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Abstract

In this paper we introduce an algorithm which produces quality triangulations
of polygonal domains with holes, for the Finite Element Method (FEM). For us
quality triangulation means satisfaction of both of the following conditions: a)
no obtuse angles. b) no ‘small’ angles. Triangulations satisfying only a) will be
called non-obtuse, those satisfying only b) will be called non-small angle, and those
which satisfy both conditions a) and b) will be called nice. Our main contributions
are a) new techniques to produce nice triangulations of polygonal domains with
holes using non-uniform (quadtree) underline square grid, and b) we show that
the asymptotic size of a nice triangulation is the same as for a non-small angle
triangulation. In other words achieving both non-obtuse and non-small angle
condition at the same time is not more expensive than achieving only the non-
small angle condition.

1 Introduction

Recently, much attention has been devoted to triangulating point configurations or
polygonal regions so that all of the produced triangles are “well-shaped”. Most of these
efforts have been motivated by interest in the numerical solution of Partial Differential
Equations (PDEs) by the Finite Element Method (FEM). The term “well-shaped” tri-
angle may denote that no angle is arbitrarily small, or that no angle is obtuse, or both.
To avoid ill-condition matrices arbitrarily small angles should be prohibited [23]. About
the importance of the small angle condition the reader can consult the classical book
of Ciarlet [17], or the book of Strang and Fix [47] or the paper of Bramble and Zlamal
[14]. The importance of non-obtuse triangulations is cited in [47], [7], [16], [29]. The
importance of the large angle condition in general is cited in Babuska and Aziz [1] for
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Dutch Organization for Scientific Research (N.W.0) and by the ESPRIT Basic Action No 7141 (project
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two dimensions and in Krizek [27] for three dimensions. Furthermore, all triangulations
should be consistent: a triangulation is consistent iff there is no vertex of a triangle
which lies on the edge of another triangle.

no-small-angle: Every angle § > min(c, 3) where c is a positive constant and S is the
sharpest angle of the polygonal domain.

non-obtuse: All the angles of any triangle are < Z.

It should be clear that if the polygonal domain has a sharp angle then then some
triangle should have this angle. However according to our constructions this sharp angle
does not propagate.

The first mesh generator which guarantees quality of the element shapes is that of
Baker, Grosse and Rafferty [2]. Their algorithm satisfies both quality criteria (i.e no-
small and non-obtuse angle conditions at the same time), like ours, however the size of
the mesh is very large since they use a uniform grid instead of a non-uniform one (i.e
quadtree).

In another work, P. Chew [11] focused particularly on preventing small and large
angles. His technique is based on the constrained Delaunay triangulation [8]. His algo-
rithm produces triangles with angles between 30 and 120 degrees. However the produced
mesh is quasi-uniform, i.e. %m-‘i < ¢ where Aoz, hmin are the largest and smallest edge
of the tna.ngulatlon respectlvely, and c is a constant. Quasi-uniform meshes are not
desirable since they result in a huge number of elements. Very recently, Bern, Dobkin
and Eppstein [5] have an algorithm which triangulates a polygon in such a way that no
triangle has large angle. The size of their triangulation is O(n log n).

The first who provided a guaranteed quality mesh using quadtrees (and thus a small
size mesh) are Bern, Eppstein, Gilbert [4]. Their algorithm produces O(nA) triangles
where n is the size of the polygon and A is the aspect ratio of the constrained Delaunay
triangulation of P. They prove that this size bound is within a constant factor of
optimal, but their algorithm satisfies only the no-small angle condition. In fact the first
who provided bounds on the size of polygon quadtrees are Hunter and Steiglitz [24],
however in [24] are not interested on angle conditions. They are interested only on the
discretization of the polygon.

In a subsequent paper, Bern and Eppstein [6] present an algorithm for an O(n?)- size
non-obtuse triangulation of a polygonal domain. The produced triangles do not satisfy
the non-small angle condition.

Our contribution is a mesh generator which satisfies both quality criteria, like [2],
with the additional feature that the size of the mesh is “small”. In fact the size of our
triangulation is optimal. The “small” size is achieved using quadtrees instead of the
uniform grid of [2]. This non-uniform grid, however makes the triangulation process
much more complicated near the boundary. The size of our triangulation is the same
order (i.e O(nA)) as the size of the no-small angle triangulation of [4]. Which means
that requiring both conditions is not more expensive than requiring only the no-small
condition. Since our triangulation is non-obtuse and any non-obtuse triangulation is a
Delaunay triangulation, we can view our result as a conforming Delaunay triangulation
with O(nA) steiner points which satisfies the no-small angle condition also.
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A triangulation (resp. triangle) which satisfies both the no-small-angle condition and
the non-obtuse condition shall be called a nice triangulation (resp. nice triangle).

In this paper, we present an algorithm for the problem of nice triangulation triangu-
lation of polygonal domains with holes.

A completely different approach has been presented by Melissaratos and Souvaine in
[38]. The one we follow here does not depend heavily on resolving inconsistencies and is
much more simpler than the approach in [38].

2 Main Approaches in FEM Mesh Generation

There are four main approaches in mesh generation of arbitrarily complex geometries:

¢ Delaunay based mesh generators

Such a mesh generator takes as input a point distribution on the boundary and in
the interior of the geometry and then creates the Delaunay triangulation of that
point set. Then applies a postprocessing on the triangulation in order to elimi-
nate as many as possible bad-shaped triangles. This is achieved by heuristics like
Laplacian smoothing. There have been many Delaunay based mesh generators in
the literature. Some representative are by Cavendish, Field and Frey [19],[21], [20],
[22], Barry Joe’s [28], Watson’s [59], Lo’s algorithm [32], Schroeder and Shephard
[52], Sapidis and Perucchio [48], [49], as well as by Timothy Baker [9],[10] and
Mavriplis [36], [37] for Computational Fluid Dynamics applications. Other De-
launay based mesh generators include the works of Nackman and Srinivasan [39],
Jin and Wiberg [25], P. Chew (8] Steve Fortune [34], [35], Clarkson and Shor [13],
Boissonnat and Teillaud [12].

Such a method works on pointsets and not on boundary representations (except
for 2-D constraint Delaunay triangulation). A consequence is that the boundary
of the region is not honored by the triangulation in general (i.e there are triangles
(tetrahedra) which intersect the boundary of the geometry). Each “gray” triangle
can be included in the domain. That results in a bad approximation of the geom-
etry. Another option is to triangulate the part of the “gray” triangle which lies in
the interior of the geometry. However that leads to poorly shaped triangles.

¢ Medial axis transform based mesh generators

Take as input a boundary description of the geometry; compute its medial axis;
apply postprocessing like Laplacian smoothing. This kind of method was intro-

duced by Patrikalakis and Gursoy [41], Gursoy [18] and by Srinivasan, Nackman,
Tang, Meshkat [55].

This method honors the boundary of the geometry, however it seems that there
are difficulties for extending the method in 3-D.

¢ Advancing front method [31], [42],[43], [33]

Start with a discretization of the geometry boundary and proceeds to the interior
adding triangles until the hole geometry is covered. This method because of its
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algorithmic and programming simplicity has been dominated in CFD applications.
A characteristic of this method is that node distribution and linking of the nodes
is done concurrently.

¢ Quadtree-Octree based [57], [58], [50], [44], [15], [53].

Quadtree type mesh generators have the advantage that they distribute nodes
“fairly” and automatically. That means they distribute "many” nodes both on
the boundary and the interior of complicated parts of the geometry and “fewer”
nodes elsewhere. This “fair” distribution results in optimal size meshes. Also,
after the creation of the quadtree, the linking of nodes in order to create the
triangulation requires only linear time in the number of nodes something which
is not true for the Delaunay triangulation. Unfortunately, creating a quadtree
in a satisfactory resolution is time consuming. In addition the quadtree imposes
artificial orientations in the geometry, [55].

Among all these different approaches to mesh generation, it is not clear which, if
any, is going to dominate in the future. None of the major mesh generators cited above,
however, guarantees quality of the element shapes.

3 Definitions and Preliminaries

We begin this section with a collection of essential definitions:

Definition: A AABC is called non-small angle iff there exists a constant 8, € (0, %)
independent of the coordinates of A, B, C such that LA, /B, /C € (6y,7).

Definition: A triangulation is called non-small-angle iff all its triangles are non-
small angle.

Definition: A AABC is non-obtuse iff it is a) non-small angle and b) LA, /B, /C <
: Definition: A triangulation is called non-obtuse iff all its triangles are non-obtuse.

Definition: A AABC is nice iff it is non-obtuse and non-small-angle.

Definition: An edge e of the polygon of type h (v resp.) if the line through e makes
an angle < § with the horizontal (vertical resp.).

Definition: Two edges e;, e; of a polygon P adjacent to vertex v are called vertically
separable (resp. horizontally separable iff a vertical (resp. horizontal) line through v cuts
the interior angle at v into two angles each of them is greater or equal to %

Definition: A polygonal region Q is called semirectilinear if every h (v resp.) type
edge e is adjacent either to horizontal (vertical resp.) edge or to another h (v resp.)
type edge e such that e, e’ are horizontally (vertically resp.) separable.

Definition: A polygon vertex v at which the conditions for semirectilinearity are
violated is called an improper vertex.



4 Algorithm Overview

The algorithm has two phases: The preprocessing phase and the triangulation phase.
During the preprocessing phase we discretize the domain using a quadtree. This quadtree
subdivision is a standard process and has been used many times in the literature, not only
in mesh generation of the FEM method, but in Computer graphics, image processing
and elsewhere. It is important to say that the first who gave a bound on the size of
the quadtree which represents a polygonal region is Hunter and Steiglitz in 1976 [24].
The root of the quadtree is a square containing the polygonal domain. Subdivide the
square into four squares. Check whether a square lies entirely inside or outside P or
whether it intersects the boundary of P. In the first case stop the subdivision. In the
second case further testing is needed: If a q-tree node intersects only one edge or two
adjacent edges of P stop. Otherwise we subdivide. Any two non-adjacent edges of
P should not intersect adjacent nodes of the g-tree. The above condition guarantees
satisfactory clearance between boundary parts something necessary in order to apply
our construction rules.

Any polygon vertex should lie in a local uniform grid of constant size. This condition
makes easier the vertex triangulation process.

We use the following terminology and facts:

Definition: A planar subdivision created by a quadtree is called balanced or (re-
stricted) if any two adjacent squares have sides which are equal or one is twice as the
other

Restricted quadtrees have been used for surface rendering purposes also [46].

From now on we are going to work only with balanced quadtrees.

Fact: [45], [46]. An unbalanced quadtree subdivision with n regions can be converted
to a balanced one by dividing larger squares until the balancing condition is satisfied.
The resulting balance subdivision has O(n) size. Hanan Samet, in his books [45] and
[46], credits this problem to David Mount.

In the triangulation phase we triangulate the interior of P using the non-uniform
grid. The difficulty in the second phase is to triangulate grid cells which are intersected
by the polygon boundary since interior cells are triangulated trivially. The triangulation
phase itself has two parts:

e Triangulate near polygon edges
e Triangulate near polygon vertices.

In section 5 we describe how to triangulate near edges and in 6 we describe how to
triangulate near vertices.

a) Discretize the domain using a standard quadtree algorithm.

b) Remove every acute vertex v of P by inserting an artificial edge AB such that
AvAB is isosceles with vA = vB where A, B lie on the edges of P incident to
vertex v. See section 6. What remains is a polygon P* with no acute angles. (see

fig. 1)



c) Remove every vertex v of P* by cutting off a rectilinear region around v. Trian-
gulate that rectilinear region as shown in section 6.

What remains is a semirectilinear polygon P**. (see fig. 2 )
d) for each edge e of P** triangulate e. This is shown in section 5.

e) What remains after step d) is a rectilinear polygon P*** which can be triangulated
trivially.

f) Triangulate the cut isosceles triangles AvAB of step b) using the Steiner points
on AB created by the triangulation of P*. This is shown in section 6.

g) Resolve the inconsistencies between the triangulation of P* and the isosceles tri-
angles AvAB.

r7 L7

Figure 1: Polygons P and P*

LS L

Figure 2: Polygons P* and P**

5 Triangulating near Polygon edges.

5.1 General remarks on edge triangulation

With a uniform grid, nice triangulation is straightforward [2]. The triangulation of
Bern et al [4] on a non-uniform grid to satisfy the non-small angle condition requires
greater care but is not complicated. Our goal here is to satisfy non-obtusenes as well.



In order to offer the the reader some intuition to our technique let’s consider the
following examples in fig. 3.

In fig.3.a we see that the nice triangulation using a uniform grid is easy.

In fig.3.b we see that a non-small angle triangulation using a non-uniform grid is
achieved again easily. However if you want to nice triangulate the same configuration
this is impossible unless you use extra Steiner points in the interior or the boundary of
the configuration. But addition of Steiner points does not come for free.

It may require addition of Steiner points in neighbor cells which eventually may lead
in an orderwise increase of the size of our triangulation something undesirable.

If we are more careful and insert Steiner points only at midpoints of quadtree edges
then the increase will be constantwise. In fig. 3.f we see an inappropriate way of creating
a nice triangulation. The insertion of Steiner point P makes necessary the insertion of
points Py, P,, P3, P,. Thus we need four triangles per cell.

In fig. 3.g we see a better way to triangulate. We need only two triangles per
cell which intuitively means that we gain a factor of two in our mesh, something very
important.

However if we prefer not to insert the additional Steiner point P, we need to ez-
pand our triangulation to the previous cell. (In fig. 3.d the perpendicular MT on vw
intersects the previous cell.) Since the previous cell has already been triangulated, the
expansion will lead either to a non-nice triangulation or, even worse, to a non-valid one
(i.e intersecting triangle edges). That will require to repair the already completed tri-
angulations of the previous cells. The main question is whether such repairs propagate.
This approach will be called approach A.

Surprisingly, we are able to prove that modifications are necessary only to the previ-
ous cell and do not propagate to other cells. These modifications and the related proofs
are provided in section 5.3.

In contrast if we use the insertion approach, which will be called approach B, then
not only we may double the size of the mesh but the propagated point P may create
inconsistent triangulation in a vertex region which should be resolved.

We will present both approaches in parallel and since we have mentioned the ad-
vantages and disadvantages of each we will leave the implementor to make a choice
depending on the application. The reader who is going to follow Approach B can skip
the section 5.3. In section 5.2 we refer to Approach A or Approach B if there is need to
distinguish the two approaches.

We consider intersections of an k (v resp.) type edge with vertical (horizontal resp.)
grid edges only. We are going to work with type h (since the type v) is symmetric. Let
v,w be two consecutive intersection points of an edge e with two vertical q-tree edges.

5.2 Edge-triangulation rules

Lemma 5.1 Line segment vw lies entirely either: a) in one square or b) in the union
of two squares.

Proof: Easy consequence of the g-tree conditions and the slope of vw. O
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Let v belong to square s; and w belong to a square s;. Lemma 5.1 there are four
cases, to which we will refer by their labels.

a) s; and s; are the same square.
b) s; and s; have the same size and s; is above of s;.
c) sz is above of s; and s; is half of s;.

d) s, is above of s; and s; is double size of s;.

(see fig.4).
v — | v / w 52
/
v s_1
a b.
X
s2 g s3 < -
/ / w o
/
V -
1
0] 5 v .1
c el c.2
s_2
A
/ w
P
= Ve
v vw s_1
d.
d.l d.2

Figure 4: General cases

From now on we refer to the above cases as a),b), ¢), d) respectively. We need some
definitions and notation.



For a square s A, B, C, D are the vertices in ccw order. M, N, P, ) are the midpoints
of DA, AB, BC,CD respectively. O the center of the square and g the side length. Let
v, u points on sides AD, DC respectively of the square. The pentagon vuC BA is called
cut-square. O’ is defined as the intersection point of the horizontal from P and the
vertical from u. R is the midpoint of MD. K is defined the point inside the square
ABCD such that MK = 4 and MK is parallel to AB. If u is on QC and uc = ©(g)
then such a cut-square is called regular. A regular cut-square may have at most two
Steiner points M and P. A Steiner point like M (P resp.) exists iff there are two left
(right resp.) neighbors of s and vM > 4 (wP > 4 resp.). Steiner point N exists iff s has
two below neighbors. We define the “below” function as follows: Let v be a point on a
vertical edge AB of a quadtree square s with length side g. Let M be the midpoint of
AB. if M is a q-tree node and V is above M and vM > £ then b(v) = M, else if vA > £
then b(v) = A else b(v) = w which means a quadtree node which lies on the box below
s. In the following we present a lemma which shows how to nice triangulate a regular
cut-square using the steiner points if they exist.

Lemma 5.2 A regular cut-square can always be nice triangulated.

Proof: Consult fig. 5.

For each of the cases we are going to consider two subcases: In the first subcase we
assume that Steiner point N does not exist and in the second subcase we assume that
N exists.

1) vis on MD. 1.a) No steiner points on the sides of ABCD. Then connect B to v
and u. We have to prove that AvuB is non-obtuse. ZvuB < /RuB since Mv < 4. But
LRuB < %. (otherwise M would exist as a steiner point). If N is a Steiner pomt then
connect N to v and u, and B to u.

1.b) Steiner point M exists. Then steiner point P (i.e the midpoint of BC) should
exist also. This is true since the existence of M implies Mv > ¢ which implies wC < 4.
Then connect O to v, M,u, P, A, B. If N is a Steiner point then in addition to the above
connections do connect N to O.

l.c) Only P exists. Then connect O to v,u, A, B, P. If N is a Steiner point then add
the additional connection between O and N. Resolve the obtuse ZvOu by taking the
perpendicular from O. 2) v is on M A.

2.a) No steiner points. Connect B to v,u. Can be proved easily that AvuB is non-
obtuse. If IV is a Steiner point then connect N to v,u and B to u. ZuvN < LQuN < z.
Resolve the probable obtuse ZuNv by taking the perpendlcular from N.

2.b) Steiner point P. Connect P to v,u. Connect v to B. If N is a Steiner point
then connect O to v,u, P, B, N and connect P to u, N and v to N. Since u is not very
close to C, according to cut-square property, then /vOu is not close to 7 thus AvOu
does not have small angles.

O

Consider two squares ABCF and FCDE (with F'C common side) with side length g
and let v, w points on AF and DC respectively such that slope of vw < 1. Let M, N, P
be the midpoints of AF, AB, BC respectively and let G be a point on wC such that
wG = O(g). Question: given the quadrilateral vABw (or equivalently called two square
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configuration) and a subset (possibly empty) of M, N, P,C,G can you nice triangulate
vABw using no additional steiner points on its rectilinear sides? The following lemma
gives a positive answer. Let e be an h type edge. Let v be the intersection point of e
and a quadtree edge ab.

Lemma 5.3 A two square configuration can always be nice triangulated.

Proof:

Consult figures 6. We have the following cases: 1) If b(w)=G then we consider the
following two cases: 1.a) If Fu < £ ( implies also that Fv < ¢, otherwise the slope of
vw would be larger than one) then: Connect O to v, R,C, A, B. Connect R to G,C. If
LRGw is obtuse then resolve it by taking the perpendicular from G to vw. If ZRGw is
non-obtuse then RT' > GC thus connect G to T. In case N exists then just connect N
to O.

1.b) If Fu > 4 then connect G to u. If ZuGw is obtuse then resolve it by taking the
perpendicular from G to vw. Then triangulate the pentagon vABCu as in lemma 5.2.

2) If b(w) = C then: 2.a) If Fu < £ ( implies also that Fv < £, otherwise the slope
of vw would be larger than one) then: Connect O to v, R,C. The existence of N again
does not create any difficulties. We just add the connection between N and O.

2.b) If Fu > £ then connect C to u and C to w and then triangulate pentagon
vABCu as in lemma 5.2.

3) Assume that b(v) = M, A,w and b(w) = P, B,w, then the following constructions
guarantee nice triangulations.

3.a) b(v) = M and b(w) = P. Then connect P to M and w. The existence of N
does not create difficulties. Just connect N to M, P.

3.b) b(v) = M and b(w) = B. If we use approach B then insert point P and we have
case 3.a.

Approach A: Let T be the perpendicular projection of M onto vw. Connect M to
T, B. The resulting triangles are ATMw, AMwB, AMAB which are clearly nice.

The newly created perpendicular edge MT lies in the adjacent grid cell. Reasonable
questions are: a) what modifications should be done to the previous cell to in order
maintain its triangulation nice, b) Is there any guarantee that the modifications do not
propagate indefinitely?

Answers to these questions are given in lemma 5.10.

Howeverif IV exists then the resulting triangles are AT Mw, AMwN, AMAN, AN Buw.

It is clear that AMAN, ANBw are nice. We have to prove first that ZwMN < >
and second that p = L/TwM is non-small.

Since b(w) = B implies that wC < £ and thus wP < g which implies directly that
LwMP < 7 and thus /ZwMN < 3

To prove that p is non-small, Let z be the perpendicular projection of w onto the
line through AD. Let z = 2D, y = Mv, § = LzwM, ¢ = L2wv and thus p = 6 — ¢. Let
also g = AD.

We have
x4+ 4

tan(f) = p

12



tan
(¢) p
Thus y
g
tan(p) 1+ (,,_+§l)(:-y+1)
Thus

49y
=t p—v
whereOSxS%and%SyS%.

Clearly

g 2¢°
> =)= .

Let h(z) = 9¢° + 8z% — 10gz.
Then h'(z) = 16z — 10g, thus h(zx) is decreasing in [0, 3] and increasing in [—é‘l,g
thus A(z) attains its global ma.x1mum for either z = 0 or z = 4. In fact the maximum

is achieved for = £ and h({) = 1. Thus f(z,y) > 1.

Again we need to consider the modiﬁca.tion in the previous cell because of the per-
pendicular MT. This is proved in lemma 5.10.

3.c) b(v) = M and b(w) = w. (infeasible since wB > vA).

3.d) b(v) = A and b(w) = B.

If N does not exist just connect B to v. the resulting triangles are AvAB, AvwB
which clearly are nice.

If N exists then:

If vA < £ then the resulting triangles are AvAN, AvNw, AwNB. It can be proved
that LwvN < 2.

If vA > £ then

Approach B: Insert Steiner point P and we have the case b(v) = 4 and b(w) = P, i.e
case 3.h) of the lemma.

Approach A: Let H be a point on AF such that AH = 4. Let T be the perpendic-
ular projection of H onto the line through vw. The trla,ngles of our construction are
ATHw,AHNw,AHAN, AwNB. The last two are clearly nice. It remains to prove
that for the ﬁrst two. We need to prove that /vwH is non-small. This can be done
either directly as in the previous case or indirectly by using the non-small angle triangle
lemma. We choose the second approach.

Since b(v) = A implies that vA > 4 and thus H is between A and v and vH > 4.

Let p = [vHw. Since w lies between D and C then tan(p) lies in [%,4]. Since Hw

lies in [22, g] then implies that AvHw has non-small angles.
We need also to prove that ZHNw < 5+ It is clear that ZHNw < ZHNC = Z. The
last equality comes from the similarity of AH AN, ACNB.
Here also we have to prove that HT does not create problems in the previous cell.
This is again proved in lemma 5.11.
3.e) b(v) = A and b(w) = w. (infeasible since vA < wB)

13



3.f) b(v) = w and b(w) = P.

If N does not exist then:

Connect P to v, resolve the obtuse ZvPw. Connect v to B. Apply lemma 5.6 for
AvAB.

If N exists then:

Let R be the intersection of vw with the vertical from N. Connect R to v, N, P and
N to v, P. Apply lemma 5.6 for AvAN.

Av + Bw

RN = 5

Since Av < £ and Bw < g,f implies that RN < g. We also have wP < g. Then
AvRN, ARPN AwRP are non-obtuse.

3.g) b(v) = w and b(w) = B

If N does not exist then, connect v to B and apply lemma 5.6 for AvAB.

If N does exists then, connect N to v,w and apply lemma 5.6 for AvAN.

We have to prove that LwvN < 7.

Let /ZwvN = w. Let vz be a horizontal ray directed to the right of v. Let also § =
Lwvz and ¢ = LNvz. Then sign(tan(w)) = sign(tan(f + ¢) = sign(1 — tan(8) tan(¢)).

Let ¢ = vA and y = wC where 0 < z,y < 4.

ta.n(e) = w
g
and tan(¢) = ";—’.Thus
. : 2rg—z+y : 2 2
sign(l — tan(6) tan(¢)) = sign(1 — 7—-—9—) = sign(g° — 2gz + 22* — 2zy).

Let f(z,y) = ¢ — 29z + 22® — 22y. Then f(x,y) > f(z, ) = g* — 39z + 22? = h(z).
The zeros of the quadratic equation h(x) = 0 are 4 and g. Thus h(z) > 0 for z < g,
which implies that w < . In case ZLvNw > 5 resolve it with the perpendicular from N
onto vw.

3.h) b(v) = A and b(w) = P

If N does not exist then connect P to v, A.

If N exists then connect P to N,v and N to v.

Lemma 5.4 A one square configuration can be nice triangulated.

Proof: The constructions are similar to those of lemma 5.3 and thus for the sake
of brevity we ask the reader to consult fig. 7. Again in some cases the suggested

construction penetrates the previous cell. In lemma 5.13 we prove that this modification
does not propagate. a

Lemma 5.5 A non-cross two-square configuration can be nice triangulated.
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Figure 7: Lemma 5.4
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Figure 8: Lemma 5.5
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Proof:
The idea of the constructions is similar to those of lemma 5.3 thus consult fig. 8.
O

Lemma 5.6 Given a square FCDE of size g and a point v on EF such that Fv < 2
then the square below FCDE can be used to create nice triangulations.

Proof:

In the quad-tree subdivision the square below FC DE may have size g,  or 2g. We
invoke the current lemma only from the cases 3.f and 3.g of lemma 5.3 and thus the g
case is excluded.

Since vC consists part of internal boundary, we are not allowed to insert Steiner
points on it. Many of the cases can be proved by simple constructions although some of
them require nontrivial ones.

Case A: The square below FCDE has size 2g. Let ABGF the below square. See
fig. 9.a.

Case B: The square below FCDE has size g. Let ABCF be the square below
FCDE. Let also {M, N, P} be the midpoints of AF, AB, BC respectively. We have

to nice triangulate the quadrilateral vABC subject to the presence of a subset of the
Steiner points {M, N, P}.

a) S = {N}. See fig. 9.b Connect C to A.
b) S = {M}. Connect M to C, B. See fig. 9.c

c) § = {N}. Connect N to v,C. Since Fv < £ implies ZvCF < LNCB implies
LvCN < 3. Seefig. 9.d

d) S = {P}. Let K a point such that PK = 4. Connect K to v,C, B, A. Since
Fv < £ implies /vCF < LKCP implies LvCK < %. See fig. 9.e

Also /vKC < (FKC < 3- Since Av < %‘1 and the distance of K from Av equals
329 then [vKA < 7.

e) S={P,N}. Let H be a point on AF such that FH = ¢. Connect H to C, P, N,v.
Clearly all created triangles are nice. See fig. 9.f

However we need to prove that the newly created Steiner point H does not create
inconsistencies indefinitely. We prove that in lemma 5.17.

f) S ={M,N}. Connect M to N,C. See fig. 9.g
g) S={M,N,P}. Connect M to C,P,N. See fig. 9.h

Lemma 5.7 Steiner point H does not create inconsistencies indefinitely.
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Proof: The proof is based on the fact that that we have used approach B for edge
triangulation.

We have the following possibilities:

a) The left adjacent square is of of half size. Then H already existed and thus no
need for change.

b) The left adjacent square is of the same size. Then the previous configuration is
any of the configurations of lemma 5.3 such that 5(w) = B. That implies it corresponds
to cases 3.b, 3.d, or 3.g of that lemma.

b.1) If we have case 3.b, i.e b(v) = M, then H already exists as P using the termi-
nology of lemma 5.3. Thus no modifications required. The possible existence of Steiner
point N does not create any problems.

b.2) If we have case 3.d, i.e. b(v) = A, then we distinguish two subcases: First if
Steiner point N exists then H already exists as P according to case 3.d of lemma 5.3.
Thus no modifications required. Second, if Steiner point N does not exist, then the
insertion of point H will require modifications in that cell. We need to connect H to A
and v and delete edge vB.

b.3) If we have case 3.g, i.e.b(v) = w, then again we have to distinguish whether
Steiner point N exists or not. If N does not exist then connect H to v and w and
resolve the obtuse ZvPw by taking the perpendicular from H onto vw.

If N exists then: Let R be the intersection of vw and the vertical from N. Delete the
edge Nw and insert edges RN, RH,HN. As it is proved in lemma 5.3, since RN < ¢
guarantees the non-obtuseness of /RHN.

c) The left adjacent square is of double size. Similar techniques to those of step b)
can be applied which therefore are omitted.

O

Lemma 5.8 Letv,w be two consecutive intersection points of an edge e with two vertical
g-tree edges. We can nice triangulate segment vw using O(1) additional Steiner points.

Proof:

Refer to the general cases of fig.4. Case a) can be triangulated according to lemmas
5.4 and 5.5 and case b) can be triangulated according to the constructions of lemma 5.3.

For case c): case c.1: Let z be the intersection of the line through v and w and the
line through the right vertical side of s;. Let s3 be the square which is the right neighbor
of s3. If x lies on the boundary of s3 then triangulate the union of sy, s5, s3 according
to lemma 5.3. If z is above s3 then connect O to w and v, where O is the center of the
square s;. Note in this case vA > £ since otherwise the slope of vw would be greater
than one. That implies AvAO is non-obtuse. Then treat the triangulation below wz
recursively.

case c.2: According to lemma 5.3 Case d): Case d.1: Triangulate separately below
vz and zw according to lemma 5.3. Case d.2: Triangulate below vw according to lemma
5.3. 0

By applying lemma 5.8 along the whole boundary of P we have:

Theorem 5.9 We can nice triangulate the semirectilinear polygon P** using O(nA)
additional Steiner points.
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5.3 Repairing Triangulations of the Previous Cell

Lemma 5.10 The perpendicular from M onto vw in lemma 5.8 does not propagate
modifications indefinitely.

Proof: Consult fig. 10.

We need to change the previous configuration if the current configuration is case 3.b
of lemma 5.3.

The current configuration is 3.b. The existence or not of the Steiner point N does
not make any difference here.

Then the previous configuration can be a) cases of lemma 5.4 such that b(w) = B
and without the N Steiner point (since existence of N implies violation of the balancing
condition of the g-tree) or b) cases of lemma 5.3 such that b(w) = C.

a) The relevant cases of lemma 5.4 are 2.a, 6.a, 9.a. and the resulting transformations
are shown in 14.
b) The relevant cases of lemma 5.3 are 2.a and 2.b. It is clear that the perpendicular
CT on vw maintains the triangulations nice.
a

Lemma 5.11 The perpendicular from H onto vw in lemma 5.8 does not propagate
modifications indefinitely.

Proof:

1) The left cell is of the same size.
1.a) One-square configuration with b(w) = B.
l.a.l) b(v) = M fig. 11.a fig. 11.b
l.a.2) b(v) = A fig. 11.c fig. 11.d
l.a.3) b(v) = w fig. 11.e fig. 11.f
1.b) Two-square configuration with b(w) = C.

As discussed in lemma 5.10 these inconsistencies can be remedied. The triangu-
lation of the previous cell is done according to case 2 of the lemma. Particularly
we cannot have case 2.b. Since we require vA > £ which in case 2 notation means
wC > 4. However case 2.b requires uC < £ which implies the slope of vw is
greater than one, a contradiction.

Now we have to change the previous cell triangulation since we have the new point
H on we.

Thus consider the configuration of case 2.a with the additional points H and T
where T as defined before and the fact that wC > ¢ which is not necessary for
case 2.a in general.

If /RHC < 7 then just connect R to H.

If LRHC > % then implies RQ > HC = 4. That means QR is not very small thus
connect Q) to R,v, S, H where S is the perpendicular projection of Q onto the line
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2)

through vw. It is easy to show that the created triangles are nice. Also by the
construction is clear that the modifications do not propagate further.

The right AwT H is nice since wH > 4 and /TwH does not approach 3. This is
important because if /TwH approaches 7 then AwT H is not nice.

The left cell has half size:

2.a) The previous configuration is case b(w) = B of lemma 5.3.
2.a.1) b(v) = M fig. 12.a fig. 12.b

2.a.2) b(v) = A fig. 12.c fig. 12.d

2.b) The previous configuration is case b(w) = B of lemma 5.5.
2.b.1) b(v) = M fig. 12.e fig. 11.f

2.b.2) b(v) = A fig. 12.g fig. 12.h

O

Lemma 5.12 The perpendicular from M onto vw in lemma 5.5 does not propagate
modifications indefinitely.

Proof:

The configuration of the previous cell can be either:

a)

two-square with b(w) = B and without Steiner point N which are only cases 3.b
and 3.d of lemma 5.3.

a.1) Case of lemma 5.3 such that b(v) = M and b(w) = B without the N Steiner
point. See fig. 6 for the appropriate transformation.

a.2) Case of lemma 5.3 such that b(v) = A and b(w) = B without the N Steiner
point. See fig. 6

A configuration of lemma 5.5 with b(w) = B.
b.1) Case b(v) = A b(w) = B of lemma 5.5. See fig. 8 for the transformation.
b.2) Case b(v) = M b(w) = B of lemma 5.5. See fig. 8

O

Lemma 5.13 The perpendicular from M onto vw in lemma 5.4 does not propagate
modifications indefinitely.

Proof: Consult fig. 14.
The previous configuration may be either a) cases from lemma 5.4 such that b(w) = B
and without the NV Steiner point or b) cases from lemma 5.3 such that b(w) = C.
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a) a.1) The previous configuration is b(v) = M and b(w) = B see fig. 14 for the
transformation.

a.2) The previous configuration is b(v) = A and b(w) = B see fig. 14
a.3) The previous configuration is b(v) = w and b(w) = B see fig. 14

b) Can be treated easily.

W7§ |

)

il

Figure 14: Lemma 5.13

Lemma 5.14 Let ABCDEF be a two-square configuration with square size g and let
v (resp. w) points on EF (resp. DC) such that Fv < £ and we < . Let also BT
be the perpendicular projection of B onto vw and let M be the midpoint of AF. Then
(TMB < 3.

Proof: See fig. 15.a. Let G be a point on DC such that M B is perpendicular to MG.
Let R be the intersection of vw with MG. Let £+ = Rw and y = vR. Let @ be the
perpendicular projection of v onto DC. Let w = w@ and z = QC.
It is sufficient to prove that z(z + y) > w(w + z + g). where z,w in [0, ).
From the similarity of AMvR, ARwG we get that
ft+g—w—2z

T
Z=219 " %n
y 242 (1)
It is also true that (z + y)? = ¢ + w? (2)
From (1) we get
T Yy _ zH+y 3)

Sg—z—w lg+z (29-w)
From (2) and (3) we get

o(e+y) = 1=’ +g7)
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Then it is sufficient to prove that
39—z —w)(w? +¢%) > w(2g — w)(w +2+g) (4)
Let u = z + w and v = w then u,v in [0, £).
Then (4) becomes
39— u)(v? +¢%) 2> v(29 — v)(u +9) (5)
(5) becomes 3gv? + 3¢ — 2g%u — 4guv — 4g%v + 2gv? > 0 (6)
Let f(u,v) = 3gv? + 3¢ — 2¢g%u — 4guv — 4g%v + 2gv?.
We need to prove that f(u,v) > 0.
We have that gﬁ = —4gv —2¢* <0 (7)
From (7) we have that f(u,v) > f(4,v) = g(5v® — 6gv + 2¢*) = gh(v) where
h(v) = 5v% — 6gv + 247.
But A'(v) = 10v — 6g . Then for v in [0,£) A'(v) < 0 which implies that h(v) >
h(2) = £ >0 Q.ED.
a

Lemma 5.15 Let ABCDEF be a two-square configuration with square size g and let
v (resp. w) points on AF (resp. DC) such that Fv < £ and wec < 2. Let also BT

be the perpendicular projection of B onto vw and let M be the midpoint of AF. Then
(TMB<3.

Proof:

Similar techniques like lemma 5.14 apply and therefore the proof is omitted. See fig.
15.b.

a

Lemma 5.16 Let ABCDEF be a two-square configuration with square size g and let v
(resp. w) points on AF (resp. DC) such that Fv < 2 and we < £. Let H be a point on
AF such that AH = 4, M, P the midpoints of AF and BC respectively, and S be the
midpoint of vw Let PQ, OR, HT be the perpendicular projections of P,O, H onto vw.
Let K be a point on MP such that MK = £. Then LQOP,(TOH,/RHO <.

Proof: See fig. 15.c.

a) LQOP <%
It is sufficient to show that Qw < Qv which is equivalent to tan(8) > tan(¢; + ¢2)

(1)

But ) T4y g _y
tan(6) = tan(gn)’ tan(¢1) = 7 tan(4;) = 2—
where z,y in [0, Z].
Thus (1) becomes
g iy
T4y 1 (¢+v;(2§ )]
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which is
1 T+ 14

>
z+y ~ g —(e+y)(§—v)
Since g? — (z +y)(2—y) > 0 (because ¢, + ¢, < ) (2) becomes g? — (z +y)(£—y)— (z+

y)(z+4) = ¢*—(z+y)(g+z—y) = g*—gz—gy—z*+y? = 2((£)*—2?)+(z—2)*+(y—-£)* >
0. Q.ED.

b) LRHO < %: True since R is above MO and between v and w.

c) LTOH < %:

If .THO > % then we are done. If /THO < % then it suffices to show that OT lies
between the rays OH and OG which is true by construction of vw.

()

O

E D
R Q

T w
v 'Q R/(
F ¢ T/<\

5 - b
M /Kg (¢]
H
A B

Figure 15: figures a, b, c

Lemma 5.17 Steiner point H does not create inconsistencies indefinitely.

Proof: The proof is based on the fact that that we have used approach B for edge
triangulation. We have the following possibilities:

a) The left adjacent square is of of half size. Then H already existed.

b) The left adjacent square is of double size.

c) The left adjacent square is of the same size. Then the previous configuration is
any of the configurations of lemma 5.3 such that b(w) = B.

c.1) b(v) = M with and without the N Steiner point appear in fig. 16.a and fig. 16.b

respectively.

c.2) b(v) = A with and without the N Steiner point appear in fig. 16.c and fig. 16.d
respectively.

c.3) b(v) = w with and without the N Steiner point appear in fig. 16.e and fig. 16.f
respectively.

All possibilities appear in fig. 16.
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6 Triangulating near Polygon vertices

In triangulating near polygon edges we always assumed that we have enough clearance
below the edge. However this is not true when we need to triangulate close to a vertex.
Thus we need to treat vertices in a different way. Vertices are classified into two basic
classes: acute vertices and obtuse vertices.

In subsection 6.1 we show how to do nice triangulation near acute vertices and in
subsection 6.2 we show how to do nice triangulation near obtuse vertices.

6.1 Triangulating near acute vertices

Acute vertex triangulation is done by cutting of an isosceles triangle. After cutting this
isosceles triangle by the cutting edge AB we may need to separate points A and B.

To be more precise we will require that a) AB intersects constant number of q-
tree cells and b) all these cells and their neighbors are of the same size. In fact the
requirement is a uniform grid of constant size along AB. This can be achieved by
further g-tree subdivisions. The above mentioned subdivisions will create Steiner points
on AB. Thus we need to further triangulate AOAB to resolve the inconsistencies.

We are going to make the following two assumptions on the grid structure in the
vicinity of AB. First the grid is uniform and second AB intersects O(1) number of grid
cells. The triangulation of AOAB can be achieved using a uniform grid whose axis are
parallel and perpendicular (resp.) to the base of the isosceles triangle.

The following lemma describes how to triangulate the isosceles triangle using a uni-
form grid.

Lemma 6.1 Given an isosceles triangle AOAB with Steiner points on AB vy,vg, ..,
such that vy = A and v; = B. and v;viy; = g fori =2,...1—2 and vv; as well as vi_1v;
are between g and 2g. Then there is a nice triangulation of AOAB using all the Steiner
points on AB.

Proof: Consult fig.17.

Consider a uniform grid with one axis parallel to AB and the other perpendicular to
AB and grid spacing equal to g. Call the former axis horizontal and the latter vertical.

Starting from vertex O and moving down to AB let gl be the first horizontal gridline
such that contains a one or two safe gridpoint(s). A gridpoint M will be called safe
iff the horizontal distances of M from the triangle sides OA and OB is [g,2g). (Such
a gridline always exists). Call C (D resp.) the intersection of OA (OB resp.) with
gl. Then AC and BD can be treated as well separated edges and the triangulation is
done according to the lemmas in section 5. What remains is to show how to triangulate
AACD using the safe gridpoints.

a) Only one safe point M on gl. Assume W.L.O.G that MC < MD. Let E be
the intersection of AC and the parallel from M to AD and let F be the in-
tersection of AD and the parallel from F to CD. We can easily prove that
AAEF, AECM,AMEF,AMFD are nice.
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b) Two safe gridpoints M, N on gl. Let gm be the gridline which is immediately
above gl. Let G, H the intersection points of gm with OA and OB respectively.
Then gm does not have a safe gridpoint. (otherwise we would have considered gm
instead gl). Let M Nzy be the grid cell above gl and let @ be the midpoint of zy.
Then connect Q to M, N,H,G and G to M,C and H to N,D. Then apply the
constructions of a) in AAGH using point Q.

v

A\

/ \

/ e

A
AN \
AN -
N

A B

Figure 17: Triangulation of an isosceles triangle using uniform rotated grida

Lemma 6.2 Given the conditions of lemma 6.1 the isosceles AOAB can be nice trian-
gulated using a tree like grid.

Proof: The proof is along the lines of the proof of lemma 6.1 and thus omitted. It
should be clear that the number of produced triangles is O(l) i.e does not depend on
the LAOB. See fig. 18.
0
However the question is “where” we cut the isosceles triangle? If we cut very close to
the vertex v, then the cutting edge will be very small (smaller than the minimum feature
size of the polygon) which may result in an uncontrolled number of q-tree subdivisions.
If the cutting edge is not “very small” we say that satisfies the non-small cut condition.
In order for the cutting edge to be not “very small” , the cutting edge should be of the
order of the the g-tree square which includes vertex v. Let AB be the cutting edge and
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Figure 18: Triangulation using a tree-like grid
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let 6 be the acute angle at vertex v. After specifying points A and B we may have to
separate A and B in the g-tree subdivision. If AB intersects O(1) squares of the g-tree,
then A and B satisfy the constant clearance condition.

Lemma 6.3 Let O be an acute vertez of a polygon P. Let 8 be the corresponding angle
and A, be the aspect ratio of any triangle of a triangulation of P which has O as a
vertez. Then 2 < A,.

Proof: Let AOAB be such a triangle and let qS, p be its sma.llest angle and its angle at

vertex O respectively. It is well known that ———- < A,. But ; 0 < ta:m <& s Q-E.D.
(]

Lemma 6.4 Under the non-small cut condition the number of additional g-tree subdi-
visions to achieve constant clearance of A and B for all acute vertices is O(nA).

Proof: Let OA = b and AB = z. Then z = 2bsin 2. It is well known [45] that given
two points A and B in a square of side s such that AB = ¢ then the number N of g-tree
squares to separate AB is O(log2). Under the non-small cut condition b = ©(s) which
implies N = O(log(=27))-
2
We can prove that ln(—lg)) < :25)- Then as a simple consequence of lemma 6.3 we

have that —— < A and thus summing over all polygon vertices we get the result. O

Lemma 6.5 The number of triangles required to nice triangulate a cuted isosceles tri-

angle with acute angle 6 using a uniform grid is O(tma)

Proof: Let AB = a and vA = h and let g be the size of the grid cell. Then the number
of triangles is O(%z %). Since h = ;%5 we get that number of triangles is o((2 v
However since we assume constant clearance between A and B implies that £ is consta.nt

Q.E.D. )

Lemma 6.6 The total number of nice triangles to triangulate the acute vertices of the
polygon is O(nA).

Proof: According to lemma 6.5 the number of created triangles for acute vertex ¢ is
a

6.2 Triangulation near non-acute vertices

The classification of obtuse vertices is done in the following way; Consult fig.19.

A vertex v is of type A iff a horizontal or vertical line through v cuts the interior
angle at v into two angles each of them is greater or equal to £. Note that reflex vertices
are of type A.

Assume W.L.O.G. that vA is in the eighth octant like fig.19. If vB is in the second
octant then vertex v is classified as vertex of type B. If vB is in the third octant then v
is of type C.
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For the triangulation of the vertex regions we will assume that a uniform grid of
constant size is available around each vertex. Each of the above types of obtuse vertices
is classified as case (i-j) where i,j = 1,2,3 according to the following criterion. Let v
be a vertex and ! be the ray with origin v which contains one of the incident edges e of
v. Assume W.L.O.G. that e; is an h (v resp.) edge. Let A be the intersection of ! and
the second vertical (horizontal resp.) grid line. A can lie on the boundary of cell 1,2,
or 3. Then edge e can be classified as case-1, case-2, case-3 respectively. A vertex v is
case(i-j) iff one of the incident edges is case-i and the other of case-j.

—
S ———
-

Figure 19: Types of obtuse vertices

Lemma 6.7 Type A vertices can be nice triangulated.

Proof: The triangulation of this type is the easiest since we can always bring the
perpendicular from O to the second horizontal (vertical resp.) gridline without creating
small angles. Consult figure 20. 0

o

H /-/'\\ A

Figure 20: Triangulation of type A vertices

Lemma 6.8 Type B vertices can be nice triangulated.

Proof: Consult figure 21. There are the following types of type B vertices:
Case(1-1): Let D a point on CB such that DO = DA. If /ODA > % then resolve it
by the bisector DM of OA. Then AODC,AODA, ANADB are nice. However point D
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is not a grid vertex. This inconsistency can be resolved by techniques similar to those
in the proof of lemma 7.1.

Case(1-2): If AB > £ then construction is like case(1-1). Otherwise connect D to
E,A,O,C. Resolve the probably obtuse angle ODA.

Case (1-3): Not feasible, since that would imply that vertex O is acute.

Case(2-1): Connect D to C,0, A, B.

Case(2-2): Connect D to C,0, A, B.

Case(2-3): Let F and be the perpendicular projections of O on the second and third
horizontal gridline below O. Let G be the perpendicular projection of C on ED. Then
connect D to F, A, B. Connect G to C, F, E.

Case(3-2): Connect D to C,0. Resolve the obtuse ZODC. Connect E to O, A, B.

Case(3-3): See Figure. 0

Lemma 6.9 A type C vertex can be nice triangulated.

Proof: The classification of type C vertex is the same as type B. Similar techniques as
in type B can be applied. Thus most of the description is omitted. However we will
selectively describe some complicated constructions. Consult figure 22. Consider case
(1-2). Connecting simply C to O and B does not always work since /BOC may be
obtuse. Resolving it using the perpendicular OT from O onto BC also does not work
since we need then to resolve Steiner point 7. Point T' can be resolved temporarily by
the perpendicular TF onto BD. Then we have to resolve F and this is the problem.
The suggested construction is the following: Let K be the midpoint of CD and let T
be the perpendicular projection of O onto BD. If ZBOC is obtuse then shift point C
towards K until either ZBOC becomes J or C coincides with K whichever happens first.
If point K is reached first, which is the interesting case, let 6 be the angle of OC with
the horizontal ray through O. Then 6 is non-small, since the the vertical distance of K
from the horizontal ray through O and the distance of O from AK are of the order of
the size of the grid cell. However ZBOT > 6 which implies that ABOT is nice. Thus
the suggested triangles are ABOT, ATOK,ATKD, AAOK. (see fig. 22 case(1-2)).

Case (2-1) is symmetric.

In case (3-1) a similar situation arises. Initially we try to connect O to E. If /ZEOA
is obtuse we apply the above mentioned method in the quadrilateral OEC A by shifting
E towards the midpoint K of EC.

Case (3-3) is infeasible since that would imply vertex angle > 3

Case (2-3) If LOED > § then connect O to the midpoint K of BC.

Case(3-2) is symmetric to case (2-3). 0.

Thus we get the following:

Theorem 6.10 Every non-acute vertex region of a polygonal domain P can be nice
triangulated using O(1) additional Steiner points per vertez.

Finally we have :

Theorem 6.11 Every vertex region, acute or not can be nice triangulated by adding at
most O(1) Steiner points.
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Figure 21: Triangulation of type B vertices
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7

Matching the triangulations of different regions
(fixing inconsistencies)

So far we have shown how to triangulate independently near edges (section 5), near
obtuse and acute vertices (section 6).

However these independent triangulation may lead to inconsistencies.

We have two types of inconsistencies:

a)

b)

Inconsistencies between the triangulation of an acute vertex region of P and the
triangulation of an non-acute vertex region of P*.

Let AB be a cutting edge of an acute vertex O. Assume that the reduced polygon
P* as well as the isosceles triangle AOAB have been triangulated. Recall that
obtuse vertices A, B of P* and edge AB have been triangulated using a uniform
grid.

However triangulation of the obtuse vertices A, B of P* introduces additional
Steiner points on the cutting edge AB which do not match with vertices of the
triangulation of AOAB.

Inconsistencies between the triangulation of obtuse vertex regions and triangula-
tion of edges.

These come from the different way we create a Steiner point when we have a
uniform or a non-uniform grid. In the vertex triangulation process we use a uniform
grid in contrast to the edge triangulation process.

In the following lemma we shoe how we resolve inconsistencies of type a). Similar
techniques are applicable for type b) also.

Lemma 7.1 The inconsistencies between triangulations of an acute vertex region O of
polygon P and the triangulation of the corresponding non-acute vertices A, B of the
reduced polygon P* can be resolved.

Proof: According to lemma 6.8 and lemma 6.9 there exists at most one Steiner point
on Avy and at most one on v;_B. We will treat the case of a Steiner point S on v;_; B.
Similarly the other case can be treated.

a)

type 1:

l.a /QSB < 7 then connect S to R,Q,v-1, B. See fig. 23.a.

1.b LQSB > 7 then the same as 1.a but resolve the obtuse angle. See fig. 23.b.
type 2:

2.a LQSB > 7 then connect v;_; to T',Q, S. See fig. 23.c.

2.b LQSB < 7 then let M be a point on QR such that My, = MS. Then
connect v;_; to T, M, S and S to M,Q, B. See fig. 23.d. Since point M is not a
quadtree vertex creates inconsistency which should be resolved. The appropriate
transformations are shown in fig. 23.e, 23.f, 23.g.
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e. f. g.

Figure 23: Matching different triangulations
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8 Putting Things Together : Size and Quality of
the produced Triangular Mesh

In Step a. of the algorithm the size of the quadtree is O(nA) according to [4].

In steps b. and f. the number of additional triangles is O(n) since we can nice
triangulate each acute vertex using constant number of triangles.

Triangulating the rectilinear region of every non-acute vertex in step c. requires
O(1) additional Steiner points per vertex thus a total of O(n) additional points.

In step d. we add at most O(1) number of Steiner points per quadtree cell which
intersects the boundary of the geometry, according to the constructions of section
5.2, thus a total O(nA) additional points.

Resolving inconsistencies in step g. requires O(1) additional Steiner points per
vertex region, according to constructions of lemma 7.1.

Thus we get the following:

Theorem 8.1 The number of triangles required to produce a triangulation of a polygonal
domain with holes P, such that every triangle satisfies both the non-small angle and non-
obtuse angle condition is O(nA) where n is the size of P and A is the aspect ratio of the
constraint Delaunay triangulation of P.

9 Conclusions

We presented a new algorithm for producing non-obtuse no-small angle triangulations
for a polygon with holes. An important open problem is whether a quality triangulation
is possible for both the polygon and the holes.
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