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Abstract

In general, a probabilistic network is considered a representation of a set of conditional
independency statements. However, probabilistic networks also represent dependencies. In this
paper an axiomatic characterization of conditional dependence is given. Furthermore, a criterion
is given to read conditional dependencies from a probabilistic network.
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1 Introduction

The graphical representation of probabilistic relationships between variables gets a lot of attention
in different areas of research the last years. A probabilistic networks, also known by the name belief
network [5], causal network [4], and influence diagram [9], is such a representation. In the field of
artificial intelligence systems have been developed for efficient computation of inferences [4, 5, 9]
using probabilistic networks.

Independencies between variables are practically indispensable when making inferences in large
knowledge-based systems. Probabilistic networks are a powerful means for representing conditional
independency statements on variables. A probabilistic network has associated a semantics that
allows for reading independencies between variables [3, 5]. Independencies read from the network
can be used to decide on relevance of variables to inference problems.

However, in a probabilistic network it is not generally true that if variables are not shown
to be independent they are actually dependent. In other words, there may exist independencies
that cannot be read from the network. Therefore, it is interesting to find out where these hidden
independencies reside in the network. In order to do so, we consider variables that are definitely
dependent in a given network.

In Section 2, we give an overview of conditional independence and its relation with probabilistic
networks. In Section 3, we study properties of conditional dependence and in Section 4, we present
a criterion for reading dependencies from a probabilistic network.

2 Conditional independence

We consider a joint probability distribution P over a set of variables U. In this paper we use capital
letters to denote sets of variables and lower case letters to denote single variables. All variables or
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Figure 1: DAG in which <e¢,0,d>, <¢,b,d> and <c, ab,d>, but not <c,a,d> or <c,abf,d>.

sets of variables mentioned are elements or subsets of U unless stated otherwise. We call X and Y
conditionally independent given Z, written I(X, Z,Y), if P(XY|Z) = P(X|Z)P(Y|Z) for all values
of the variables in XY Z (for sets we write XY to denote the union of X and Y); I(X, Z,Y) is called
an independency statement. By definition I(X, Z,0) for any X and Z. An independency model over
U is a set of independency statements. A complete independency model M; of a distribution P
over U is the set of all valid independency statements in P. For positive definite distributions, the
following axioms called independency arioms apply [1, 7, 8].

symmetry I(X,Z2,Y) & I(Y,Z,X)
decomposition I(X,Z,WY) = I(X,2,Y)
weak union I(X,Z,WY) = I(X,ZW,Y)
contraction IX,ZW,Y)AI(X,Z,W) = I(X,Z,WY)
intersection X, ZW,Y)ANI(X,ZY,W) = I(X,Z,WY)

With these axioms independency statements can be derived from other independency statements.
For instance, let M be an independency model for a given distribution P such that I(a,b,¢) € Mj.
Then, by symmetry we have that I(c,b,a) must also be in M;. We sometimes omit braces to
prevent an overflow of them. So, we write I(a, b, c) for I({a}, {b},{c}).

A directed acyclic graph (DAG) is a directed graph that does not contain paths starting and
ending at the same node. A trail in a DAG is a path that does not consider the direction of the
arcs. We denote a trail by the ordered sequence of nodes that are in the trail. For example, in
the DAG in Figure 1 cabd is a trail. A head-to-head node in a trail is a triple of consecutive nodes
T,¥, 2 in the trail such that £ — y — 2 in the DAG. A probabilistic network is a pair (G,T') where
G is a DAG and T is a set for every variable u € U of conditional probability tables P(u|r,) that
enumerate the probabilities of all values of u given the values of its parents 7, in the DAG. The
distribution represented by this network is [],cy P(u|7y) [5]. Independency statements that hold
in the distribution represented by a probabilistic network can be read from the structure of the
DAG using the notions of blocked trail and d-separation (2, 5].

Definition 2.1 Let G be a DAG. A trail in G between two nodes z and y is blocked by a set of
nodes Z if at least one of the following two conditions hold:

o the trail contains a head-to-head node e and e ¢ Z and every descendant of e in G is not in Z.
e there is a node e in the trail with e € Z and e is not a head-to-head node in the trail.



DAG: Gy p = Tossing of coin 1
¢ = Tossing of coin 2
G r = Bell ringing if coins are the same

Independency model: My = {I(p,9,q),1(p,9,r),1(g,0,r) + sym.}
Causal ordering: 8 = {p,q,r}

Causal input list: Ly = {I(p,9,0),I(p,9,q),I(r,pq,9)}

Associated model: My = {I(p,9,4q),1(q,9,p)}

Figure 2: A DAG that is a minimal I-map of the coins and bell-example.

Definition 2.2 In a DAG G, let X, Y and Z be sets of nodes. We say that X is d-separated

from'Y given Z, written <X, Z,Y>, if every trail between any node z € X and any node y €Y is
blocked by Z.

In Figure 1, an example DAG is depicted. <c,®,d> and <c,b,d> are valid separation statements
since all trails between ¢ and d, i.e., cabd, caed and cafed, are blocked. <c,ab,d> is valid since
the trail cabd is blocked by {a,b} because it contains node b that is not a head-to-head node. The
trail caed is blocked by {ab} since it contains node a that is not a head-to-head node in the trail.
However, <c,a,d> is not valid since the trail cabd is not blocked by a because it contains node a
which is a head-to-head node

A DAG G is an I-map of an independency model M; if <X, Z,Y> in G implies I( X, Z,Y) € My;
G is a minimal I-map of M| if no arc can be removed from G without destroying its I-mappedness.
G is a D-map of My if I(X,Z,Y) € M; implies <X,Z,Y> in G; G is a perfect map of My if it is
both an I-map and a D-map of Mj.

It is not always possible to find a DAG that is a perfect map of a distribution. For example,
consider the situation that a bell rings if the outcomes of two tossed coin is the same [5]. Let p and
g represent the outcome of the coins and r the ringing of the bell. Just to keep the distribution
positive definite, put the bell in a noisy factory such that it is not always clear if it rings or not.
Then, all variables are pairwise independent: M; = {I(p,9,q),I(p,0,7),1(q,0,r) + sym.}. But,
given the third variable they are dependent. This nonmonotonic behavior cannot perfectly be
represented by a DAG because composition (<X,Z,Y> A <X,Z,W>=<X,Z,WY>) holds for
d-separation [5]. So, if the DAG represents both I(p,®,r) and I(p,®,¢) then it also represents
I(p,0,7rq). The best we can do is represent the model by a minimal I-map as in Figure 2. However,
this DAG does not represent the independence between p and r since <p,®,r> does not hold in
the DAG.

A minimal I-map can be constructed from an independency model M; using the notion of causal
input lists [6].

Definition 2.3 Let 6 be a total ordering on U. Let M; be a complete independency model of a
distribution P over U. A causal input list Ly over M| is a set of independency statements suck
that for every x € U, Lg contains ezactly one independency statement of the form:

T = I(z,7:, Uz\72)

in which U, = {yly € U, 6(y) < 8(z)} and =, is the smallest subset of U, such that T holds in Mj.
7z 18 called the parent set of z.



For positive definite distributions, a causal input list can be constructed in O(|U|?) consultations
of M;: for z € U, we have that a node y € U, is in 7, if and only if I(z,U,\y,y) is not in Mj.

Let 8 = {p,q,7} be a causal ordering for the coins and bell example. Then the causal input
list would be Ly = {I(p,9,9),1(p,9,9),I(r,pq,0)}. A DAG Gp is associated with the ordering 6 by
letting G¢ be the DAG constructed in the following way: start with an arcless graph and place an
arc for each node u from every node in its parent set to node u. For the coins and bell example,
the nodes p and ¢ don’t have incoming arcs since their parent sets are empty. The parent set of r
contains both p and ¢ so node r will get incoming arcs from both these nodes. The result is the
graph in Figure 2. Note that the parent set depend on the ordering 6. Let & = {p, r, ¢} be a causal
ordering, then the causal input list Ly is {I(p,9,9),I(r,9,p),1(q,rp,9)}.

An independency model Mg can be associated with a DAG Gy constructed from a causal input
list Ly by letting I(X,Z,Y) € My if and only if <X, Z,Y> holds in Gg. Now Mg is the closure
of Lg under the independency axioms (follows from [10]). Furthermore, it is known M ¢ C M for
any 0 [6].

3 Conditional dependencies

As we have seen in the previous section, a probabilistic network can be used to represent inde-
pendencies. However, it is not always possible to find a perfect map for a given distribution. So,
I(X,Z,Y) does not always imply <X, Z,Y>.

We call X and Y conditionally dependent given Z, written D(X,Z,Y), if not I(X,Z,Y);
D(X,Z2,Y) is called a dependency statement. A dependency model over U is a set of dependency
statements D(X, Z,Y) with X, Z,Y disjoint subsets of U.The complete dependency model Mp of a
distribution over U is a dependency model containing all dependency statements that hold in the
distribution. We define the following dependency azioms:

symmetry D(X,Z,Y) & D(Y,Z,X)
composition D(X,Z,Y) = D(X,Z,WY)
weak reunion D(X,ZW,Y) = D(X,Z,WY)
eztraction D(X,Z,WY)AI(X,Z,W) = D(X,ZW,Y)
eztraction+ D(X,Z,WY)AI(X,ZY,W) = D(X,Z,Y)
intersection D(X,Z,WY)AI(X,ZY,W) = D(X,ZW,Y)

Theorem 3.1 For any probability distribution all dependency azioms but intersection hold. Fur-
thermore, for positive definite distributions also the intersection aziom holds.

Proof: We will only proof that symmetry holds for any probability distribution P. Let D(X,Z,Y)
be a valid dependency statement for P. By definition we have D(X,Z,Y) & not I(X, Z,Y). Now,
assume that I(Y, Z, X) holds. Then, by symmetry for independency statements it follows that
I(X,Z,Y). This last independency statement is false, however. So, we have not I(Y, Z, X) from
which it follows that D(Y, Z, X). The proofs for the other axioms are analogues. 0

These dependency axioms can be used to deduce new dependency statements from given statements.
For example, let Mp be a dependency model for a given distribution P and D(a,b,c) is in Mp.
Then, by symmetry we have that D(c,b, a) must also be in Mp.

Lemma 8.1 For any positive definite distribution P D(X,Z,Y) € Mp if and only if two nodes
z € X,y €Y ezist such that D(z, XY Z\{z,y},y) € Mp.



A proof can be found in the appendix. From the lemma it follows that for D(X, Z,Y') for a positive
definite distributions, it is sufficient to show that two variables z € X and y € Y exist such that
D(z,XY Z\{z,y},y) is in the complete dependency model.

Let Lg be a causal input list over an independency model of a positive definite distribution
over U. Then, the dependency base associated with Lg is the set of dependency statements
Lo = {D(z,7:\{y},9)|z € U,y € 7,}. We define the dependency model associated with 6, denoted
as Mp g, as the closure of the dependency base ¥o under the dependency axioms. It can be shown
that the closure of £y under symmetry, weak reunion, composition, extraction and intersection is
equal to the closure of £g under all dependency axioms (see Theorem 4.3).

Theorem 3.2 Let M; be a complete independency model of a positive definite distribution over U
and Mp be its complete dependency model. Let Ly be a causal input list over M. Let Mp g be the
dependency model associated with Lg. Then, Mpg C Mp.

Proof: The property stated in the theorem will be proved by contradiction. Assume for a state-
ment D(z,7;\y,y) € Lo that it is not in Mp. Then, by definition I(z,7;\y,y) € M1 . I(z,7:\y,9)
and I(z, 7., Uz\mz) imply I(z, 7z\y, Uz\(7z\y)) using contraction. But this is not a valid statement
since it implies that 7, was not the smallest subset of U, such that I(z, 7, U;\7;). So, all state-
ments in Tg are in Mp. Since the dependency axioms are sound for positive definite distributions,
the theorem follows from the definition of Mpg. O

4 N )

Mp M;

Mp My
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Figure 3: Division of the dependency pool

The dependency pool M over U is the set of all triples (X, Z,Y) with X,Y and Z disjoint subsets
of U. For a given causal input list Lg over U, we can divide the pool M into three disjoint sets:
Mje, Mpg and M\(MyeUMpg) as depicted in Figure 3. Note that from a given causal input list
of an independency model, not all independency and dependency statements may be known. So;
there are statements for which it cannot be decided from the structure of the graph alone whether
it is a independency statement or a dependency statement.

For the coins and bell example, My¢ = {I(p,9,q) + sym.} as shown in Figure 2. The associ-
ated dependency model Mp g is {I(r,q,p),I(r,p,q),I(r,9,pq),1(p,9,7q),1(q,0,7p), + sym.} which
leaves the statements {I(p,9,r),1(¢,0,7), + sym.} to be unknown.



4 Graphical criterion for conditional dependencies

In Section 2 we have argued that all independency statements in the independency model My,
associated with the causal input list Ly can be read from Gy constructed from Ly using the d-
separation criterion. It would be useful to have a similar graphical criterion for reading dependency
statements from the DAG Gjy. In this section we investigate the properties of such a criterion.

Consider a DAG Gy constructed from a causal input list Ly over an independency model Mj.
Let D(X,Z,Y) be a dependency statements in Mpg. Then, a derivation exists starting with
D(z,7,\y,y) and ending with D(X, Z,Y). By structural induction over the steps in the derivation
(that use symmetry, composition, weak reunion, extraction and intersection and even extraction+)
it can be shown that in every step the following properties are preserved: Let D(X’,Z’,Y’) be the
result of a step in the derivation then two nodes z € X’ and y € Y’ or z € Y’ and y € X’ exist
such that y — z and 7, C XY Z. So, any graphical criterion for reading dependency statements
D(X, Z,Y) from Gg must satisfy these conditions. So, we have the following lemma.

Lemma 4.1 In a DAG Gy that is a minimal I-map of an independency model M| any graphical
criterion that holds for a triple (X, Z,Y) if and only if D(X, Z,Y) € Mp ¢ must satisfy the following
conditions: two nodesa € X Ab€Y ora €Y Ab€ X erxist such that

o b—a.

o1, C XYZ.

See the appendix for a proof. Some conditional dependency statements can be read from the graph
using the following criterion:

Definition 4.1 In a DAG G, we say that X and Y are coupled given Z, written >X,Z,Y<, if
nodes ¢ € Xandy €Y or ¢ € Yandy € X ezist such that all following conditions hold:

ey — 1z is an arc in G.

e, C XYZ.

e a set Q erists such that Z C Q C XYZ\{z,y} and <2,Q,y> in G when the arc y — z i3

removed.

Figure 4: Minimal I-map for which >a,¢,b<, >a,cd,b< and >ac,e,db<, but not >a,ce,b< or
>a,de, b<.

In Figure 4 some examples of coupling statements are given. We have that >a,c,b< since b — a
is an arc in the graph, 7, = {b,¢} C {a,b,c} and all trails between a and b not containing b — a,
i.e., aedb and afedb, contain a head-to-head node and therefore are blocked. Also we have that
>ac, e, bd< since still b — a is an arc in G, 7, C abede and a set @ = {d, e} exists such that all



trails are blocked. The statement >a,ce,b< does not hold since the trail aedb is not blocked and
no set Q that is a subset of ce can be found that does so. The statement >a,de,b< does not hold
since 4 is not subset of {a,d, e, b}.

Theorem 4.1 In a DAG G that is a minimal I-map of an independency model Mj, the following
property holds:
>X,2,Y<= D(X,2,Y)

A proof can be found in the appendix. As a consequence we have that if the first two conditions for
coupled hold for a triple of sets (X, Z,Y) and the set Z does not contain descendants of z where
z corresponds to the node in the definition then D(X, Z,Y).

The theorem implies that the definition of coupled gives sufficient conditions for reading de-
pendency statements from a minimal I-map. However, it does not give necessary conditions to
do this. For example, if the DAG in Figure 4 is a minimal I-map of a model then we know from
the dependency base that D(a,c,b), so by symmetry D(b,¢c,a) and using composition D(b, ¢, aef).
From the DAG we have <b, ace, f> implying I(b, ace, f). And, D(b,c,aef) and I(b, ace, f) imply
D(b, cf,ae) using intersection. However, >b,cf, ae< does not hold in the DAG: the trail aedb will
always be unblocked by a set containing f and not d.

The question that arises is: does a mathematical aesthetic and not too complex criterion ex-
ists such that this criterion can be used to read dependency statements from the graph. Such a
criterion must contain the following property. As we saw in the previous example, D(b,cf,ae) in
the DAG of Figure 4. However, D(be,cf,a) can not be derived using the dependency axioms and
the independency statements in the DAG. This example shows that the derivation depends on the
place of the variable e in the statement. A graphical criterion must reckon with this possibility.

For dependency statements D(X,Z,Y) where X and Y are single variables this problem does
not arise. We have the following result.

Theorem 4.2 In a DAG Gy constructed from a causal input list Lg of a complete independency
model My, the following property holds:

>z,Z,y<& D(z,Z,y) € Mpg

For a proof we refer to the appendix. This theorem says that at least for all dependency statements

in Mpy concerning single nodes can be read from the graph. With the help of these theorems we
can show the following theorem.

Theorem 4.8 The closure of X¢ under the dependency azioms is equal to the closure of Xo under
all dependency azioms but ezxtraction+.

For a proof one may consult the appendix. A consequence of this lemma is that no dependency
statements would be underivable if Mpg if it was closed under de dependency axioms without
extraction+.

5 Conclusions

Not all independency statements can always be represented by a probabilistic network. Therefore,
if the d-separation criterion does not hold for three sets of variables, it does not necessarily mean the
sets are dependent. In this paper we gave an axiomatic characterization of conditional dependencies
which is sound. Furthermore, a graphical criterion is presented to read most of the dependency



statements from a DAG that is a minimal I-map. It is shown that for some statements it cannot
be deduced from the structure of the probabilistic network whether it is an independency or a
dependency statement.
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Appendix

Lemma 8.1 For any positive definite distribution P D(X,Z,Y) € Mp if and only if two nodes
r € X,y €Y exist such that D(z,XY Z\{z,y},y) € Mp.

Proof: First we show the < part. Assume that two nodes ¢ € X and y € Y exist such that
D(z,XYZ\{z,y},y). Then,

D(z, XYZ\{z,y},y)
= { Weak reunion }

D(z, X Z\{z},Y)
= { Symmetry }
D(Y,ZX\{z},z)
= { Weak reunion }
D(Y, Z,X)
= { Symmetry }
D(X,Z,Y)

Now the = part. We assume D(X, Z,Y) that holds, Let X = {z1,...,Zn}, Y = {¥1,..:s¥m}-
Now suppose that for all z € X, y € Y, the statement I(z, XY Z\{z,y},y) is valid. Then,

VzEXI(x’XYZ\{za yl}a yl)

= { Intersection with I(z, XYZ\{z,y2},%2) }
VeexI(z, XY Z\{z, 01, 2}, 111)

= { Intersection with I(z, XY Z\{z,y3},v3) }

VeexI(z, XY Z\{z,y1, 92, Y3}, v19293)

Veex (2, XYZ\{2, 31, ¥2, - Ym—1}, Y192--Ym—1)
= { Intersection with I(z, XY Z\{z,ym}, ¥m) }
VzexI(z,XZ\{z},Y)
= { Symmetry }
VxGXI(Y’XZ\{z}’x)

A similar observation holds for zy,...,7,. So, we can derive I(X,Z,Y) which contradicts
the assumption D(X,Z,Y). Therefore, the assumption that for all z € X,y € Y the statements
I(z, XY Z\{z,y}, y) holds is false. 0

Lemma 4.1: In a DAG Gy that is a minimal I-map of an independency model M1 any graphical
criterion that holds for a triple (X, Z,Y) if and only if D(X, Z,Y) € Mp ¢ must satisfy the following
conditions: two nodesz € X Ay€Y orz €Y Ay € X exist such that



e y — z is an arc in Gy.

e, CXYZ.

Proof: D(X,Z,Y) € Mp 4 implies by definition that a derivation X a1, ... v, exists where
o; is a clause of the form D(A, B,C) or D(4, B,C),I(E, F,G) and «; is one of the dependency
axioms. Furthermore, 0 contains the statement D(a,74\b,b) and o, = D(X, Z,Y).

We proof the lemma by structural induction over the steps in the derivation. If the derivation
is of length 0 (n = 0) it is obviously true. If the derivation is of length n >= 1 assume the lemma
is true for derivations of length n — 1. We make distinction between the axiom used for v,.

¢ (symmetry) D(X,Z,Y) & D(Y, Z, X). By induction hypothesis in 0,1 there are z € X,y €
Y or z € Y,y € X such that the two conditions hold. Therefore, the conditions also hold for
zeY,ye Xorz e X,yeY.

e (composition) D(X,Z,Y) = D(X,Z,WY). Likewise.
o (weak reunion) D(X,ZW,Y) = D(X,Z,WY). Likewise.

e (extraction+) D(X,Z,WY)AI(X,ZY,W) = D(X,Z,Y). Let z € X,y € WY such that
the two conditions hold. f y € W then <X, ZY, W> would not hold because by condition 1
(y — z) z € X and y € W are adjacent. So y € Y and condition 1 still holds in o, containing
D(X,Z,Y). Let 7, C WXY Z and let there be a node w € W such that w € 7. Then
<X,ZY,W> would not hold since z € X and w € W are adjacent. So no node w € W is in
7z. This implies 7, C XY Z so the second condition also holds for ay,.

Let z € WY,y € X such that the two conditions hold. If z € W then <X, ZY,W> would
not hold because by condition 1 (y — z) z € W and y € X are adjacent. So z € Y and
condition 1 still holds in o, containing D(X, Z,Y). Let 7, C WXY Z and let there be a node
w € W such that w € ;. Then <X, ZY,W> would not hold since there would be a trail
y—z—wand y € X,z € Y,w €W so this trail is blocked. This implies 7, C XY Z so the
second condition also holds for o,,.

o (extraction) D(X,Z,WY)AI(X,Z,W) = D(X,ZW,Y). Like for extraction assuming z or
y in W makes I(X, Z, W) impossible. Therefore,z € X and y€Y ory € X and z €Y and
the first condition is shown. The second condition (1, C WXY Z) still holds also.

o (intersection) D(X,Z,WY)AI(X,ZW,Y) = D(X,ZY,W). Let z € X,y € WY theny €Y
implies <X, ZW,Y> would not hold since y — z. So y € W which shows the first condition.
The second condition 7, C WXY Z still holds since o, contains all sets W, X,Y and Z

Let z € WY,y € X then z € Y implies < X,ZW,Y > would not hold since y — z. So
z € W which shows the first condition. The second condition 7, C W XY Z still holds since
o0, contains all sets W, X,Y and Z.

So the two conditions still hold for derivations with n clauses. O
For the proof of Theorem 4.1 we use the following lemma.

Lemma A1l Let G = (U, A(G)) be a DAG. Let z,y € U be two nodes such that y — = in G. Let
Z C U\{z,y} be a set of nodes such that =, C ZU{y}. Let c € U\Z be a node that is a descendant
of node x and has no descendants in Z. Furthermore, let any trail between x and y not containing
y — z be blocked by Zc. Then, either <c,Zz,y> or <c,Zy,z>.



Proof: Assume two trails ¢(z, ¢) and t(c, y) exist such that both #(z, c) is not blocked given Zy and
t(c,y) is not blocked given Zz. From the conditions in the lemma then also #(z, c) is not blocked
given Z and t(c,y) is not blocked given Z. Since ¢ does not contain descendants in Z both trails
must have an incoming arrow into c.

So, it follows that the trail #(z,y) that arises when ¢(z,c) and #(c,y) are concatenated is not
blocked by Zc¢ (the part between z and ¢ is not blocked by Z, c is a head-to-head node and the
part between y and c is also not blocked by Z) and the condition would not be fulfilled. Therefore,
either all trails ¢(z, c) are blocked by Zy or all trails ¢(y, ¢) are blocked by Zz. 0O

Theorem 4.1 In a DAG G that is a minimal I-map of an independency model M, the following
property holds:

>X,Z,Y<= D(X,Z2,Y)

Proof: We assume that >X,Z,Y < holds in G. Without loss of generality we take z € X and
y € Y to be the nodes such y — z is an arc in G, 7, C XY Z and let @ be the set such that
ZCQCXYZ\{z,y} and <z,Q,y> in G when the arc y — z is removed.

Let Q. C Q be the set of nodes that are not descendants of z and let Q4 = Q\Q,. Since G is
a minimal I-map we have that,

D(z, 7 \y,y)

= { Composition }
D(z,7:\y,9Qu)

= { Intersection with I(z,7;,Q4) }
D(z, Quﬂ'z\% y)

Now we will proof that D(z,Q7,\y,y) also holds by adding nodes in @ that are descendants
of z one by one using Lemma A1. If all trails between z and y are blocked by @,\y then they are
also blocked by Q,7.\y. Let ¢ € Q4 be the node that is lowest in the ordering # then Lemma A1l
implies either I(q,2Q.7:\y,y) or I(q, Qumz,z). So,

D(z,Qum2\y, )
= { Intersection with I(g,zQ.7;\y,v) or I(q,Qums,2) }

D(z,qQum:\y,7)

Repeat this derivation step with Q, := Q, U ¢ and Q4 = Q4\g until @4 = @. Observe that if
all trails between ¢ and b not containing y — z are blocked by a set D then they are also blocked
by a set D\p where p is a descendant of a that has no descendants in D. Therefore, Lemma A1l
applies every time the derivation step is repeated. This derivation results in D(z, Qx;\y,y). So,

D(z,Q7:\y,y)
= { Composition and symmetry }

D(z L (X\Q7.),Q7\y,y U (Y\Q72))
= { Weak reunion and symmetry }
D(X,2,Y)
So, D(X,Z,Y) € Mp g and therefore by Theorem 3.2 D(X,Z,Y) € Mp. 0

Theorem 4.2 In a DAG Gy constructed from a causal input list L9 of a complete independency
model My, the following property holds:

>z, Z,y<& D(z,Z,y) € Mpg
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Proof: The = part follows from Theorem 4.1. For the < part we have to show that for all
derivations resulting in a dependency statement of the form D(z, Z,y) >z, Z, y< holds.

Assume D(z, Z,y) but not >z, Z,y<. By Lemma 4.1 we know that two nodes a € {z}, b € {y}
or a € {z}, b € {y}, must exist such that b — a and 7, C XY Z. Without loss of generality we
assume that a = r and b = y. Since no @ C XY Z\{z,y} = Z exists such that all trails between z
and y are blocked (otherwise we have >z, Z, y<), a trail not containing y — z must exist between
z and y that is unblocked. Since, 7, C Zy the trail cannot contain an arc from a parent of z to
z. So the trail contains a descendant of z (thus also of y) that forms a head-to-head node. For
the trail to be blocked a node w € Z N desc(z) must exists such that w is a head-to-head node or
descendant of a head-to-head node in a trail between z and y.

If D(z,Z,y) can be derived from D(a,74\b,b) using the dependency axioms then I(a,w,\b,b)
can be derived from D(z,Z,y) using the independency axioms. Since we know (m,\b) C Z we
have to remove the nodes Z\(74\b) from Z. How can w be removed from Z in the derivation?
This can only be done when nodes @ are introduced such that the trail between z and y via w
is blocked using contraction. However, introducing such a node cannot be done since the @ must
fulfill <Q, Zz,y> or <Q, Zy,z>. These statements will hold for no such @ since the trail between
z and y via w is not blocked. So, D(z, Z,y) could not be derived. 0O

Theorem 4.8: The closure of ¥ under the dependency arioms is equal to the closure of Lo under
all dependency arioms but ezxtraction+.

Proof: We call the dependency axioms A1l and define A2 as Al without extraction+. So, we have
to show that the closure of ¥y under Al is equal to the closure of £y under A2. Since A2 C Al,
the closure of ¥y under A2 is a subset of the closure of Lo under Al. Leaves to be shown that the
closure of ¥ under A1l is a subset of the closure of ¥ under A2.

Assume D(X,Z,Y) is in the closure of ¥y under Al but not in the closure of ¥y under A2.
Observe >X,Z,Y < cannot hold since in the proof that >X,Z,Y<= D(X,Z,Y) (Theorem 4.1)
we only used the axioms in A2. By Lemma 4.1 two nodes z and y must exist such that z € X and
yEYorzeYandy€ X y— z and 7, C XYZ (Note that Lemma 4.1 also uses extraction+).
Since no @ C XY Z\{z,y} exists such that all trails between z and y not containing y — z are
blocked, a node w € Z N desc(z) must exists such that w is in a trail between z and y.

Observe a derivation D(a,7,\b,b) = D(X, Z,Y) is isomorph with the derivation I(X, Z,Y) =
I(a, m,\b, b) where the axioms for independency statements are used and both extraction and ex-
traction+ are replaced by contraction. Furthermore, observe that the set A2 contains axioms that
do not remove nodes from the dependency statements while A1 does (via extraction+). Like-
wise, the independency axioms used in the derivation isomorph with a derivation using A2 do not
introduce new nodes while the derivation isomorph with Al does.

Assume no derivation using the isomorph axioms in A2 can be made, i.e. such that no new
nodes are introduced. Then one may ask which nodes are helpful to introduce. The only ones that
are helpful are nodes that block a trail like the one containing w. For introducing such a node ¢
<q,2',z> or <q,Z',y> must hold. However, this will never be the case since the trail not blocked
by w is still not blocked. So, such a dependency statement D(X, Z,Y) does not exist. O

References

[1] A.P. Dawid. Conditional independence in statistical theory. J.R. Statistical Society B, pages
1-31, 1979.

11



[2] D. Geiger, T. Verma, and J. Pearl. Identifying independence in bayesian networks. Networks,
Vol. 20, pages 507-534, 1990.

[3] S.L. Lauritzen, A.P. Dawid, A.P. Larsen, and H.G. Leimer. Independence properties of directed
markov fields. Networks, Vol 20, pages 491-505, 1990.

[4] S.L. Lauritzen and D.J. Spiegelhalter. Local computations with probabilities on graphical
structures and their applications to expert systems (with discussion). J.R. Stat. Soc. (Series
B),Vol. 50, pages 157-224, 1988.

[5] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufman, inc., San Mateo, CA, 1988.

[6) J. Pearl, D. Geiger, and T. Verma. The logic of influence diagrams. In R.M. Oliver and J.Q.
Smith, editors, Influence Diagrams, Belief Nets and Decision Analysis, pages 67-87. John
Wiley & Sons Ltd., 1990.

[7] J. Pearl and A. Paz. Graphoids: a graph based logic for reasoning about relevance relations.
In Proceedings ECAI, 1986.

[8] J. Pearl and T. Verma. The logic of representing dependencies by directed acyclic graphs. In
Proceedings AAAI pages 374-79, 1987.

[9] Ross D. Shachter. Evaluating influence diagrams. Operations Research, 34:871-882, 1986.

[10] T. Verma and J. Pearl. Causal networks: Semantics and expressiveness. In Proceedings of the
4th Workshop on uncertainty in Al, pages 352-359, 1988.

12



