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Abstract

In this paper, the preliminaries for the development of a theory for Bayesian Belief
Networks (BBN) construction using conditional independencies are presented. This paper
offers the following; an overview of the work done in constructing BBNs using conditional
independencies, and a uniform formalization of this work including full proofs of claims
made about this work.

1 Introduction

Bayesian belief networks (BBNs) offer a mathematically sound tool for reasoning with uncer-
tainty in knowledge-based systems. By exploring the semantics of BBNs efficient algorithms
have been developed for processing evidence and calculating probabilities of hypotheses. The
theory of BBNs integrates two disciplines: probability and graph theory. So, the theory may
draw from a rich theoretical background.

Compared to the work on reasoning with BBNs [9, 6, 10, 2], not much research is done
on the construction of BBNs from statistical data. [9, 8]. The aim of this paper is to make
a start with developing a theory for constructing BBNs. To this end, this report offers the
following. Firstly, we give an extensive overview of the work already done on constructing
BBNs using the independencies of variables in distributions [9, 4, 12]. Secondly, we present a
uniform formalization of this work. Thirdly, we give full proofs of the mathematical properties
involved; it is noted that proofs in literature are not so rigorous as one could wish for or are
not available at all.

In Section 2, the basic notions and notational conventions used in this paper are presented.
Amongst other things, we develop the notion of conditional independence to characterize
a probability distribution. In Section 3, some properties of conditional independence are
presented. In Section 4, various types of graphs and the probability distributions they can
represent are presented. In the final section, we compare the different types of BBNs and
consider practical aspects of the construction of the different types of graphs.

2 Preliminaries

In this section we present the nomenclature and our notation of this field of research. Since
theory on BBNGs relies heavily on probability and graph theory, two separate subsections have
been addressed to them. The third subsection deals with the graph-theoretical notion of



separation. In the last subsection terms are explained that do not fit with the other three
subjects.

2.1 Probability theory
Definition 2.1 A probability measure Q on a field F over a space Q is a function
Q : F — [0,1] satisfying

o forallAec F,0<Q(A)<1

* Q(2)=0,Q(2)=1

o for Ay, A; disjoint subsets of Q Q(A; U A2) = Q(A;) + Q(A»).

Definition 2.2 A o-field is a field that is closed under formation of countable unions.

Definition 2.3 A probability space is a triplet (2, F, Q) where Q is an arbitrary space, F
18 a o-field over Q and Q is a probability measure on F.

Definition 2.4 A random variable u in a probability space (Q, F, Q) is a function u : Q —
IR such that

° Vze]RAz € F, and

where Ay = {w|lw € Q,u(w) < z}. u; € R is a value of a random variable u if I, equ(w) =
u; A Q(w) > 0.

Definition 2.5 A probability distribution P over a random variable u in a probability
space (2, F, Q) is a function defined by

VBQ]RP(u(w) € B) = Q({w|w € 2,u(w) € B})

Likewise a probability distribution P over a set of random variables U = {ul,...,u"} in a
probability space (@, F,Q) is defined by Vp 5 -pP(u'(w) € B A...Au"(w) € B,) =
Q({wlw € Q,u}(w) € By,...,u™(w) € B,}). Since we are not interested in the argument w
we omit it and write P(u € B) instead of P(u(w) € B). In this paper we will use the notation
P(.) to denote a probability distribution. A random variable will be called a variable for
short. Most of the time we are concerned with discrete variables, i.e. variables with only a
finite number of values in the range with probability not equal to zero.

Definition 2.6 A probability distribution P over a set of variables is called positive definite
if for all combinations of values of the variables the probability is not equal to zero.

We will adhere to the following conventions. We will use lower-case letters for single
variables and upper-case letters for sets of variables. For single variables we use superscripts
for distinction and subscript indices to denote the values of a variable. So, we write P(a! = al)
for the probability that variable a! will have the value a}. We will write P(a;) for P(a = a;)
and P(a;b;) for the probability that a = a; and b = b;. Any expression or derivation E that



contains variable names or variable set names without having values assigned as arguments
of a probability measure we mean E is true for any combination of values these variables can
get. For example, let @ € {ay,...,az} and b € {b1,...,b} . We take P(adb) = P(a)P(b) to
mean Ye(1,. k}ie(1,..m} P(aibj) = P(ai) P(b;).

In this paper we will use the letter U to denote the set of all variables concerned in a
given context.

Definition 2.7 Let X,Y C U be sets of variables, such that P(X) > 0. Then, the condi-
tional probability of Y given X is defined as

P(XY)

P(X)

P(Y|X)=

Definition 2.8 Let X,Y,Z C U be sets of variables. X is said to be conditionally inde-
pendent of Y given Z, written I(X,Z2,Y), if

P(XY|Z) = P(X|Z)P(Y|Z)
A statement I(X,Z,Y) is called an independency statement.
Note that I(X,d,Y) indicates unconditional independence, i.e. P(XY) = P(X)P(Y).

Definition 2.9 Let P be a probability distribution over a set of variables U. The indepen-
dency model M of P is the set of all independency statements that hold in P.

2.2 Graphs

We want to represent an independency model by a graph. To do so, several kinds of graphs
are considered.

Definition 2.10 An undirected graph (UG) G is an ordered pair G = (V(G), E(G))

where V(G) = {v1,v%,...,v"},n > 1, is a finite set of nodes and E(G) is a family of unordered
pairs (v',v?) € U(G) called edges.

Definition 2.11 Let G = (V(G), E(G)) be an undzrected graph. A path p(v',v?) from node
v € V(G) to node v7 € V(G) is an ordered set {p°,p!,...,p"} C V(G) of nodes such that
p° = v, p® = v and V0<k<,.(p ,0**1) € E(G). The length of a path p(v',v?) is the
cardmalzty of p(v',v?) minus 1. A cycle is a path p(v',v').

Definition 2.12 A chordal graph (CG) is a UG G = (V(G), E(G)) in which for every
cycle p(v*,v*') = {v',v7,...,0F v‘} (v. € V(G)) of length equal or greater than four, there
ezists a cycle p(v',v') = {v v, vk, v’} in G.

Definition 2.13 A multi undirected graph (MUG) is an ordered pair MG =
(V(MG),S(MG)) where V(MG) = {v',v%,...,v"}, n > 1, is a finite set of nodes and
S(MG) is a set of undirected graphs G = (V(G), E(G)) such that for every G € S(MG)
V(G) C V(MG).



Deﬁmtlon 2.14 A directed graph G is an ordered pair G = (V(G), A(G)) where V(G) =
{'u v3,...,9"},n > 1, is o finite set of nodes and A(G) is a family of ordered pairs (v*,v9),
v, vl € V(G) called arcs.

We take the notion of a path, the length of a path and a cycle to apply to directed graphs by
taking the direction of the arcs into consideration.

Definition 2.15 Let G = (V(G),A(G)) be a directed gmph A trail ¢(v*,v?) in G from node
v' € V(G) to node v/ € V(G) is an ordered set {p°,pl,...,p"} C V(G) of nodes so that
1 = v, p" = o and Vogken(ph, P*+) € A(G) V (9, 1) € A(G).

Definition 2.16 A directed acyclic graph (DAG) is a directed graph without any cycles.

Definition 2.17 In a DAG G = (V(G), A(G)) a descendant of a node v € V(G) is a node
w € V(G) such that there ezists a path p(v,w) in G.

Definition 2.18 A multi directed acyclic graph (MDAG) is an ordered pair MG =
(V(MG),S(MG)) where V(MG) = {v!,v2,...,9"}, n > 1, is a finite set of nodes and
S(MG) is a set of directed acyclic graphs G = (V(G), E(G)) such that for every G € S(MG),
V(G) C V(MG).

2.3 Separation

A graph represents an independency model of a probability distribution over U if every node
in the graph represents a variable and vice versa. In addition, there is a criterion with which
we can read the independency statements in the model from the graph [9, 5]. This criterion is
called separation and for the various kinds of graphs there are various kinds of separation.
First we will define separation for undirected graphs.

Definition 2.19 Let G = (V(G), E(G)) be an undirected graph. Let X,Y,Z C V(G) be sets
of nodes. We say that Z separates X from Y, written <X,Z,Y>, if every path from any
z € X to any y € Y contains at least one z € Z.

Separation in a UG is also called vertex separation. In the sequel, we write <z,2,y>
instead of <{z}, {2}, {y}> for single nodes z, y and z and XY instead of X UY. We write
X =Y or X\Y for the set X with those nodes that are in Y excluded.

Definition 2.20 Let G = (V(G), E(G)) be a UG. Let a,b,c € V(G) be nodes. Then, a,b are
adjacent in G, written a —b, if a and b cannot be separated by any subset in V(G)\{a,b};
a,b are nonadjacent in G, written a—/-b, if a and b are not adjacent.

The nodes a,b are conditionally adjacent in G given c, written a —b|c, if a and b
cannot be separated by any subset S C V(G)\{a,b} such that c € S; a,b are conditionally
nonadjacent in G given c, written a-/-b|c, if a and b are not conditionally adjacent given c.

We take the notions of adjacency, nonadjacency, conditional adjacency and conditional non-

adjacency to apply to DAGs, MUGs and MDAGs by inserting the proper type of graph in
the definition.



Definition 2.21 Let MG = (V(MG),S(MG)) be a multi undirected graph. Let X,Y,Z C

V(MG) be sets of nodes. We say that Z separates X fromY in MG if there ezists a UG
G = (V(G), E(G)) € S(MG) such that

o Z separates X fromY in G.

. v a € V(G).
acXUuYuZ

For DAGs the separation criterion is more sophisticated and we need a couple of new notions
to define it.

When a directed graph G contains an arc (v',v’) we say v/ has an incoming arrow
from v', written v’ — v. If a trail #(v*, v9) in a directed graph G contains three consecutive
nodes v*=1,v* and v**! for which v*~! — ¥ and v**' — oF we say the trail contains a
head-to-head node, written — vF —.

Definition 2.22 Let G = (V(G), A(G)) be a DAG. Let z,y € V(G) be nodes and Z € V(G)

be a set of nodes. A trail t(z,y) in G is blocked by Z, written z «/» y|Z, if at least one of
the following conditions hold:

e the trail contains a head-to-head node e such that e ¢ Z and none of the descendants of
eisin Z.

o there is a node e in the trail with e € Z that is not a head-to-head node in the trail.

A trail ¢(z,y) in G is active given Z, written z e y|Z, if the trail is not blocked by Z.
Sometimes there are head-to-head nodes in a DAG where the corresponding variable has a
fixed value, the so-called fixed value nodes. When we want to determine whether a trail is

blocked or not by a set Z we first have to add the fixed value nodes to Z and than apply the
definition.

Now we are able to define separation for DAGs.

Definition 2.28 Let G = (V(G), A(G)) be a DAG. Let X,Y,Z C V(G) be sets of nodes. We

say that Z separates X from Y if every trail between any z € X to any y € Y is blocked by
Z.

Separation in DAGs is also called d-separation.

Definition 2.24 Let MG = (V(MG),S(MG)) be a multi directed acyclic graph. Let
X,Y,Z C V(MQG) be sets of nodes. We say that Z separates X fromY in MG if there
ezists a DAG G = (V(G), A(G)) € S(MG) for which

e Z d-separates X fromY in G.

° \4 a € V(G).
a€XUYuUZ



2.4 Auxiliary

To represent an independency model with a graph, independency statements and separation
have to be related. With every variable ' € U in the probability distribution a node u' €
V(G) in the graph is associated. Similarly, we associate with every set of variables X C U a
set of nodes X C V(G). From now on we will not make a distinction between U and V(G).

Definition 2.28 Let G = (V(G),V(G)) be a UG. Let M be an independency model over a
set of variables V(G).

e G is called an independency map or I-map of M iff for all X, Y, Z C V(G) we have
<X,Z,Y>= I(X,Z2,Y).

® G is called a dependency map or D-map of M iff for all X,Y,Z C V(G) we have
I(X,2,Y)=><X,Z,Y>.

¢ G is called a perfect map of M iff for all X, Y and Z we have <X,Z,Y>& I(X,Z,Y).

A fully connected UG is a trivial I-map and an edgeless graph is a trivial D-map. If condi-
tional independence implies separation and vice versa then the graph is called a perfect map.
Unfortunately, not every independency model has a perfect map that is a UG or a DAG.

We take the notions of independency map, dependency map and perfect map to apply to
DAGs, MUGs and MDAGs by inserting the proper type of graph in the definition.

Definition 2.26 An independency model M is called graph-isomorph if there ezists a graph
G that is a perfect map of M.

We speak about UG-isomorphism if there exists a UG that is a perfect map of the model and
similar of DAG-isomorphism, MUG-isomorphism and MDAG-isomorphism.
3 Some properties of conditional independence

In this section we discuss some properties of the conditional independence relation which can

be found in {1, 7, 9]. Throughout this section P is a probability distribution over a set of
variables U and I is the independency relation in P.

Lemma 8.1 Let X,Y,Z C U be sets of variables, then

I(X,2,Y) & P(XY|Z)=P(X|Z)P(Y|Z) (1)

& P(XYZ)=P(X|2)P(YZ) (2)

& P(X|ZY)=P(X|2) 3)

& 35,P(XYZ) = f(X,2Z)g(Y, 2) (4)

Proof: In the lemma, (1) is by definition; (2) follows from P(XZY) = P(XY|Z)P(Z) =
P(X|Z)P(Y|Z)P(Z) = P(X|Z)P(YZ). Equation (3) follows from P(X|ZY) =
P(XYZ)/P(YZ) = P(X|Z)P(YZ)/P(YZ) = P(X|Z). Equation (4) follows from the ax-
ioms of probability theory and is left to the reader. a

Note that I(X, Z,Y) implies P(Z) > 0 by definition of conditional independence.



Definition 3.1 Let X,Y,Z,W C U be sets of variables and a,b,c,d € U be variables. Then
we define the following properties:

reflexzivity XCcZ = IX2Z2Y)
relative
disjunction I(X,2,Y) == XnYCZ
symmeltry - I(X,2,Y) & I(Y,Z,X)
decomposition I(X,Z,WY) = I(X,Z,W)AI(X,Z2,Y)
weak union I(X,Z,wWY) = IX,ZW)Y)
contraction I(X,Z,Y)N(X,ZY, W) = I(X,Z,WY)
intersection I(X,ZW,Y)ANI(X,ZY,W) = I(X,Z,YW)
strong union I(X,2,Y) = I(X,ZW)Y)
transitivity I(X,2,Y) = I(X,Z,e)VI(c,Z2,Y)
composition IX,Z,WYANI(X,2,Y) = I(X,Z,WY)
weak transitivity I(X,Z,Y)AI(X,ZU{c},Y) = I(X,Z,c)VI(c,Z,Y)
chordality I(a,cd,b)A I(c,ab,d) = I(a,ec,b)V I(a,d,b)
d — transitivity
I(X,2,Y) & v
z€X yeY or yeX,z€Y
{zeZvyeZ}
or
' {z # v} ’
and

{Va,bGUI(z, Zy,a)VI(b,Zz,y)Va—bV 3 a-fblevZ = Z}
c€Z

and

{ V I(a,Zz,y)Vae+aV( I zFwAz —wla)}
a€lU wel

\ s

In table 1 a list of properties for conditional independency statements is given together with
the distributions for which they hold. Most other known rules of inference, such as the
chaining rule (I(X,Y, Z)AI(XY,Z,W) = I(X,Y,W) 9, 1]) and mixing rule (I(X, Z, WY)A
I(Y,Z,W) = I(XW, Z,Y) [9]), can be derived from a subset of these statements and Bayes
rule.

In the last column ‘any’ means that the axiom holds for any probability distribution. The
term ‘positive definite’ refers to probability distributions that are positive definite. The ‘——’
signs mean that the corresponding axiom does not hold for any distribution in general; this
does not mean, however, that there are no distributions satisfying these axioms.

We begin by proving the validity of the properties reflexivity, relative disjunction, sym-
metry, decomposition, weak union and contraction for any probability distribution.

Lemma 8.2 Reflezivity holds for any probability distribution.



name distribution
reflexivity any
relative disjunction | positive definite
symmetry any
decomposition any

weak union any
contraction any
intersection positive definite
strong union -
transitivity -
composition -

weak transitivity normal
chordality -

d — transitivity _

Table 1: List of axioms for conditional independence.

Proof: Let X,Y,Z C U be sets of variables. If X C Z either the values of the variables in
X are the same as those of Z and P(XY|Z) = P(Y), or there is a variable with a different
value and P(XY|Z) = 0. In both cases P(XY|Z) = P(X|Z)P(Y|Z) thus I(X, Z,Y) a

Lemma 8.3 Relative disjunction holds for positive definite probability distribution.

Proof: Let X,Y,Z C U be sets of variables. Suppose I(X,Z,Y) and XNY = Z’' € Z and let
X'=X\Z"and Y' = Y\Z'. Then I(X,2,Y) = I(X'Z',Z,Y’'Z') implies I(Z',Z,Z') using
the decomposition axiom (which is shown to hold for any probability distribution in lemma
3.5). So P(Z'|Z) = P(Z2'Z'|Z) = P(2Z'|Z)P(2'|Z) which implies P(Z'|Z) = 0 or 1. This is
only true if Z' C Z (or if Z' is determined by Z). a

Lemma 8.4 Symmetry holds for any probability distribution.

Proof: Let X,Y,Z C U be sets of variables. We have to show I(X, Z,Y) « I(Y, Z, X). From
I(X,Z,Y) we have

P(XY|Z) = P(X|2)P(Y|Z) {Def. I(X,Z,Y)}

= PY|2)P(X|Z) {comm. of mult.}

= P(YX|2) {Def.}
And therefore, I(Y, Z, X). Since the proof consists of equalities only, we also have I(Y, Z, X)
implies I(Y, Z, X). a

Lemma 8.5 Decomposition holds for any probability distribution.

Proof: Let W, X,Y, Z C U be sets of variables. We have to show I(X,Z,WY) = I(X,Z,W)A
I(X,Z,Y). From I(X,Z,WY) we find

P(XY|2) Yw P(XWY|2)
Yw P(X|Z)P(WY|Z) {Def. I(X,Z,WY))
P(X|Z2)P(Y|Z)
From which we have I(X, Z,Y). The proof for I(X,Z,WY) = I(X, Z,W) is analogous. [J

tonn



Lemma 3.6 Weak union holds for any probability distribution.

Proof: Let W, X,Y, Z C U be sets of variables. We have toshow I(X,Z,WY) = I(X,ZW,Y).

Using I(X, Z,WY) we find
P(XYZW
%SZW;
= LA S {def. I(X,Z,WY)}

= P(X|Z)P(Y|WZ)

= P(X|WZ)P(Y|WZ)
From which we have I(X,ZW,Y). The last step follows from I(X, Z,WY) = I(X,Z,W) by
decomposition and from P(X|ZW) = P(X|Z) since (3). a

P(XY|ZW)

Lemma 8.7 Contraction holds for any probability distribution.

Proof: Let W, X,Y, Z C U be sets of variables. We have to show I(X, Z,Y)AI(X,ZY,W) =
I(X,Z,WY). Using I(X,2,Y) and I(X,ZY,W) we find

P(WXY|Z) = P(WX|YZ)P(Y)
= PX|YZ)P(W|YZ)P(Y)
= P(X|Z)P(WY|Z)
From which we have I(X, Z,WY). a

Now we prove the validity of intersection for positive definite distributions and the invalidity
of weak transitivity for binary variables.

Lemma 3.8 Intersection holds for positive definite probability distributions.

Proof: Let W, X,Y, Z C U be sets of variables. We have to show I(X, ZW,Y)AI(X,ZY,W) =
I(X,Z,YW). Using I(X,ZW,Y) and I(X,ZY,W) we find

P(WXYZ) = P(X|WZ)P(WYZ)

= P(X|YZ)P(WYZ)
Therefore, P(X|W Z) = P(X|Y Z) for every value of Y and W under the condition P(WY Z) >
0. But, P(X|W2Z) = P(X|Y Z) implies P(X|W Z) is constant, i.e. not depending on the value
of W. In other words I(X, W, Z). Now, I(X,ZW,Y) and I(X,W, Z) imply I(X,Z,WY) by
contraction. O

Intersection does not hold for probability distributions that are not positive definite. Consider
the following counterexample: a represents ‘the water boils’, b represents the temperature
of the water in degrees Celsius and c stands for the temperature of the water in degrees
Fahrenheit. Observe that b and ¢ are determined by each other. Now we know that the water
boils if we know the temperature in degrees Celsius without needing to know the temperature
in Fahrenheit and vica versa. So, I(a,b,c) A I(a,¢,b) but not I(a, @, be).

Contrary to suggestions in [9] (pp. 130) we show that weak transitivity does not hold for
binary variables.



Consider the following example. Let U = {p,q,r,s} with p € {po,;1}, ¢ € {200, 01},
r € {ro,m1} and s € {sp,31}. Let

_ [ P()P(alp)P(rla)P(slar) if 1 = a0
Plpgrs) = { P(p)P(q|p) P(rlg) P(slap) if ¢ = 1

then it can be verified that I(p,q,r) and I(p,qs,r) hold since P(pgrs) can be written as
f(pqs)g(rqs) and P(pgr) can be written as f(pq)g(qr). But, neither I(p,q,s) nor I(s,q,r)
hold (assuming properly chosen parameters). For example let

Plp=p)=1

P(g=qilp=po)=3 and P(g=aqulp=p1) = }
P(r=rlg=g)=5%and P(r=rilg=q) =1}

P(s = s1lg = gor =10) =  and P(s = s|qg = qor = 1

)=23
P(s = s1|lg = q1p = po) = 5 and P(8=81|q=qlp=p1)=§

pqrs P(pqsr).96 | P(prigs) | P(plgs)P(rlgs) | P(prle) | P(ple)P(rle)
1 11 L 11
PogoToSo 2 5 3 12 13
PodoTos1 2 is 11
1 1 1 12
PodoT150 2 3 13 1 12
PogoT131 6 16 gg
Poq1ToS0 12 % z‘g‘ % %%
Pod1To$1 12 § §§
Poq1T1%0 6 ‘;‘ z§ % %%
Podirisi| 9 3 i3 \ 31
P140ToS0 6 3 17 1 31
P190T031 6 1 11
3 1 32
P19oT150 6 § §'§ 1 31
P1GoT181 18 16 ig
2 1 12
P11ToSo 2 o T3 8 i3
P1¢17T0%1 6 ';;’; 33
Paimiso 1 31 ?§ ﬁ %%
P1q1T151 3 3 3-3

Table 2: Relevant probabilities in weak transitivity case

Then table 2 shows that P(pr|qs) = P(p|gs)P(r|qs) and P(pr|q) = P(p|q)P(r|q). So,
I(p,qs,r) and I(p,q,7) hold for this distribution. However, P(s = si[p=p1Ag=q) = 3
and P(s = s;|¢g = q1) = 5. Therefore, P(s|pg) # P(s|q). So, I(p,q,s) does not hold.
Furthermore, P(s = s1lg =g AT =1) = % while P(s = s1|g = q) = % So, I(s,q,r) does
not hold either.

In the definition of d-transitivity the term Z = @& is added to the original definition in [11]
because this axiom is supposed hold in independency models that are DAG-isomorph. When
U = {a,b,c} is a set of variables and M = {(a,3,b),(b,D,a)} then the graph @— @ D is
a perfect map of M but it would not satisfy the original definition of d-transitivity.

10



4 Conditions for graph-isomorphism

In this section we show that an independency model is UG-isomorph if and only if it is closed
under intersection, strong union, transitivity and the axioms that are valid for any indepen-
dency model. Further we present a set of axioms that are necessary for an independency
model to be DAG-isomorph. Next we show that a independency model is DAG-isomorph if
all independency statements in the model can be derived from a causal input list and the
model is closed under the axioms that are valid for any independency model. Last we show
that any independency model is MUG-isomorph and also MDAG-isomorph.

4.1 UG-isomorphism

In this section, we will start with a description of some properties of vertex separation in
undirected graphs. Then, we will investigate the constraints on an independency model to be
UG-isomorph.

4.1.1 Properties of vertex separation

Let W, X,Y,Z C U be sets of nodes and ¢ € U a single node in a UG G = (U, E(G)). In this
section we will show that the next properties hold for separation in undirected graphs.

<X,2,Y> & <Y,Z2,X> {Symmetry}

<X,Z,YW> = <X,Z,Y> {Decomposition}

<X,Z,Y> AX,ZY,W> = <X,Z,WY> {Contraction}
<X,ZW,Y> A <X, ZY,W> = <X,Z,WY> {Intersection}
<X,Z,Y> = <Y,ZW,X> {Strong Union}

<X,Z,Y> = <X,Z,c>V<c2ZY> {Transitivity}

Lemma 4.1 Separation in undirected graphs satisfies symmetry.

Proof: Let G = (U, E(G)) be a UG. Let X,Y,Z C U be sets of nodes. Then,

<X,Z2,Y> & v 3 zep(z,y)
zeX,ye€Y z€Z
& v 3 z€p(y,z)
z€X,yeY 2€Z
& <<Y,Z,X>
O
Lemma 4.2 Separation in undirected graphs satisfies decomposition.
Proof: Let G = (U, E(G)) be a UG. Let W, X,Y,Z C U be sets of nodes. Then,
<X,Z,WY> & v 3 z€p(z,y)
ze€X yeWY 2€Z
= \4 31 ze€p(z,
zeXyeY z2€Z P( y)
& <X,Z,Y>
0O
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Lemma 4.3 Separation in undirected graphs satisfies contraction.

Proof: Let G = (U, E(G)) be a UG. Let W, X,Y,Z C U be sets of nodes. Then,

<X,Z,Y> A <X, ZY,W> = \ 31 zep(z,y)
zeX,yeY z€Z

A v 3 zep(z,w
reX,weW z€ZY P( ’ )

= A 1 zep(z
zeX,ye€Y 2€Z p( ’y)

A v 1 z€p(z,
zeX,weW z2€Z # p(z ‘ID)
& v 3 z€p(z,y)

z€X,yeWY 2€Z
= <X,Z,WY>
The second step is valid sinceif 3 y € p(z,w)then 3 2 € p(z,w)since I =z € p(z,y).
yeY z2€Z 2€Z
a

Lemma 4.4 Separation in undirected graphs satisfies intersection.

Proof: Let G = (U, E(G)) be a UG. Let W, X,Y,Z C U be sets of nodes. Then,

<X, ZW,Y> A <X, ZY,W> & \ 3 zep(z,y)
zeX,y€Y W2

A v 3 z€p(z,w)
zeX,weW 2€YZ

= v 3 z€p(z,y)
zeX,yeY z€Z

AY 1 zep(z,w
weW z2€7 P(,)

& v 3 z€p(z,y)
zeX,yeWY z2€Z

& <X,Z,WY>

The second step is valid because of the following. Consider a path from a node z € X
toanode y € Y. From < X,ZW,Y > we have 3 w € p(z,y)V Iz € Zz € p(z,y).
weW

If Hw w € p(z,y), let w be the node in W nearest to z. From < X,ZY,W > we have
we

3 zep(z,w)V 3 y€p(z,w). The first term must be true since if only the last term
2€Z yeY
would be true then <X,ZW,Y > would not hold, for there would be a path from a node

z € X to anode ¥’ € Y not containing nodes from the set WZ. Therefore, 3 =z € p(z,y).
z€Z

By the same line of reasoning 3 2z € p(z, w) which establishes the second last step. O
2€Z

Lemma 4.5 Separation in undirected graphs satisfies strong union.

12



Proof: Let G = (U, E(G)) be a UG. Let W, X,Y,Z C U be sets of nodes. Then,

<X,Z2,Y> & v 3 z€p(z,y)
zeX,yeY z2€Z

= v 3 ze v 3 wepz
zeX,yeY 2€2 p(,9) weW #(z,9)
& <X,ZW,Y>

Lemma 4.8 Separation in undirected graphs satisfies transitivity.

Proof: Let G = (U, E(G)) be a UG. Let X,Y,Z C U be sets of nodes and ¢ € U\XYZ a
single node. Now assume that <X, Z,Y>, <X, Z¢,Y> and = <X, Z,¢> and -~ <¢, Z,Y> all
hold in G then,

<X, Z,c> A<, Z,Y> > 3 VYV zedplz,e)A 3V z2¢p(e,y)
z€X :€Z veY z€Z

= 3 V z¢p(z,y)
z€X,y€Y z€Z

= -<X,Z,Y>

which is false. So weak transitivity holds by contradiction. 0

4.1.2 Conditions for UG-isomorphism

An independency model M can be represented by a UG if the following property holds:
I(X,2,Y) € M iff <X,Z,Y>. Since separation for UGs satisfies symmetry, weak union,
decomposition and contraction, the corresponding model will have to be closed under these
axioms in order to be UG-isomorph. Recall that for any probability distribution symmetry,
weak union, decomposition and contraction hold. So any independency model is closed under
these axioms.

Lemma 4.7 Let M be an independency model closed under intersection. Let G = (U, E(G))
be the undirected graph obtained from the complete graph by deleting edges (a,b) such that
I(a,U\{a,b},b) € M Then G is an I-map of M.

Proof: The proof is based on the proof in [9]. Let X,Y,Z C U be disjoint subsets.

<X,Z2,Y> = \ <z,Z,y> {Decomposition for sep.}
z€X,yeY

=> v <z,U\{z,y},y> {Strong Union for sep.}
zeX,yeY

=> vV  I(z,U\{z,y},v) {By method of construction}
z€X,yeY

= I(X,U\XY,Y) {Intersection for M}

Let R = U\XZY then, I(X,U\XY,Y) = I(X,ZR,Y). Furthermore,
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<X,Z,Y>

= \4 <z,Z,y> {Decomposition for sep.}
zeX,yeY

= v <z,Z,r>V <r,Z,y> {Transitivity for sep.}
CGXJIGY,TER

= X VY R <z,ZXYR\{z,r},r>V <r,ZXYR\{y,r},y> {Strong Union for sep.}
€A yEY re€

= v I(z,ZXYR\{z,r},r)VI(r,ZXYR\{y,},¥)
z€X,yeY,reR

{By method of construction}
= I(X,ZY,R;)AI(R,,ZX,Y) {Intersection for M}

where R, UR, = R, R, N R, =D and forall r € R r € R, if <r,ZXY\{y,7},y> and
r € R; if <2,ZXY\{z,r},r>. So now we have

I(X,ZY,R;)ANI(R,, ZX,Y)NI(X,ZR,Y) = I(X, Z,Y)
using intersection and decomposition. O

Before we continue with main results, two lemmas necessary for a forthcoming proof are
presented.

Lemma 4.8 Let G = (U, E(G)) be a UG. Let W, X, Y, Z C U be disjoint sets of nodes. Then,
<X,Z,Y>AN<X,Z,W>e<X,Z,YW> (5)

Proof: Since intersection, decomposition and strong union hold for separation in undirected
graphs:

<X,Z,Y>A<X,ZW> = <X,ZW,Y> A<X,ZY,W> {Strong union}
=2> <X,Z,YW>
{Since X, Z, Y and W disjoint and Intersection}

<X,Z,YW> = <X,Z,Y>A<X,Z,W> {Decomposition}

Lemma 4.9 Let M be an independency model over a set of variables U closed under inter-
section and strong union. Let W, X,Y,Z C U be disjoint sets of variables. Then

I(X,Z,Y)ANI(X,2,W) & I(X,Z,YW) (6)
Proof:
I(X,Z,Y)ANI(X,Z,W) = IX,ZW,Y)AI(X,ZY,W) {Strong union}

= I(X,Z,YW)
{Since X, Z ,Y and W disjoint and Intersection}
I(X,Z,YW) = I(X,Z,Y)ANI(X,Z,W) {Decomposition}

Since any independency model satisfies decomposition this is not mentioned as a constraint
for the independency model. O

Lemma 4.10 Let M be an independency model closed under intersection, strong union and
transitivity. Let G = (U, E(G)) be the undirected graph obtained from the complete graph by
deleting edges (a,b) iff I(a,U\{a,b},b)€ M. Then, G is a D-map of M.
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Proof: The proof is based on the proof in [9]. Let X,Y,Z C U be disjoint subsets.
We have to prove for every X, Y and Z that I(X,Z,Y) =< X,Z,Y >. We

have V I(z,Z,y) & I(X,Z,Y) by applying (6) several times. Further, we have
r€X,yeY

XV v <z,Z,y><X,Z,Y> by applying (5) several times.
€A, YE

So it is sufficient to show that I(a, S,b) =<a,S,b> where a,b € U are single variables
and S C U is a set of variables.

Let n be the cardinality of U. The hypothesis I(a, S, b) =<a, S, b> is shown by induction
on the cardinality of §:
— for |S| = n — 2 the lemma, is true by the method of construction of G.
— Now assume the lemma is true for |S|=k < n - 2.
Let S’ be a set for which |S’| = k— 1. For k < n — 2 there exists an element ¢ € U\S'U {a, b}.
So we have:

I(a,S’,b) = I(a,S'b) {Strong union}
= I(a,5,¢c)V I(c,S',b) {Transitivity}
= (I(a,S'd,c) A I(a,S'c,b))

V(I(c,S'a,b) A I(a, S'c, b)) {Strong union}
= (<a,S'b,c> A <a, S'c,b>)

V(<c, S'a,b> A <a, S’c,b> {Induction hypothesis}
= <a,5 cb>V <a,S',ch> {Intersection}
= <a,S,b> {Decomposition}

The second last step is true since the number of variables in the middle subset is & in each
statement and by the induction hypothesis. g

Theorem 4.1 For an independency model M to be UG-isomorph it is a necessary and suf-
ficient condition for an independency model M to be closed under intersection, strong union
and transitivity.

Proof: First we proof sufficiency. By lemma 4.7 a UG can be constructed from an inde-
pendency model that is closed under intersection such that the UG is an I-map the UG. By
lemma 4.10 the UG constructed this way from an independency model that is closed under
intersection, strong union and transitivity is a D-map. Therefore, the UG is a perfect map.

Now we proof necessity. Assume M would not be closed under intersection, strong union
or transitivity. So, a clause I( X, Z,Y)AI(Q, S, R) = I(A, B,C)VI(D, E, F) exists satisfying
intersection, strong union or transitivity such that all statements on the left-hand side are in
M but none of the right-hand side statements are in M.

Suppose a UG G would exist such that G is a perfect map of M. Then, in G both
<X,Z,Y> and <@, S, R> would have to hold. Since intersection, strong union and transi-
tivity hold for separation, this implies <A, B,C> v <D, E, F> also have to hold. Since we
assumed both I(A, B,C) and I(D, E, F) are not in M we have a contradiction. O

4.2 DAG-isomorphism

First, we will describe some properties of d-separation in DAGs. Next, we will investigate
the conditions under which an independency model can be represented by a DAG. In the last
part, we will introduce the notion of causal input lists and their properties.
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4.2.1 Properties of d-separation

In this section we will show that the next properties hold for d-separation in DAGs. Let
G = (U, A(G)) be a DAG. Let W, X,Y, Z C U be sets of nodes and a,b,¢,d € U single nodes.

<X,Z,Y> & <Y,Z,X> {Symmetry}

<X,Z,WY> & <X,Z,Y>A<X,Z,W> {(De)composition}

<X,Z,WY> = <X,ZW,Y> {Weak union}
<X,Z,Y>A<X,ZY,W> = <X,Z,WY> {Contraction}
<X,ZW,Y> A <X,ZY,W > = <X,Z,WY> {Intersection}
<a,dc,b> A <d,ab,c> = <a,d,b>V <a,c,b> {Chordality}
<X,Z2,Y>A<X,Z¢,Y > = <X,Z,c>V<eZ,Y> {Weak transitivity}

Furthermore d-transitivity (see the list of axioms in section 3) is supposed to hold for d-
separation. In the proofs that now follow we write z € t(z,y) if a 2 € Z exists such that 2
in the trail from z to y and z is not a head-to-head node in that trail. We write deet\z —
e «—€ t(z,y) for a node e exists such that e is a head-to-head node in the trail and e is not in
Z and all descendants of e are not in Z.

Lemma 4.11 Separation in DAGs satisfies symmetry.

Proof: Let G = (U, A(G)) be a DAG. Let X,Y,Z C U be sets of nodes. Then,

<X,Z2,Y> & v z o y|Z
zeX,y€eY t(z,y)
& v Y o z|Z
z€X,yeY t(z,y)
& <Y, Z, X>
(]
Lemma 4.12 Separation in DAGs satisfies (de)composition.
Proof: Let G = (U, A(G)) be a DAG. Let W, X,Y, Z C U be sets of nodes. Then,
<X,Z,WY> & v T ol ulZ
z€X ueWY,t(x,u)
& v z o y|Z
z€X,yeY t(z,y)
A v z ot w|Z
zeX weW,t(x,w)
& <X,Z,Y>A<X,Z,W>
O

Lemma 4.13 Separation in DAGSs satisfies weak union.

Proof: Let G = (U, A(G)) be a DAG. Let W, X,Y, Z C U be sets of nodes. Then,
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<X,Z,WY> & v z o y|Z A v z o> w|Z

T€X yeY t(z,y) z€X weW,t(z,w)
7 v z ZA(wgt(z,y)Vw etz

sexuetaewsos TN W E D) VU EL2,))
= v z VA4

zeX,yeY t(z,y) Xad]

=2 <X,ZW,Y>

Lemma 4.14 Separation in DAGSs satisfies contraction.

Proof: Let G = (U, A(G)) be a DAG. Let W, X,Y, Z C U be sets of nodes. Then,
<X,Z,Y>A<X,ZY,W >

& v z o> y|Z A v z o w|YZ
zEX,yEY,t(z,y) J:EX.wEVV,t(a:,w)
= v T Z
z€X yeY t(z,y) % yl
A v z€t(z,w)Vyet(z,w)Vv3 e —€ t(z,w
€ X W b(e) (z,w)Vy€tz,w)V Ier\yz — € —E€ t(z,w)
= v T o> y|Z A v T o> w|Z
z€X,yeY t(z,y) z€X weW,t(z,w)

= <X,Z,WY>

The second last step is true since z € {(z,w) implies z «/ w|Z by definition of blocked trails.

For the same reason 3\ ; € —€ t(z,w) implies z «/» w|Z. And y € t(z,w) implies
eeU\Y

T +/» w|Z because the trail runs from w via y to z and z «% y|Z since <X, Z,Y>. O

Lemma 4.15 Separation in DAGSs satisfies intersection.
Proof: Let G = (U, A(G)) be a DAG. Let W, X,Y, Z C U be sets of nodes. Then,

<X, ZW,Y> A <X, ZY,W > = v z o y|ZW
z€X,yeY t(z,y)

A v T w|ZY
z€X,weW,t(z,w) “%» |

= v zofr y|WVzefsy|Z
zeX,yeY t(z,y)

A v T ofr w|Y Vz o w|Z
z€X,weW t(z,w)

= v z ZA v T w|Z
r€X,yeY t(z,y) ‘%» yl z€ X, weWt(z,w) % l

= \4 z Z
z€X yeWY, t(z,y) ‘76’ yl

= <X,Z,WY>
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The third step is valid because of the following. Assume a trail ¢(z,y) between a node z € X
and a node y € Y would be bloked by W but not by Z. Then, #(z,y) would have to contain
a node in W. Consider the node w € t(z,y) closest to z such that w € W and the part of
the trail between this node w and z t(x,w) C t(z,y). From <X, ZY,W> we know that this
trail ¢(z,w) is blocked by ZY. But, z & y|Z implies = e w|Z thus z «& w|Y. Therefore,
there is a y’ € Y such that y’ € t(z, w). But, then a trail from y’ to z would exist that is not
blocked by Z nor by W (we choose w closest to z) implying <X, ZW,Y> does not hold. So,
by contradiction we have every trail ¢(z,y) is blocked by Z. For reasons of symmetry, the
proof for trails t(z,w) being blocked by Z goes analogous. O

Lemma 4.18 Separation in DAGs satisfies chordality.
Proof: Let G = (U, A(G)) be a DAG. Let a,b,c,d C U be nodes. Then,

<a,cd,b> = V a & bled
t(a,b}

= v blev V bld
t(a,b) a o |C t(a,b) aof I

v 3 c€ti(a,b)Ad & ti(a,b) A detrfa,b)Ac & tifa,b
t1(a,b)#t2(a,b) 1(a,b) Ad ¢ t1(a,b) 2(a,b) A ¢ & t2(a,d)

A =3eet\(cd} — € —E€ t1(a,b)}V — e —€ t2(a,b)

= V aebblcv V aerbddv I cemdlab
t(a,b) t(a,b) t(cd

= v blev V bld
t(a,b) @ o 'C t(a,b) @ of I

= <a,d,b>V <a,c,b>

The second last step follows from <c, ab, d> which excludes the existence of a trail ¢(¢, d) that
is not blocked by ab. O

Lemma 4.17 Separation in DAGSs satisfies weak transitivity.

Proof: Let G = (U, A(G)) be a DAG. Let X,Y,Z C U be sets of nodes and ¢ € U be a single
node. Assume <X,Z,Y>, < X,Z¢,Y > and - <X, Z,c> and ~ <¢, Z,Y> hold in G. Then,

“<X,Z,c> A <¢,2,Y> & 3 T e c|Z A 3 y e c|Z
a:eX,t(a:,c) vEY.t(y,C)

= 3 T e ylZ
zEX,yEY,t(:c,y)

{By appending the trails via c}

v | T e ylZc
z€X,yeY t(z,y)

{If ¢ in the trail forms a —« node}

= -<X,Z,Y>Vv~<X,Z¢e,Y>

So the assumption was wrong and we have weak transitivity by contradiction. O

Furthermore it is assumed in [11] that separation in DAGs satisfies d-transitivity. Unfor-
tunately, the proof in [11] might not be quite understood.
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4.2.2 Conditions for DAG-isomorphism

A lot of work has been done on finding a set of axioms that characterizes a DAG-isomorph
independency model in the same way the UG-isomorph independency model is characterized
by its closure under strong union, intersection and transitivity. The fruitlessness of these
efforts have resulted in the observation that DAG-isomorph independency models cannot be
characterized by a set of axioms that are all Horn-clauses [3), i.e. axioms that have only one
independency statement on the right-hand side of the clause. This research also resulted in
the following theorem.

Theorem 4.2 For an independency model M to be DAG-isomorph it is a necessary and suf-
ficient condition for an independency model M to be closed under chordality, weak transitivity
and d-transitivity.

A proof can be found in [11] but might not be quite understood. The value of the d-transitivity
axiom is that in the search for finding new axioms that characterize DAG-isomorph models
this axiom can be used to derive them.

If an independency model M satisfies chordality, weak transitivity and d-transitivity, then
a DAG that is a perfect map of M can be generated from this model by starting with an arcless
graph. Next connect any two nodes a and b for which @ —b. The results in an undirected
graph called the skeleton of the DAG. For any triplet a, b and ¢ for which a —b, ¢ —b, a—£c
and a —c|b assign the directions @ — b and ¢ — b. To the rest of the arcs a direction can be
assigned such that no new independencies, i.e. head-to-head nodes, are induced.

4.3 MUG-isomorphism

A MUG is a set of undirected graphs. This section relies heavily on the work done by
Dan Geiger in [4]. We only consider MUGs that contain UGs of a special form: the UG
G = (U', E(G)) can be divided into three disjoint sets of nodes X, Y and Z such that
XYZ = U'. The UG is formed by starting with a complete graph and deleting all edges
between the nodes in X and Y. So, in the UG the nodes in X Z form a clique and the nodes
in YZ form a clique. For such MUGs we have the following properties.

Lemma 4.18 Let W,X,Y,Z C U be sets of nodes. Then for MUG-separation the following
properties hold:

<X,2,Y> & <Y,Z,X> {Symmetry}
<X,Z,WY> = <X,Z,Y>A<X,Z,W> {Decomposition}
<X,Z,WY> = <X,ZW,Y> {Weak union}

Proof: Remember the definition of MUG-separation: Z separates X from Y if there exists a
UG G = (V(G), E(G)) in the MUG for which

1. Z separates X from Y in G and

2. Yaexuyuza € V(G).

The above mentioned axioms share the properties that

o they hold for UG separation. This is necessary by the first condition of definition of
MUG-separation.
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e they are unary, i.e. they have only one statement on the left-hand side of the equa-
tion. So, contraction (< X,ZW,Y> A <X,Z,W>=3<X,Z,WY >) and intersection
(<X, ZW,Y>A <X, ZY,W>=><X,Z, WY >), which hold for UG separation, do not
hold for MUG-separation since they can introduce new variables.

o they don’t introduce new variables like transitivity and strong union do. Therefore,
these last two axioms do not obey the second condition of the definition. We can have a
MUG for example that exist of the two statements I(a, ¢, b) and I(a, d,b) with which two

UGs are associated. But - <a, c¢d, b> since both graphs don’t contain all the variables
a,b,c and d.

Therefore, the axioms symmetry, decomposition and weak union hold for MUG-separation.[J

The properties mentioned in the previous lemma are in fact sufficient to derive any indepen-
dency statement from a UG generated from an independency statement I(X, Z,Y).

Theorem 4.3 Let M be an independency model. Let MG be a MUG such that for every
I(X,Z,Y) MG contains ¢ UG G = (XY Z, E(G)) with (a,b) € E(G) iff not a € X and
beY. Then, MG is a perfect map of M.

Proof: Let X,Y, Z C U be disjoint subsets. For a MUG to be a perfect map I(X, Z,Y) &<X,Z,Y>
must hold. First we show that I(X,Z,Y) =<X,Z,Y>. By the method of construction this
must be clear.

Now we show that <X,Z,Y>= I(X,Z,Y). Let 0 =<X, Z,Y> be a separation statement
for a certain UG G in the MUG generated from I(X,Z,Y) and let 0/ =<X',Z',Y’> be
an arbitrary separation statement in G. Let o0,0¢,0,..,0,,0' be a sequence of separation
statements that are derived using the axioms symmetry, weak union and decomposition.
Since o implies I(X,Z,Y) and the axioms symmetry, weak union and decomposition hold

for the independency model, we have by induction on the number of derivation steps that o'
implies I(X’, Z',Y"). 0

The only restriction for an independency model to be MUG-isomorph is that it obeys the
axioms symmetry, weak union and decomposition. Since every independency model obeys
these axioms, every independency model is MUG-isomorph.

By the method of construction, the number of graphs needed to represent a probability
distribution is exponential in the number of variables on average. Therefore, the amount of
memory to represent a distribution is also exponential on average. Also the time needed to

find out if I(X,Z,Y) holds in a MUG is exponential. Considering these properties, MUGs
are not of much practical use.

4.4 MDAG-isomorphism

This section relies heavily on the work done by Dan Geiger in [4]. An MDAG can be con-
structed from an independency model by adding a DAG for every statement I(X, Z,Y) in
the model. This DAG contains nodes for every a € XY Z and the nodes in X form a clique,
the nodes in Y form a clique and the nodes in Z form a clique. Further this DAG contains
arcs from every node z € Z to every node z € X and every node y € Y. This DAG does not
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contain any head-to-head node @ — ¢ «— b unless a and b are adjacent in the DAG. Therefore,
the MDAG constructed this way is isomorph to the MUG corresponding to the model for
every DAG in the MDAG a UG in the MUG exists with the same nodes and where the same
separation statements hold. The properties that hold for MUGs also hold for this type of
MDAGs.

Theorem 4.4 Let M be an independency model. Let MG be a MUG such that for every
I(X,Z,Y) MG contains a UGG = (XY Z, E(G)) with (a,b) € E(G) iffnota € X andb€eY.
Let MG’ be an MDAG such that for every I(X,Z,Y) MG contains a DAG G = (XY Z, A(G))
with arcs between every pair of nodes but nodes in X and'Y and no arcs pointing into nodes
of Z unless from a node in Z itself. Then, MG and MG' have the same properties.

Proof: For every UG in MG there is a DAG in MG’ with the same set of nodes. No DAG
contains a head-to-head node with uncoupled parents. By the observation that d-separation
in a DAG with no head-to-head nodes becomes vertex separation in the underlying UG of such
a DAG, we conclude that MDAG-separation in an MDAG that does not contain DAGs with
head-to-head nodes becomes MUG-separation in the MUG that contains the set of underlying
UGs of the DAGs in the MDAG. O

So, symmetry, weak union and decomposition also hold for MDA G-separation and the MDAG
constructed in the way described is also a perfect map of the independency model it is
constructed from. However, it needs exponential amount of memory to store and exponential
time to find out if a particular independency statement holds or not. Therefore, MDAGs are
not of practical use also.

5 The graphs and methods compared

In this section, we give a comparison between the different types of graphs and the methods
of construction. In Table 3 an overview is given of the methods of construction of graphs
described in this paper. For all methods it is supposed an independency model M is given.
In the first column the name of the method is given, in the second column the type of graph,
and in the last column a short description of the algorithm. In Table 4, an overview of the
properties of the construction methods is given. The name in the first column refers to the
name the first column of Table 3. In the second column the axioms are given under which
the model must be closed to get a map as denoted in the last column.

Looking in the table may lead to think multigraphs are the best graphs to deal with since
there are no restrictions on the independency model and the resulting graph is a perfect map
of the model. However, these graphs are of no practical use since they require exponential
amount of memory and computer power. The other two methods that result in perfect maps
have the disadvantage that no class of probability distributions exists for which the corre-
sponding independency model is closed under the axioms in Table 4. In other words, we
cannot decide from some characteristics of the probability distribution whether the distribu-
tion is graph-isomorph. Therefore, we have to check for every statement in the independency
model if these axioms apply. Now observe that there are exponential in |U| elements in an
independency model over U on average. So, it takes exponential time to check if a model is
closed under these axioms.
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MUG-construction

MDAG-construction

MG = (U, S(MG))

MG = (U,S(MG))

Method of Resulting Algorithm

Construction graph

UG-construction G = (U, E(G)) (a,b) € E(G) iff I(a,U\ab,b) ¢ M
DAG-construction G = (U, A(G)) 1. Build UG G’ = (U, E(G’)) with

(a, b) € E(G’) iff ngu\,,b[(a, S, b) éM

2. Let a — b ¢ — b if (a,b),(c,b) € E(G)

and (a, c) 4 E(G) and asgu\“cl(a,s, b) eEM
3. Let (a,b) € A(G) iff (a,b) € E(G') and

no new head-to-head nodes arise

For every I(X,Z,Y) € M add a UG
G = (XY Z, E(@)) to S(MG) such
that (a,b) € E(G)iff nota€ X and beY

For every I(X,Z,Y) € M add a DAG

G =(XY Z, A(G)) to S(MQG) such

that (a,d) € A(G) or (b,a) € A(G) iff not
a € X and b € Y and no arc points from a
node in XY to a node in Z

UG-construction is a method to obtain an I-map of the independency model. When a
model is to be constructed from statistical data it is not a strong condition that the in-
dependency model must satisfy intersection since it satisfies intersection if the probability
distribution is positive definite. Any discrete distribution can be made positive definite by
assigning the zero-probability values a small positive number and correct the probabilities for

Table 3: Overview of methods of graph construction

Method of Axioms the independency | Resulting type
Construction mode] must satisfy of map
UG-construction Intersection I-map
UG-construction Intersection perfect-map
Strong Union
Transitivity
DAG-construction Chordality perfect map
Weak Transitivity
d-transitivity
MUG-construction none perfect map
MDAG-construction | none perfect map

the other values.
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Table 4: Overview of the properties of methods of construction




6 Conclusions

In this paper we have given an overview of the work done in constructing Bayesian belief
networks using conditional independencies. Firstly, we investigated the notion of conditional
independence. It turned out that weak transitivity does not hold for binary variables as sug-
gested in literature. Secondly, we investigated different types of graphs, methods to construct
these graphs and classes of independency models they can represent. Multigraphs turned
out to be unpractical representations of independency models because of their computational
unattractiveness. Undirected graphs can be constructed in O(n3) if the probability model is
over a positive definite distribution. The resulting graph will be a minimal I-map.
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