line with distance 2 inbetween. The edge (c;, w;)
has slope +1, the edges (wy,ws),...,(wp-1,wp) have slope 0 and length 2, and the
edge (wp, ¢c;) has slope —1. It is easy to see that this still gives a correct straight-line

drawing on an (2n — 4) x (n — 2) grid. We will now modify this algorithm a little
such that all interior faces are convex.

27

Assume we add a vertex vi, and let ¢, and ¢, two adjacent vertices on Ci.1, such
that there is no neighbor ¢ of vi, with p < I < g. Let F' be the face, containing
Cpy Cq and vg.

Lemma 6.1 All edges (caycay1), P < @ < a, have slope —1; all edges (cp-1,),
a< B <b<gq, have slope +1. B=ca ora+1, and if B = a+ 1, then (cq,cp) has
slope 0.

Proof: Every vertex has a neighbor, added in a later step and, hence by the
drawing algorithm, is placed higher. In step k the vertices cpt1, . .., Cq-1 have already
higher placed neighbors. Let cs be the lowest placed vertex, with p < 8 < ¢q. If
B > p and (cg-1, cg) is horizontal, then from cg_; to ¢, and from ¢ to ¢, the vertices
are strictly increasing in Y-direction. If # = p or (cg_1,¢g) is not horizontal, then
from cg to ¢, and from cg to ¢, the vertices are strictly increasing in Y-direction.
Since we have only slopes +1, 0 or —1 in every step on the outerface, this completes
the proof. D

To achieve a convex face F’, we add edges from ¢, to cg,ca41,. .., Cq—1 in step k.
This does not destroy the planarity in the embedding, and it means in the algorithm
of [13] that if we shift c,, then we also shift cg41,...,¢q-1 to the right, when adding
vertex v by the algorithm of [13]. Notice that when ¢, is the rightpoint or ¢, is the
leftpoint of vj, then ¢, is shifted 1 more to the right than cp,. But then cg41,...,¢4
are shifted one more to the right than ¢,,...,cs. (If 8 = ¢, then no internal vertex is
shifted to the right.) We now have the following slopes after adding v, and applying
the shifts.

The slopes of (cp,vx) and (cq, vi) are in the range (—oo, —1} U [+1, 00).

The edges (¢p, Cp+1); - - - » (Ca—2; Ca—1) have slope -1.

The edge (ca-1,¢e) has slope in the range [—1,0).

If 8 > a, then the edge (cq,cs) has slope 0.

The edges (cg4+1,¢8+2), - - - (Cg-1,€q) have slope +1.

If 8 < g then the slope of edge (cg, cg+1) is in the range (0, +1], else the slope
of the edge (cs_1,¢g) is in the range [—1,0].

This implies that the face F' is convex when inserting v, in step k. The same values
follow when we add a complete chain w,,...,w, instead of one vertex vi, because
in this case wy,...,w, are placed on a horizontal line.

Theorem 6.2 The faces remain convex during the algorithm.

28

Proof: Inspect the face F’, obtained by adding v in step k of the Imc-ordering,
with neighbors ¢, and ¢; on Ci_;, also part of F'. (The proof is analog when we
consider a face, obtained by adding a chain wy,...,w,.) After adding v, only
v and possibly ¢, or ¢, are part of Ci and, hence, they will obtain shifts of new
added vertices. If shiff(c,) is increased by adding a vertex ¢,l > k, then also
shift(cg41), - - - , shift(cq-1) will be increased by the same value, since there are edges
from cg,cgt1,...,Cq-1 to ¢q. If shift(vi) is increased by adding a vertex v, I > k,
then also shift(cq) will be increased by the same value. If ¢, is not the leftpoint of vy,
then also shift(c,) will be increased, in which case all vertices of F’ will be shifted
with the same value to the right.

Finally, when shifi(c,) is increased by adding a vertex v;,! > k, then by the
Imc-ordering, ¢, is not the rightpoint of v;, hence ¢, is an internal vertex of v;. ¢,
is the leftpoint of vx, and of some vertices vq,,. .., Va;. (Assume that if ¢ = 0, then
there are no such other vertices.) Notice that by the algorithm it follows that v,, is
an internal vertex or rightpoint of v; and that v, is an internal vertex or rightpoint
of va;, (2 <j <14). (¢, i) has slope +1 when inserting vi, hence it follows by
the algorithm that v is also the internal vertex of a vertex vy, I’ > k. It can easily
be verified that [= I if ¢ = 0, or vy is an internal vertex or rightpoint of v,,. But
this yields that there is a path from v; to v, following only internal vertices or
rightpoints. This means that shift(v;) increases at least as much as shifi(cp) by the
addition of v;.

This leads to the following slopes for all edges of face F, during any step of the
algorithm:

o The edge (c;,vi) has slope in (—oo0, —1} U (0, 00).

The edge (cq, vk, has slope in (—o00,0) U [+1, 00).

The edges (¢;, c.-ﬂ), +++y(€a=2y Ca—-1) have slopes -1.

The edge (¢a-1,¢a) has slope in [—1,0).

If B> a then edge (cq,cg) has slope 0.

The edge (cg, cg+1) has slope in (0, +1]

The edges (cg+1,¢8+2)s - - - » (€g-1, ¢g) have slopes +1.
Since this implies convexity, this completes the proof. a

Finally we remove the added edges from ¢, to cg,caq1,...,Cq-1.

Theorem 6.3 There is a linear algorithm to draw a triconnected planar graph con-
vex with straight lines on a grid of size at most (2n — 4) X (n — 2).

29

Figure 12: Convex drawing of the graph of figure 2.

In [38], Tutte showed that every triconnected planar graph admits a convex
drawing. However, this approach seems not to be implementable to run in linear
time [39]. Thomassen [37] characterized the class of planar graphs which admit a
convex drawing. In [4], a linear algorithm for drawing this class of planar graphs
convex is presented. However, here the vertices are not placed on grid coordinates
and as a consequence, the edges can be arbitrary short, and the resulting drawings
might be very hard to read.

Our algorithm not only outperforms the algorithms of [39, 4], it is also much
easier to implement than the algorithm of [4] (see also figure 15 for this). Since the
vertices are placed on grid points, the resulting drawings seem to be more pleasant
than in [4]. Also, this algorithm gives a new proof that every triconnected planar
graph admits a planar drawing, in which every interior face is convex. The outerface
is a triangle. With respect to the tightness of the grid size we note that every strictly
convex drawing of a cycle with n vertices requires an ©(n?) grid [25]. In figure 12,
the straight-line convex drawing of the graph in figure 2 is given.

7 Extensions, duality aspects and optimizations

7.1 Duality aspects

In [21], a drawing algorithm to draw 3-planar graphs on a triangled grid is given,
with in at most one edge bends. This is obtained by inspecting the dual graph H
of the triconnected planar graph G: every vertex vy in H corresponds with a face
F in G. There is an edge (vFr,vpv) in H, if F' and F" share a common edge in G.
H is triconnected and planar as well. If G is d-planar, then every face in H has at
most d edges. By Euler’s formulae, m —n — f + 2 = 0, hence nyg = mg — ng + 2.
Let an Imc-ordering of G be given. We construct a labeling of the faces of G as

30

follows: when k is the smallest integer such that all vertices of face F belong to G
in the Imc-ordering, then we set label(F) = K + 3 — k. Let (vy,v,) € F', F", and
assume that F' is the outerface. Then we set label(F’) = 1 and label(F") = 2. Now
we obtain the following interesting result:

Theorem 7.1 The labeling of faces of G corresponds with an Imc-ordering of the
dual graph H.

Proof: We first prove that the assigned labeling corresponds with the canonical
ordering of the dual graph H, by reverse induction on the steps of the Imc-ordering
of G. Let F denote the vertex in H, corresponding with face F in G. Let H;
denote the induced subgraph on the vertices F with label(F) < i in G. We start
with deleting v, from G. Let (v, v,) belong to F' and F” (F' the outerface), then
label(F') = 1 and label(F") = 2. Since deg(vy,) > 3, there are deg(v,) — 2 remaining
faces F; in G, with label(F;) = 3. By duality aspects, the corresponding vertices
F; form a consecutive chain from F’ to F”. Hence Hj; satisfies the constraints of
theorem 2.1.

Let k be fixed, 3 < k < K, and assume that face F; or vertex v; has already been
determined for every i > k such that the subgraph Hg,3_; satisfies the constraints
of theorem 2.1. Consider the 2 cases in step k: deleting a vertex v or a face Fi
from Gi. Assume first that we delete v; with p lower-numbered neighbors. Then
p — 1 faces F,, are deleted from G, which all have label(Fy,) = K + 3 — k. By
construction of H, F,; 2ll have degree 2 in H. K+3—k- T,: and Fa,__l have neighbors
with lower label and each Fy, has neighbors with higher label.

If we delete a face F} in step k, then Fi is added to Hyis_. Fi has at least
2 neighbors with lower label, and at least one neighbor with higher label. In both
cases one easily verifies that the added chain or vertex to Hx 3_x is on the outerface.
Hpc3_1 is biconnected, and by induction Hg 3 satisfies the constraints of theorem
2.1. Finally we end with edge (v1,v;) in G. Assume (v1,v;) belongs to F' (the
outerface) and F", then label(F") = K by definition. But since v, and v, are
neighbors of v; and belonging to the outerface it follows that 7 and F” are both
neighbors of F’ in H, and belong to a common face, which completes the proof that
the assigned labeling is a canonical ordering for H.

In the same way, by considering the dual graph H it easily follows that the
canonical ordering is leftmost, because if we delete a vertex v or face F} from Gy,

then the corresponding face F; or vertex Fy is also leftmost with respect to the
vertices F' and F” in H.]

Notice that in [29] a similar result is obtained for the st-ordering. Hence it
seems that the Imc-ordering is a powerful generalization of the st-ordering in the
triconnected case. (Sez also the example in figure 13.)

If G is triconnected and 3-planar, then H is a triangulated planar graph, hence
we could also use the canonical ordering of [13] to obtain an Imc-ordering in section
5 for the orthogonal drawings of 3-planar graphs.

31

Figure 13: The dual of the Imc-ordering of the graph of figure 2 is also an Imc-
ordering.

7.2 visibility representations

Since every Imc-ordering is also an st-ordering, we can use the Imc-ordering in var-
ious drawing applications, e.g., in constructing visibility representations [29]. A vis-
ibility representation maps vertices into horizontal segments and edges into vertical
segments that intersects only the two corresponding vertex segments. All endpoints
are on grid points. Assume we have an Imc-ordering in which we add a vertex in
each step. This is possible by the ordering of [13] for triangulated planar graphs.
(In [20] an alternative linear time algorithm is given for constructing visibility rep-
resentations of triangulated planar graphs, using De Fraysseix’ canonical ordering.)
When we add a vertex vg, then we have to know the y-coordinates of the segments
of endpoints of incoming edges of v, and we have to know the z-coordinates of the
edges (ci, vx) and (vi, c;). In this case we give every vertex only an y-coordinate, and
every edge e receives an z-coordinate and a shift-variable. The horizontal segment,
representing v, goes from (z((vx, ¢)), y(vk)) to (z((vs,c;)), y(vk)). In every step we
add a vertex, and we place all outgoing edges of v; on distance 1 from each other

on this segment. We update shift((vs, ¢;)) accordingly. The complete algorithm can
now be described as follows:

y(v1) :=0;
let v; have outgoing edges to wy, ..., wp; z((v1,w;)) ;=1 —1;(1 <i < p)
y(v2) :==1;
let v; have outgoing edges to wy, ..., wy; z((va,ws)) :=p+i—1;(1 <i < p')
for k:=3 to K do

update z((c;,vx)) and shift((vk, c;));

let v have outgoing edges to wy, ..., wp;

2((ve, wi)) == ((ci. ve)) + 4 — 1;(1 < i < p);

Shift(ve, 5)) = mox{shift((vs, &), 2((okr 1)) + P — 1 — 2((verc3))};

32

(a) Visibility representation of the (b) graph with worst—case grid bounds for
graph of figure 2, the vigibility representation.

Figure 14: Visibility representations. The vertices have been given positive thickness
for clarity.

rof;
for k := K downtc 3 do
Z((vk, wi)) = Tinsert((Ve, i) + Lirgjci shift((ve, w5)); (1 < i < p)

ts_hift((vk, ¢;)) := max{0, z((ve, wp)) — 2((vr, ¢;)) };

Since inc(v) > 2 jor every vertex v, this means that adding v, increases the
Y-direction by 1 and the X-direction by max{0, out(vs) — 2}. If for every vertex
v;, out(v;) 2 2 holds, then this leads to a visibility representation on a grid of size at
most (n —2) x (n —1). Indeed, if the planar graph is 4-connected, then a canonical
ordering can be achieved in linear time, in which for every vertex vk, out(vi) > 2
holds, yielding a more compact layout.

Several compressing and optimization techniques are possible, leading in general
to more compact layouts than the algorithms in [19, 27, 29]. Especially, when we
add a face, then we can do it such that we increase the Y-direction by at most 2.
Several other compressing techniques are possible. Moreover, compared with [29],
we do not have to compute the dual graph.

Theorem 7.2 There is an alternative linear time algorithm to construct a visibility
representation of a planar graph on a grid of size at most (2n — 5) x (n —1).

In figure 14 a visibility representation of the graph in figure 2 is given, and a
visibility representation of a graph is given, requiring an (2n — 5) x (n — 1) grid.

33

7.3 Optimizations
7.3.1 An alternative shift-method of Chrobak & Payne

In this section we explain the shift-method, as introduced by Chrobak & Payne [6].
Using this technique there is no need to verify the canonical ordering for triconnected
planar graphs to the Imc-ordering. The crucial observation of [6] is that when we
draw vy, it is not really necessary to know the exact positions of ¢; and c;. If
we only know their y-coordinates and their relative z-coordinates, i.e., if we know
z(c;) — z(c;), then we can compute y(vx) and the z-offset of vy relative to ¢;, that is
z(vi) — z().

To obtain this, a tree T is constructed during the algorithm. In the first phase we
add new vertices, compute their z-offsets and y-coordinates, and update the z-offsets
of one or two vertices. In the second phase, we traverse the tree and compute the
final z-coordinates by accumulating offsets. Suppose that vertex v is a T-ancestor
of vertex w. By the cumulative offset from v to w, denoted by ¢(v, w), we mean the
sum of offsets along the branch from v to w including that of w but excluding that
of v. Note that, if w is a T-ancestor of vertex z, then ¢(v,z) = c(v, w) + c(w, z).
By adding the z-coordinate of the root v, of the tree to the cumulative offset from
v; to a node, one can determine the node’s proper z-coordinate. We store for each
vertex v the following information:

o Left(v) = the left T-son of v,

o Right(v) = the right T-son of v,

o z(v) = the z-offset of v from its T-father,
¢ y(v) = the y-coordinate of v.

Assume now that we add in step k the vertices w,,...,w, from ¢; to¢c;. fp=1

then we add only one vertex. We apply the following adjustments of the tree T in
each step:

1. Right(c;) := wy; Right(wp) := ¢;; Left(wy) := nil;
2. Right(w;) := wi41; Left(w;) := nil; (i <i < p)
3. if ciy1 # c; then Left(w,) := ci41 and Right(cj—,) := nil;

Before adding this chain Right(c;) was ci41, hence we have to update the z-offsets
such that z(ci41) + 2(vk) = Zad(¢i+1). Similar must hold for z(c;). Updating these
z-offsets is straightforward in the algorithms, described in this paper. As an example
in figure 15 the complete convex drawing algorithm is described, using this technique
of z-offsets of Chrobak & Payne [6].

34

COMPLETE CONVEX DRAWING ALGORITHM

Let the canonical ordering be given for G;
(z(vl)’ y(vl)’ Leﬂ(vl)a R"ght(vl)) = (0) 0, ni” "2);
(3(‘02), y(”?)’ Leﬂ(”?)i Right(”?)) = (0’ 0, ”“1 "");
for k:=3 to K do
assume we add wy,...,wp, (p > 1) from ¢; to ¢j;
for each neighbor ¢, of w, (¢ca # ¢;) do
B=a-1;
while (cg, wp) € G and y(cs—-1) < y(cs) do
B:=B-1
if 3 <a—1 then
{ change graph to maintain convexity }
Right(cq-1) := Left(ca);
if Right(ca—1) # nil then
add z(cq) to z(Right(ca-1));
Left(cqa) := Right(cg); Right(cp) := ca;
2(ca) = 2(cas1) + -+ 2(ca);
2(cp41) = 2(cp41) — 2(ca);
rof;
Right(c;) := wy; Right(wp) := cj; Lef(wy) := nil;
forl:=1top—1do
Right(w;) := wi41, Left(w;) = nil;
if ciy1 # cj then
Left(w) := ci41 and Right(c;—1) := nil;
S = z(ciy1) + - -+ 2(c5);
(z(w1), y(w1)) := B((0, ¥(c:)), (S + 2, ¥(c;)));
for | := 2 to p do (z(wr), y(wr)) := (2, Y(w1));
z(c;) = S+ 2 — z(w1);
;f cit+1 # ¢j then z(ciy1) := z(cig1) + 1 = z(wy);
rof;
AccumulateOffset(v; , 0);

procedure AccumulateOffset(v : vertex, § : integer);
begin

z(v) := z(v) + §;

if Left(v) # nil then AccumulateOffset(Lefi(v), z(v));

if Right(v) # nil then AccumulateOffset(Righi(v), z(v));
end;

The values of the z-offsets during
the convex drawing algorithm,
applied on the graph of figure 2.

vertex steps k

z—oﬂoet3u56|7[8
1 o|[o0JoOo[OJoO0[O
2 1122227 2
3 1111 [1]-6
4“—23333
5 [[-|2]0|0[0]0
6 1|11 [1] 2
7 “T-1311[2] 2
8 —{-[-l4[0]0
9 -1-1-1-15]1
10 |[-[-1-[-1-18

1

Endcoordinates:

[vertex [| 2(v) | y(v) |
0

16
2
14
11
4
11
9
9

XTSI NNOOOC

- R I N

8

Figure 15: The complete drawing algorithm with example.

35

7.3.2 Other Optimizations

Optimizations are possible in almost all drawing algorithms, presented in the previ-
ous sections. For example, in section 4 we can set mark(v) left or right when deg(v) =
3, according to the smallest number of bends. In section 5 we originally always go up-
wards from ¢; and c;, even when there is no reason to. For example, if I(¢;) is free and
y(c;) > y(ci), then we can place the new vertices on height y(c;). In the same way we
can improve the drawings of section 3. If vertex vi have p > 7 incoming edges, then
we can use the points (2(0) — [254],¥(0) + [521), .., (2(v) — [55%], y(v) — [E54])
and (2(0) + [B52],(0) — [B52])s-- -, (a(v) + [B5*], (0) + [Z52]) as the inc-points
for the incoming edges of vg. If inc(vi) > 7, then this means an improvement of a
factor 2 in the height. We can apply the same technique for vertex v,.

If the d-planar graph G is not triconnected, then we can use the algorithm of
[22] to augment the graph by adding edges such that it is triconnected. Using a
modification of [22], we can construct a linear algorithm which adds at most 2 times
the optimal number of edges. If we want to minimize the maximum degree, then we
can use the linear augmentation algorithm of [23], leading to a triangulated planar
graph of G, for whick the maximum degree is at most 3d + O(1). Indeed, there
are planar graphs G for which any augmentation to a triconnected planar graph G’
yields a maximum degree of at least 3d+ O(1) (by modificating theorem 3.2 of [23]).
It is well known that every triangulated planar graph is triconnected, hence using
the algorithm of [23], ¥e can draw all planar graphs on an (2n — 6) x (3n — 6) grid
with at most 5n — 15 bends and minimum angle > £ + O(1).

In section 6 we caa improve the grid size in several cases. When (c;,cit1) has
not slope +1 and (¢;-1, ¢;) has not slope —1, then ¢;41,...,c, need not to be shifted
to the right. We can also draw the horizontal edges with length 1 initially. When
adding a vertex vj in a later step this length is only increased to 2 if |z(c;) — ()| +
|y(¢;) —y(c;)| becomes even, with ¢; and c; the left- and rightpoint of v, respectively.

The optimization techniques for using a smaller grid for the visibility represen-
tations are already described in section 7.2.

8 Final remarks and open problems

In this paper, a new ordering of the vertices and faces of a triconnected planar
graph is introduced. This ordering leads to various algorithms to draw a planar
graph on a grid. In some cases considerable improvements on existing results are
obtained, in other cases new bounds are achieved. All algorithms can be imple-
mented by straightforward techniques to run in linear time and space. Also the
resulting pictures seems to be readable, if one compares them with the existing
drawing algorithms (see the enclosed figures).
However, there are some open problems. We mention here:

e Decrease some of the bounds with respect to the grid size, number of bends

36

or minimum angle, given in this paper.

¢ Is it possible to use the Imc-ordering in other algorithms as well, to obtain
better results in planar graph drawings on a grid?

o Inspect the more combinatorial aspects of the Imc-ordering. Very recently, the
st-ordering of biconnected planar graphs lead to a new characterization of pla-
nar graphs [28]. We believe that also for the Imc-ordering, more combinatorial
observations can be made than those, given in this paper.

e Can an arbitrary planar graph be drawn planar with straight lines such that
the minimum angle is > § (see also [26] for this question)?

o Devise a dynamic algorithms for the sequential algorithms of this paper. Very
recently, in [5] a dynamic framework for graph drawing problems is described,
but this approach seems not to work here. Also the parallel implementation
is an interesting subject for further study.

Acknowledgements

The author wishes to thank Hans Bodlaender for the proof of theorem 1.1. He also
thanks Hans Bodlaender and Jan van Leeuwen for reading earlier drafts.

References

[1] Bhasker, J., and S. Sahni, A linear algorithm to find a rectangular dual of a
planar triangulated graph, Algorithmica 3 (1988), pp. 247-178.

[2] Booth, K.S., and G.S. Lueker, Testing for the consecutive ones property, interval
graphs and graph planarity testing using PQ-tree algorithms, J. of Computer
and System Sciences 13 (1976), pp. 335-379.

[3] Chiba, N., T. Nishizeki, S. Abe and T. Ozawa, A linear algorithm for embedding
planar graphs using PQ-trees, J. of Computer and System Sciences, Vol. 30
(1985), pp. 54-76.

[4] Chiba, N., T. Yamanouchi, and T. Nishizeki, Linear algorithms for convex
drawings of planar graphs, in: Progress in Graph Theory, J.A. Bondy and
U.S.R. Murty (Eds.), Academic Press, 1984, pp. 153-173.

[5] Cohen, R.F., G. Di Battista, R. Tamassia, I.G. Tollis and P. Bertolazzi, A
Framework for dy 2amic graph drawing, in: Proc. 8th Annual ACM Symp. on
Computational Ge=ometry, Berlin, 1992, pp. 261-270.

37

[6] Chrobak, M., and T.H. Payne, A Linear Time Algorithm for Drawing Planar
Graphs on the (‘'rid, Tech. Rep. UCR-CS-90-2, Dept. of Math. and Comp.
Science, Universivy of California at Riverside, 1990.

[7] Di Battista, G., and R. Tamassia, Incremental planarity testing, in: Proc. 30th
Annual IEEE Symp. on Found. of Comp. Science, North Carolina, 1989, pp.
436—441.

[8] Di Battista, G., R. Tamassia and I.G. Tollis, Area requirement and symmetry
display in drawing graphs, Discr. and Comp. Geometry 7 (1992), pp. 381-401.

[9] Eades, P., and R. Tamassia, Algorithms for Automatic Graph Drawing: An An-
notated Bibliography, Dept. of Comp. Science, Brown Univ., Technical Report
CS-89-09, 1989.

[10] Even, S., and R.E. Tarjan, Computing an st-numbering, Theoret. Comp. Sci-
ence 2 (1976), pp. 436-441.

[11] Féary, I., On stra:ght lines representations of planar graphs, Acta Sci. Math.
Szeged, 11 (1948j, pp. 229-233.

[12] Formann, M., T. Hagerup, J. Haralambides, M. Kaufmann, F.T. Leighton, A.
Simvonis, E. Welzl and G. Woeginger, Drawing graphs in the plane with high
resolution, Proc. 31th Ann. IEEE Symp. on Found. of Comp. Science, St. Louis,
1990, pp. 86-95.

[13] Fraysseix, H. de, J. Pach and R. Pollack, How to draw a planar graph on a
grid, Combinatorica 10 (1990), pp. 41-51.

[14] Fraysseix, H. de, and P. Rosenstiehl, A depth first characterization of planarity,
Annals of Discrete Math. 13 (1982), pp. 75-80.

[15] Haandel, F. van, Straight Line Embeddings on the Grid, Dept. of Comp. Science,
M.Sc. Thesis, no. INF/SCR-91-19, Utrecht University, 1991.

[16] He, X., On finding the rectangular duals of planar triangulated graphs, SIAM
J. Comput., to appear.

[17] Hopcroft, J., and R.E. Tarjan, Dividing a graph into triconnected components,
SIAM J. Comput. 2 (1973), pp. 135-158.

[18] Hopcroft, J., and R.E. Tarjan, Efficient planarity testing, J. ACM 21 (1974),
PpP. 549-568.

[19] Jayakumar, R., K. Thulasiraman, and M.N.S. Swamy, Planar embedding:
linear-time algorithms for vertex placement and edge ordering, IEEE Trans.
on Circuits and Systems 35 (1988), pp. 334-344.

38

[20] Nummenmaa, J., Constructing compact rectilinear planar layouts using canon-

ical representation of planar graphs, Theoret. Comp. Science 99 (1992), pp.
213-230.

[21] Kant, G., Hexagonal Grid Drawings, in: Proc. 18th Intern. Workshop on
Graph-Theoretic Concepts in Comp. Science WG’92, Lecture Notes in Comp.
Science, Springer-Verlag, 1992 (to appear).

[22] Kant, G., and H.L. Bodlaender, Planar graph augmentation problems, Ex-
tended Abstract in: F. Dehne, J.-R. Sack and N. Santoro (Eds.), Proc. 2nd
Workshop on Data Structures and Algorithms, Lecture Notes in Comp. Science
519, Springer-Verlag, 1991, pp. 286-298.

[23] Kant, G., and H.L. Bodlaender, Triangulating planar graphs while minimizing
the maximum degree, in: O. Nurmi and E. Ukkonen (Eds.), Proc. 8rd Scand.
Workshop on Algorithm Theory, Lecture Notes in Comp. Science 621, Springer-
Verlag, 1992, pp. 258-271.

24] Lempel, A., S. Even and 1. Cederbaum, An algorithm for planarity testing of
g
graphs, Theory of Graphs, Int. Symp. Rome (1966), pp. 215-232.

[25] Lin, Y.-L., and S.S. Skiena, Complexity Aspects of Visibility Graphs,
Manuscript, Dept. of Comp. Science, State Univ. of New York, Stony Brook,
1992.

[26] Malitz, S., and A. Papakostas, On the Angular Resolution of Planar Graphs,
in: Proc. 24th Annual ACM Symp. Theory of Computing, Victoria, 1992.

[27] Otten, R.H.J.M., and J.G. van Wijk, Graph representation in interactive layout
design, in Proc. IEEE Int. Symp. on Circuits and Systems, 1978, pp. 914-918.

[28] Rosenstiehl, P., H. de Fraysseix, and P. de Mendez, personal communication,
1992.

[29] Rosenstiehl, P., aad R.E. Tarjan, Rectilinear planar layouts and bipolar orien-
tations of planar graphs, Discr. and Comp. Geometry 1 (1986), pp. 343-353.

[30] Schnyder, W., Embedding planar graphs on the grid, in: Proc. 1st Annual
ACM-SIAM Symp. on Discr. Alg., San Francisco, 1990, pp. 138-147.

[31] Storer, J.A., On minimal node-cost planar embeddings, Networks 14 (1984),
pp. 181-212.

[32] Tamassia, R., On embedding a graph in the grid with the minimum number of
bends, SIAM J. Comput. 16 (1987), pp. 421-444.

39

[33] Tamassia, R., G. Di Battista and C. Batini, Automatic graph drawing and
readability of diagrams, IEEE Trans. on Systems, Man and Cybernetics 18
(1988), pp. 61-79.

[34] Tamassia, R., and I.G. Tollis, Efficient embedding of planar graphs in linear
time, Proc. IEEE Int. Symp. on Circuits and Systems, Philadelphia, pp. 495
498, 1987.

[35] Tamassia, R., and I.G. Tollis, A unified approach to visibility representations
of planar graphs, Discr. and Comp. Geometry 1 (1986), pp. 321-341.

[36] Tamassia, R., I.G. Tollis and J.S. Vitter, Lower bounds for planar orthogonal
drawings of graphs, Inf. Proc. Letters 39 (1991), pp. 35-40.

[37) Thomassen, C., Planarity and duality of finite and infinite planar graphs, J.
Comb. Theory Series B, Vol. 29 (1980), pp. 244-271.

[38] Tutte, W.T., Convex representations of graphs, Proc. London Math. Soc. 10
(1960), pp. 302-320.

[39] Tutte, W.T., How to draw a graph, Proc. London Math. Soc. 13 (1963), pp.
743-768.

[40] Wagner, K., Bemerkungen zum vierfarbenproblem, Jber. Deutsch. Math.-
Verein 46 (1936), pp. 26-32.

40

A Appendix

Theorem A.1 Deciding whether a biconnected planar graph can be drawn planar
with straight lines with minimum angle > K is NP-hard.

Proof: To prove NP-hardness, we show that 3-PARTITION (which is well
known to be NP-complete in the strong sense) is reducible to the problem whether
a biconnected planar graph can be drawn planar with straight lines such that the
minimum angle is > K. Let an instance of 3-PARTITION be given, i.e., a set A
of 3m elements a;,...,a3n, a bound B € Z* and a size s(a;) €Z* for each a; € A
such that B/4 < s(a;) < B/2 and ¥,,c4 3(a;) = mB. The question is whether A
can be partitioned into m disjoint sets A;, Az,...,Am such that, for 1 <1 < m,
Y aca,; s(a) = B (note that each A; must therefore contain exactly three elements
from A). We construct a biconnected planar graph for which we will prove that
there is a 3-PARTITION, if and only if there exists a planar drawing with minimum
angle > %’, for some constant C to be filled in later. Given C, the placement of
several edges of the graph can be fixed by introducing fans, as shown in figure 16(a).
If we draw this graph with a < §, then there must be an angle with size < %",
since there are % angles included in it. Similar if we draw the graph with o > 7,
hence the angle a is fixed by adding the two fans. We denote this fixed angle as
shown in figure 16(b). The size 2 is called a unit. From every fan one additional
edge to an arbitrary vertex in that face is added to ensure the biconnectivity and to
ensure that this fan belongs to the corresponding face.

Now we first construct two rectangles with fixed angles inside each other, as
shown in figure 16(d). The idea is to split the remaining adjacent angle of v, of size 7
into gaps of B+1 units. Between each gap a subgraph V; will be added, with an angle
of 1 unit adjacent to v;. So 7 will be divided into m(B+1)4+m—1=2m+mB-1
units. Let C = 2(2m + mB — 1) and m and B both odd, then C is divisible
by 4. One unit has size 3 %g—. Each subgraph V; consists of an edge (a,b),
with a and b both connected to v; and vo. We fix a; = (B + 1) + ¢ units and
Bi = (m —1)(B+1)+ (m — i) — 2 units, by adding corresponding fans. It follows by
geometric arguments (Z-angles) that all angles, denoted with an ¢; in figure 16(c)
are equal, as well as all angles, denoted with 3;. Furthermore it follows that if we
want to draw this subgraph V; with the minimum angle as wide as possible, then we
should draw (a,b) parallel to e; and e; and on equal distance from v; and v; (see
figure 16(c)).

Finally we add 3n. fans a,,...,asm to v; with size s(a;), 1 < i < 3m, and we
add an edge from each fan to v,. See figure 16(d) for the complete graph. These 3m
fans must be placed in the gaps of size B + 1 between the subgraphs V;. A drawing
with minimum angle > K = 3m¥mB-1 18 now possible if and only if every gap is
split up into exact B + 1 angles. Hence a planar drawing with minimum angle > K
is possible if and only if for each gap, exactly three fans a;,, a;,, a;, are placed with
total size s(a;,) + s(a;,) + s(ai,) = B, i.e., if and only if there exists a partition of A

41

(d) Construction of the graph for the NP—hardness proef.

Figure 16: Construction of the graph.

into m disjoint sets A,,..., A, such that for all §, 1 < i <m, 3,4, 8(a) = B.

As G can be constructed in time, polynomial in m and B, there is a polynomial
time transformation form the the strongly NP-complete 3-PARTITION problem to
the problem of drawing a biconnected planar graph planar in the plane with wide
angles, hence the latter is NP-hard. O

42

