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Abstract

The belief network framework for plausible reasoning provides both a formalism
for representing knowledge concerning a joint probability distribution on a problem
domain, and a set of algorithms for efficiently propagating evidence and computing
probabilities of interest. This paper presents a rigorous review of the set of algorithms
for belief propagation proposed by J. Pearl, including full proofs.

1 Introduction

Halfway through the 1980s, the theory of belief networks was introduced for reasoning
with uncertainty in knowledge-based systems. The belief network framework provides a
formalism for representing knowledge about a problem domain, or to be more precise, for
representing knowledge concerning a joint probability distribution on a set of variables
discerned in the domain. Beside this knowledge-representation formalism the framework
also provides a set of algorithms for reasoning with knowledge represented in the formalism.
Several such sets of algorithms have been proposed. The earliest and most well-known is
the set of algorithms proposed by J. Pearl from the University of California, Los Angeles,
. [Pearl, 1988]. Since its introduction the belief network framework is becoming increasingly
popular, and at present more and more knowledge-based systems are being developed using
this framework, most notably in the area of medical diagnosis and therapy selection, see
for example [Andreassen et al., 1987}, [Andreassen et al., 1991], [Bellazzi et al., 1991} and
[Shwe et al., 1991]; for applications in other domains, see for example [Bruza & van der
Gaag, 1992] and [Jensen et al., 1990].

The aim of this paper is to present a formal review of the set of algorithms proposed by
Pearl; for an informal introduction to these algorithms, the reader is referred to [Morawski,
1989]. The paper is organized as follows. In Section 2 the basic notions involved in the
belief network framework are provided. Section 3 defines the belief network formalism
and its semantics. Section 4 reviews Pearl’s algorithms and presents full proofs of their
correctness. The paper is rounded off with some concluding observations in Section 5.



2 Preliminaries

In this section, we briefly review some notions from graph theory that will play a central
role in this paper; for further information the reader is referred to [Harary, 1969]. Also
some preliminaries concerning probability theory are provided.

Generally two types of graphs are discerned: undirected and directed ones.

Definition 2.1 An undirected graph G is an ordered pair G = (V(G), E(G)) where V(G)
is a finite set of vertices and E(G) is a set of unordered pairs (V;,V;), V;,V; € V(G), called
edges. A directed graph, or digraph for short, is an ordered pair G = (V(G), A(G)) where
V(G) is a finite set of vertices and A(G) is a set of ordered pairs (V;,V;), Vi, V; € V(G),
called arcs.

Definition 2.2 Let G = (V(G), A(G)) be a digraph. Vertez V; € V(G) is called a prede-
cessor of vertez V; € V(G) in G if (V;,V; ) € A(G); the set of all predecessors of vertez V; in
G is denoted by pc(V;). Vertez V; is called a successor of vertez V; in G if (V;,V;) € A(G)
the set of all successors of vertex V; in G is denoted by og(V;). The set of all nexghbours
of a vertez V; in G is defined as vg(V;) = 06(V; ) U pg(Vi). The transitive closure of the
set of predecessors of vertez V; is denoted by p5(V;); an element from pg(V;) is called an
ancestor of V;. The transitive closure of the set of successors of vertex V; is denoted by
o&(Vi); an element from of(V;) is called a descendant of V;. The in-degree of a vertez
Vi € V(G) is defined as the number of vertices in pg(V;); the out-degree of V; is defined
as the number of vertices in og(V;).

We will often drop the subscript G from pg etc. as long as ambiguity cannot occur.
In the sequel, we will use several types of vertex sequences.

Definition 2.3 Let G = (V(G), E(G)) be an undirected graph. A path from V, to Vi,
Vo,Vie € V(G), in G is a sequence of vertices Vo, V4,..., Vi such that (Vi-,,Vi) € E(G),
1=1,...,k, k> 0; k is called the length of the path. A cycle is a path of length at least
one from Vp to Vg for some Vo € V(G). A graph G is called cyclic if it contains at least
one cycle; otherwise it is called an acyclic graph.

The previous notions have been introduced for undirected graphs; they can easily be ex-
tended, however, to apply to directed graphs by taking the directions of the arcs into
account. The following definitions apply to directed graphs only.

Definition 2.4 Let G = (V(G), A(G)) be a digraph. The underlying graph H of G is
the undirected graph H = (V(H), E(H)) where V(H) = V(G) and E(H) is obtained from
A(G) by replacing each arc (V;,V;) € A(G) by an edge (V;,V;). A chain from V; to Vi,
Vo, Vi € V(G), in G is a sequence of vertices that is a path in the underlying graph H of
G; k is called the length of the chain. A loop in G is a chain of length at least one from
Vo to Vi for some Vy € V(G).



To conclude the preliminaries on graph theory, several types of digraph are introduced.

Definition 2.5 A digraph G is called singly connected if it does not contain any loops;
otherwise it is called multiply connected. A singly connected digraph G is called a directed
tree if each verter in G has at most one predecessor.

Singly connected digraphs often are termed polytrees, [Pearl, 1988].
We now provide some preliminaries concerning probability theory; in doing so we take

an algebraic point of view. In the following definition, the notion of a free Boolean algebra
is defined.

Definition 2.6 A Boolean algebra B is a set of elements with two binary operations A
(conjunction) and V (disjunction), a unary operation - (negation) and two constants false
and true which (by equality according to logical truth tables) adhere to the usual arioms.
A subset of elements G = {g1,...,9n}, n > 1, of a Boolean algebra B is said to be a
set of generators for B if each element of B can be represented in terms of the elements
gi € G, 1 =1,...,n, and the operations A\, V and —. A set of generators G for B is said
to be free if every mapping of elements of G into an arbitrary Boolean algebra B' can be
extended to a homomorphism of B into B'. A Boolean algebra B is free if it has a finite set
A= {ay,...,a,}, n > 1, of free generators; we say that B is (finitely) generated by A. In
the sequel, we will use B(ay,...,a,) to denote the free Boolean algebra B generated by A.

Definition 2.7 Let B(ay,...,a,) be the free Boolean algebra generated by the set of free
generators A = {a1,...,an}, n > 1. Let A = {Ai,..., A}, 0 < k < n, be a set of
variables over B(ay,...,a,). Now, let Fy : B(ay,...,a,)* — B(ay,...,a,) be the Boolean
polynomial function defined by Fy = true if k =0 and Fa(Ai,...,Ai) = A A--- AN A,
otherwise. Let B; = {a;,—a;}, i = 1,...,n. We define the configuration function C4 as
the restriction of F4 to B;, x --- X B;,, that is, C4 = FA|B.-1x~-~xB.~k- A function value cy
of C4 is called a configuration of A.

In the sequel, we will often use the notation {c4} to denote the set of all configurations of
the set of variables A; for a single variable A; we will often write c,4, instead of c{4;} Fur-
thermore, we will take the point of view of a free Boolean algebra B(ay,...,a,) as a sample
space being ‘spanned’ by a set of variables A; taking values from {a;,-a;},1=1,...,n. A
variabele A; over {a;,~a;} will be termed a probabilistic variable. Note that the general-
ization to variables with more than two discrete multiple values is straightforward.

We now define the notion of a joint probability distribution on a Boolean algebra.

Definition 2.8 Let B be a free Boolean algebra as defined above. Let Pr be a function
Pr: B — [0,1] such that

1. Pr is positive, that is, for all x € B, we have Pr(z) > 0, and furthermore we have
Pr(false) =0,

2. Pr is normed, that is, we have Pr(true) =1, and
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3. Pr is additive, that is, for all z,,z, € B, we have that if z, A 2 = false then
Pr(zy V z2) = Pr(z,) + Pr(z;).

Then, Pr is called a joint probability distribution on B.

It can easily be shown that the probability of an event is equivalent to the probability of
the truth of the proposition asserting the occurrence of the event: we have that a joint
probability distribution on a Boolean algebra of propositions has the usual properties. We
now take conditional probabilities being defined as customary.

To conclude, we introduce the notion of an independency relation between sets of
probabilistic variables.

Definition 2.9 Let B(ay,...,a,) be the free Boolean algebra generated by the set of free
generators A = {ay,...,a,}, n > 1. Let Pr be a joint probability distribution on the
algebra B(ay,...,a,). Let A = {Ay,...,A,} be the set of probabilistic variables A; over
B; = {a;,a;}, 1 = 1,...,n. Now, let X,Y,Z C A be sets of variables and let Cx,Cy
and Cz be the configuration functions for the sets X,Y and Z, respectively. The set of
variables X is said to be conditionally independent of Z given Y, denoted as Ip.(X,Y, Z),
if Pr(Cx | Cy ACz) = Pr(Cx | Cy); Ip(X,Y,Z) is called an independency statement
for Pr. The set of all independency statements for Pr defines the relation Ip,, called the
independency relation of Pr.

For an in-depth discussion of the properties of independency relations, the reader is referred
to [Pearl, 1988].

3 Belief Networks

As we have mentioned before in our introduction, the belief network framework provides
a formalism for representing knowledge concerning a joint probability distribution on a
problem domain. In this section, the belief network formalism is defined and is assigned
a meaning based on probability theory. Also, it is indicated which types of algorithm are
required for reasoning with knowledge represented in the formalism.

3.1 The Belief Network Formalism

We introduce the notion of a belief network informally before giving a formal definition.
A belief network comprises two parts: a qualitative representation and a quantitative rep-
resentation. The qualitative part of a belief network takes the form of an acyclic digraph
G = (V(G), A(G)) with vertices V(G) = {W,...,Vo}, n 2 1, and arcs A(G). Each vertex
V; in V(G) represents a variable that can take one of the values true and false. We will
adhere to the following notational convention: v; denotes the proposition that the variable
V; takes the truth value true; V; = false will be denoted by —w;. Informally speaking,
we take an arc (V;,V;) € A(G) to represent a direct ‘influential’ or ‘causal’ relationship
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between the linked variables V; and Vj; the direction of the arc designates V; as the effect
or consequence of the cause V;. Absence of an arc between two vertices means that the
corresponding variables do not influence each other directly. We take the digraph to be
configured by an expert from human judgment; hence the phrase belief network. Associ-
ated with the graphical part of a belief network is a numerical assessment of the ‘strengths’
of the represented relationships: with each vertex is associated a set of (conditional) prob-
abilities which describe the influence of the values of the predecessors of the vertex on the
probabilities of the values of the vertex itself.
We now define the notion of a belief network more formally.

Definition 3.1 A belief network is a tuple B = (G,T') such that

1. G = (V(G), A(G)) is an acyclic digraph with vertices V(G) = {V1,...,Va}, n 2 1,
and

2. T = {v | V: € V(G)} is a set of real-valued nonnegative functions vy, : {vi, ~v;} X
{eavy} — [0,1], called (conditional probability) assessment functions, such that for
each configuration cyv,) of p(Vi) we have that vyv,(—v; | cpvy)) = 1 — v, (vi | cpviy),
t1=1,...,n.

Note that in the previous definition V; is viewed as a vertex from the graph and as a
probabilistic variable, alternatively.

In order to link the qualitative and quantitative parts of a belief network, we assign
a probabilistic meaning to the topology of the digraph of the network. We begin by
introducing the notion of a blocked chain. :

Definition 3.2 Let G = (V(G), A(G)) be an acyclic directed graph with the vertex set
V(G) ={V1,...,Va}, n > 1. Then, a chain s from vertez V; € V(G) to vertez V; € V(G)
is blocked by a set W C V(G) if one of the following conditions holds:

1. The chain s contains a vertex X, € W and two vertices X,, X3 € V(G) such that
(X2,X1) € A(G) and (Xz,X3) € A(G)

2. The chain s contains a vertezx X; € W and two vertices X;,X3 € V(G) such that
(X],Xz) € A(G) and (X2,X3) € A(G)

3. The chain s contains vertices X, X2, X3 € V(G) such that (X;,X;) € A(G) and
(X3,X2) € AG) and o*(Xo) N W =,

In defining the notion of a blocked chain, we have distinguished three cases; Figure 1 serves
as a reference for these cases.
Building on the notion of a blocked chain, we define d-separation.

Definition 3.3 Let G = (V(G), A(G)) be an acyclic digraph. Let X,Y,Z C V(G) be sets
of vertices. The set Y is said to d-separate the sets X and Z, denoted as (X|Y|Z)4, if
for each V; € X and V; € Z every chain from V; to V; is blocked by Y.
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Case 1. --eeen- @ @ @ .......
Case 2.  ---ee-- @ @ @ .......
Case 8. - @ @ @ .......

Figure 1: Chain Blocking.

We now assign a probabilistic meaning to a digraph by defining several types of relation-
ships between joint probability distributions and digraphs.

Definition 3.4 Let G = (V(G), A(G)) be an acyclic directed graph with the vertex set
V(G) = {W1,...,Va}, n > 1. Let B(vy,...,v,) be the free Boolean algebra generated by
the set of free generators {v;|V; € V(G)}. Furthermore, let Pr be a joint probability
distribution on B(vy,...,v,) and let Ip, be the independency relation of Pr. Then,

1. The digraph G is called a dependency map, or D-map for short, for Pr if for all sets
X,Y,Z C V(G) we have: if Ip,(X,Y, Z) then (X|Y|2Z)¢.

2. The digraph G is called an independency map, or I-map for short, for Pr if for all
X,Y,Z C V(G) we have: if (X|Y|2)% then Ip.(X,Y, 2).

3. The digraph G is called a perfect map for Pr if G is both a dependency map and an
independency map for Pr.

Note that vertices that are not d-separated in a D-map for a joint probability distribution
Pr are guaranteed to be dependent in Pr (then viewed as probabilistic variables); the D-
map, however, may display a pair of dependent variables as a pair of d-separated vertices.
On the other hand, vertices found to be d-separated in an I-map for Pr correspond to
independent variables; those not d-separated, however, need not necessarily be dependent.
A perfect map faithfully displays all dependencies and independencies embodied in Pr. It
can easily be verified that every probability distribution has at least one I-map and at least
one D-map. However, not every probability distribution has a perfect map.

The following proposition now states that the initial assessment functions of a belief
network provide all information necessary for uniquely defining a joint probability distri-
bution on the variables discerned that respects the independency relationships portrayed
by the graphical part of the network. Henceforth, we will call this the joint probability
distribution defined by the network.



Proposition 3.5 Let B = (G,T') be a belief network as defined in Definition 3.1, where
V(G) = {W,...,Va}, n > 1. Let B(vy,...,vy) be the free Boolean algebra generated by
{vi| Vi € V(G)}. Then,

PT(CV(G)) = [li=1,.n (Vi | Cp(V.'))
defines a joint probability distribution Pr on B(vi,...,v,) such that G is an I-map for Pr.

Proof. A digraph without any (directed) cycles allows at least one total ordering of its
vertices such that any successor of a vertex in the graph follows it in the ordering. It follows
that there is an ordering of the probabilistic variables such that in applying the chain rule
each variable is conditioned only on the variables preceding it in the ordering. Choosing an
appropriate ordering of V(G), the independency relation portrayed by G can be exploited.
By taking Pr(v; | covi)) = Yv;:(vi | covy)) for each V; € V(G) and all configurations c,v;) of
p(Vi), the property stated in the proposition follows immediately. O

In the sequel, it will be shown that a belief network may be exploited for reasoning purposes.
When reasoning with the belief network, evidence may become available concerning some of
the variables which is subsequently entered into the network. Pearl distinguishes between
two types of incoming information: specific evidence and virtual evidence. Specific evidence
represents direct observations that affect the probabilities of the values of some variables in
the network; virtual evidence concerns judgments based on indirect observations that are
out of the scope of the network but have bearing on variables within the network. In this
paper, we restrict the discussion to specific evidence only and merely mention that virtual
evidence is handled essentially the same way. For further details, the reader is referred to
[Pearl, 1988].
To conclude this section, we will define some more notions.

Definition 3.6 Let V be a set of probabilistic variables. A variable V; € V' for which either
the specific evidence V; = true or V; = false has become available is called instantiated;
if no evidence has been obtained as yet for a variable, it is called uninstantiated. Now, let
X C V be the set of instantiated variables from V. The configuration cx of X is called a
partial configuration of V, denoted by ¢y .

Note that if none of the variables in a set of probabilistic variables V' are instantiated, we
have ¢y = true by definition. Also note that the notation ¢y introduced above allows for
referring to the subset of instantiated variables of the set V' without specifying this subset
explicitly.

3.2 Reasoning with a Belief Network

In the previous section, the notion of a belief network has been introduced as a means for
representing a joint probability distribution. For making probabilistic statements concern-
ing the variables discerned in the problem domain, two algorithms have to be associated
with a belief network:



e an algorithm for (efficiently) computing probabilities of interest from the network,
and

e an algorithm for processing evidence, that is, for entering evidence into the network
and subsequently (efficiently) computing the revised probability distribution given
the evidence.

Since a joint probability distribution on the variables is uniquely defined by the conditional
probability assessment functions, any probability of interest can be computed from these
functions. Equally, the impact of a value of a specific variable becoming known, on each of
the other variables can be computed from the initial assessment functions. Now, observe
that the conditional probability assessment functions describe the joint probability distri-
bution locally for each vertex and its predecessors. Calculation of a (revised) probability
from the joint probability distribution defined by the belief network in a straightforward
manner, however, will generally not be restricted to performing computations which are
local in terms of the graphical part of the network. In the literature therefore, several less
naive algorithms for computing probabilities of interest from a belief network and for pro-
cessing evidence in the network have been proposed, for example by J. Pearl, [Pearl, 1988],
and by S.L. Lauritzen and D.J. Spiegelhalter, [Lauritzen & Spiegelhalter, 1988]. Although
all schemes proposed for evidence propagation are based on probability theory, they differ
considerably with respect to the algorithms employed and their complexity; it should be
noted that in general probabilistic inference in belief networks without any restrictions is
NP-hard, [Cooper, 1990].

All schemes for reasoning with a belief network have an important property in common:
the graphical part of the network is exploited more or less directly as a computational
architecture for both algorithms. In this paper which focuses on Pearl’s work, we will often
adhere to an object-oriented approach and view the graphical part of a belief network as
a computational architecture by taking the vertices of the graph as autonomous objects
having a local processor capable of performing certain probabilistic computations and a
local memory in which the associated conditional probability assessment function is stored;
the arcs of the graph are viewed as bi-directional communication channels through which
the objects send messages.

4 Pearl’s Algorithms

J. Pearl has presented a set of algorithms for computing probabilities and for processing
evidence in a belief network comprising a singly connected digraph. The basic idea of these
algorithms is that the vertices of the graphical part of the network, viewed as autonomous
objects, send each other enough information about the joint probability distribution and
the evidence obtained sofar to enable each vertex to compute the (revised) probabilities of
its values from the information it receives from its neighbours and its own local conditional
probability assessment function. The impact of a piece of evidence entered into the network
is then viewed as a perturbation that spreads through the network by message-passing
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between neighbouring vertices. In Section 4.1, we present a simplified version of Pearl’s
algorithms that applies to directed trees only. In Section 4.2, these algorithms are extended
to more general algorithms applying to singly connected digraphs.

4.1 Directed Trees

In this section, we confine ourselves to belief networks where the graphical part is a directed
tree, that is, a vertex may have several successors and at most one predecessor. Now
consider computing probabilities from such a network. It will be evident that at any time
the probabilities of the values of a vertex in the directed tree are dependent upon the
evidence entered for its ancestors and its descendants, that is, upon all data observed
sofar.

Lemma 4.1 Let B = (G,T') be a belief network where G = (V(G), A(G)) is a directed
tree, and let Pr be the joint probability distribution defined by B. Let V; € V(G) be a
vertez in G, and let V;~ = {V;| there is a path from V; to V;} and V¥ = V(G)\ V™. Then,

Pr(Vi|evg) = a-Pr(éV'_- | Vi) - Pr(V; Iévﬁ)

where Cy(g) = 6‘,'_— A EV‘+ and o is a normalization constant.

Proof. For the probabilities of the values of the probabilistic variable V;, we have that
Pr(Vilév) = Pr(Vi |5V: A évj) =

Pr(éy- Aéy+ | Vi) - Pr(V;)
PT(&V'— A év+)

using Bayes’ Rule for the last equality. Now consider Figure 2 showing a fragment of the
directed tree G. From G we observe that (X|{V;}|Y)% for all subsets X C V;" and Y C V;*.
Since G is an I-map for the joint probability distribution Pr it follows that Ip.(X, {V;},Y)
for all X C V.7, Y C V;*. From this observation we have

Pr(&y- | Vi) Pr(éys | Vi) Pr(V;)
Pr(é‘/"— A é‘/;}-)

Pr(V;|évig) =

Pr(EVi+)

= Pr(ey-|Vi)-Pr(Vil &) oA 0

Now observe that the factor
PT(EV'-G-)
Pr(cy- Acy+) —  Pr(cy-|cy+)

is dependent on the variable V; but not on its values; this factor may therefore be viewed
as a constant for V;, which will subsequently be denoted by a. It follows that

Pr(‘/' | éV(G)) = - PT(&V'— l V; ) . PT'(V; | EV'-P)

9



Figure 2: A Fragment of a Directed Tree.

The constant « is generally referred to as a normalization constant because it may be
computed from Pr(v; | év(g)) + Pr(-vi | év) = 1. D

As Pearl notes, the property stated in the previous lemma provides a generalization to
Bayes’ Rule for recursive updating when the pieces of evidence obtained are not condition-
ally independent given the updated variable, [Pearl, 1988).

The previous lemma shows that the probabilities of the values of a vertex can be written
in terms of two factors describing the influence of evidence concerning the descendants of
the vertex and the influence of evidence concerning the other vertices in the tree separately.
The following definition introduces separate functions to describe these influences.

Definition 4.2 Let B = (G,T) be a belief network as before and let Pr be the joint proba-
bility distribution defined by B. Let V; € V(G) be a probabilistic variable in G and let V;~
and V¥ be as in the previous lemma. The compound causal parameter my; for V; is the
function wy;: {v;,~v;} — [0,1] defined by

mv(Vi) = Pr(Vi|éys)

The compound diagnostic parameter Ay, for Vi is the function Ay, : {vi,~v;} — [0,1]
defined by

M(Vi) = Pr(é,-|Vi)

Sometimes, the compound causal parameter for a variable is called the predictive sup-
port for the variable; the compound diagnostic parameter for a variable then is called its
retrospective support.

We reconsider the previous definition for the boundary vertices in the digraph of a
belief network for which either the in-degree or the out-degree equals zero. We first address
the case where these vertices are uninstantiated. Recall that in this section we confined
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ourselves to directed trees only. The digraph therefore has one vertex with in-degree equal
to zero; this vertex will be called the root of the tree. Now consider the compound causal
parameter mw for the root W of a directed tree G. We observe that for W the set W+
is empty. So, éw+ = true. The compound causal parameter mw : {w,~w} — [0,1] for
W therefore is defined by mw (W) = Pr(W) where Pr is the joint probability distribution
defined by the network. The directed tree may further have several vertices with out-degree
equal to zero; these vertices are called the leaves of the tree. Considering the compound
diagnostic parameter for a leaf V of the tree, we observe that the set V'~ consists of V'
only. The compound diagnostic parameter Ay : {v,~v} — [0,1] for V therefore is defined
by Av(V) = 1. To conclude our discussion of the compound parameters, we consider
instantiated variables. For a variable V; for which the evidence V; = true is observed
we find 7y, (V;) = Pr(V; | cV+) and Ay,(v;) = Pr(cv- | v;) and Ay;(—v;) = 0; a similar
observation holds for the case where we have observed the evidence V; = false.

The following lemma shows that the compound causal and diagnostic parameters for a
variable provide it with enough information for computing the probabilities of its values,
that is, no further knowledge of the joint probability distribution is needed; this lemma is
known as the data fusion lemma, [Pearl, 1988].

Lemma 4.3 Let B = (G,T) be a belief network as before and let Pr be the joint probability
distribution defined by B. Let V; € V(G) be a probabilistic variable. Let the compound
causal parameter wy;, for V; and the compound diagnostic parameter Ay, for V; be defined
as in Definition 4.2. Then,

Pr(Vilévg) = a-mvw(Vi)-Av(Vi)
where a s a normalization constant.

Proof. The property stated in the lemma follows immediately from Lemma 4.1 and Defi-
nition 4.2. O

The compound diagnostic parameter for a vertex specifies information concerning the joint
probability distribution from all its descendants combined; in general, a similar observation
applies to the compound causal parameter for the vertex. To be able to exploit the graph-
ical part of a belief network as a computational architecture, these compound parameters
have to be decomposed into parameters corresponding with each of the successors and the
predecessor of the vertex separately. The following definition introduces separate param-
eters to this end; the Lemmas 4.5 and 4.6 will show the decomposition of the compound
parameters.

Definition 4.4 Let B = (G,T) be a belief network as before and let Pr be the joint proba-
bility distribution defined by B. For each vertex V € V(G), let V= and V* be as in Lemma
4.1. Let V; be a probabilistic variable in G having a successor Vi. The causal parameter
w“;; from V; to Vi is the function r“f;: {vi,—v;} — [0,1] defined by

P(Vi) = Pr(Vildyy)
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Now, let V; be a probabilistic variable in G having the predecessor V;. The diagnostic
parameter /\V from V; to V; is the function )‘v {vj,;} — [0,1] defined by

W(V;) = Pr(Ey-1V;)

The separate causal and diagnostic parameters defined above are associated with the arcs of
the directed tree of the belief network as shown in Figure 3, and can be viewed as messages
the objects send each other through the communication cha.nnels It will be evident that
the root of the directed tree sends no diagnostic parameter, and that the leaves of the tree
send no causal para.meters Note that for a variable V; for which the evidence V; = true
is observed, we find 1rV '(v;) =1 and 7rV ' (-w;) = 0; a similar observation holds for the case

where V; = false is observed

N
X
>
=

- - -

—

s

.

3
==
S
S=

- -

———————

Figure 3: The Causal and Diagnostic Parameters.

The following lemma shows that a vertex can compute its compound causal parameter

from its associated conditional probability assessment function and the causal parameter
it receives from its predecessor.

Lemma 4.5 Let B = (G,T) be a belief network as before. Let V; € V(G) be a probabilistic
variable having the predecessor V;. Furthermore, let wy, be the compound causal parameter

for'V;, and let w“:f be the causal parameter from V; to V;. Then,

(Vi) = T, wiViley) mi(ey,)
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Proof. Let Pr be the joint probability distribution defined by the belief network B.
Furthermore, let V;* be as in Lemma 4.1. Then, from Definition 4.2 we have

(Vi) = Pr(Vi|ds) =

= Pr(Vi|vjAéy+)- Pr(v; | éy+) + Pr(V; | ~v; A &y+) - Pr(-v; | &v+)

Now consider once more Figure 2 showing a fragment of the directed tree G. From G we
observe that ({V;}|{V;}|X) for all subsets X C V;*. Since G is an I-map for the joint
probability distribution Pr, it follows that Ip.({V;}, {V;},X) for all X C V;*. Exploiting
this observation, we find

mv(Vi) = Pr(Vilv;)- Pr(vj|éys) + Pr(Vi| —v;) - Pr(-v; | éys)

The probabilities Pr(V; | V;) have been specified as function values vy, (Vi | V;) of the
conditional probability assessment function vy, associated with V; and therefore are known
to vertex Vi. Furthermore, we observe that vertex V; receives the probabilities Pr(V;|&y+)

as function values w“:f (V; ) of the causal parameter w“:" from its predecessor Vj. Substitution
yields

(Vi) = wi(Vi|v;) -7l (v;) + wi (Vi | ~v;) - ) (—v;) =

v
= o, wiViley) - m(ey,)
0
Equally, a vertex can compute its compound diagnostic parameter from the separate diag-

nostic parameters it receives from its successors. This property is stated in the following
lemma.

Lemma 4.8 Let B = (G,T) be a belief network as before. Let V; € V(G) be an uninstan-
tiated probabilistic variable with a(V;) = {Vi),...,Vin}, m > 1. Furthermore, let Ay, be
the compound diagnostic parameter for Vi, and for each successor V;; € a(V;) of V;, let
’\“;:,- be the diagnostic parameter from V;; to V;. Then,

)\V.-(Vi ) = nj=1,...,m /\‘éj(V.- )

Proof. Let Pr be the joint probability distribution defined by the belief network B. For
each vertex V € V(G), let V™ be as in Lemma 4.1. Then, by definition we have

Ai(Vi) = PriEy- Vi)
Since V; is an uninstantiated variable, we have that é,- = é,- A--- A&y~ . So,
s 9y m

M(Vi) = Pr(ey-A--Aéy- |Vi)

13
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Figure 4: Exploiting d-Separation for Computing Av;(V;).

Now consider Figure 4 showing a fragment of the directed tree G. From G we observe
that (X|{V;}|Y)& for all subsets X C V;” and Y C Ug=1,.mk#j Vir» J = 1,...,m. Since
G is an I-map for Pr, it follows that Ip (X, {V:},Y) for X C V7, Y C Ury,. i Vir s
j =1,...,m. From this observation, we find

(Vi) = Pr(ey-|Vi)-...- Pr(dy- | V)

Vertex V; receives the probabilities Pr(é, - |V; ) as function values )\Kj (V;) of the diagnostic
t 7]

parameter A from its successor V., j = 1,...,m. Substitution yields
Vi; 3

Wi(Vi) = M. (Vi) M (V) =

= Hj:l,...,m )\“2;(‘/' )
0

Note that the previous lemma applies to uninstantiated variables only. However, the prop-
erty mentioned in the lemma can be taken to hold for an instantiated variable V; as well if
we model entering the evidence V; = true into the network by adding a dummy successor
D to V; that sends the diagnostic parameter AY with AJj(vi) = 1 and Ai(mv;) =0to Vi
a similar observation is made for the case where the evidence V; = false is entered into
the network.

We have shown that a vertex can compute the probabilities of its values from its local
conditional probability assessment function and the diagnostic parameters and the causal
parameter it receives from its neighbours. Now observe that the vertex in turn has to
compute causal and diagnostic parameters to send to its respective neighbours. The fol-
lowing lemma shows that a vertex can compute the diagnostic parameter to send to its
predecessor from its own assessment function and the diagnostic parameters it receives
from its successors; in other words, to this purpose it combines its own information about
the joint probability distribution with the information it receives concerning the evidence
obtained sofar for its descendants.

14



Lemma 4.7 Let B = (G,T) be a belief network as before. Let V; € V(G) be a probabilistic
variable hamng the predecessor V;. Let Ay, be the compound diagnostic parameter for Vi,

and let )\V’ be the diagnostic parameter from V; to V;. Then,

N(Vi) = Se, Mlen)  wilen, | V7)

Proof. Let Pr be the joint probability distribution defined by the belief network B.
Furthermore, let V.~ be as before. Then, from Definition 4.4, we have

MW(V;) = Pr(ey-1V;)=

= Pr(é‘,i—|v,-/\VJ-)-Pr(v,-|V})+Pr(6Vi-|—|v.-/\V})-Pr(-w,-|V,-)

The reader is referred once more to Figure 2 showing a fragment of the directed tree G.
From (X |{V:}|{V;})% for any subset X C V;~ and G being an I-map for Pr it follows that
Ip (X, {Vi}, {V;}) for X C V7. So,

MW(V;) = Pr(ey-|v)- Pr(vi|V;)+ Pr(éy- | ~vi) - Pr(~v | V;)

The probabilities Pr(V; | V;) have been specified as function values 7v;(V; | V;) of the
conditional probability assessment function +yy, associated with vertex V; and hence are
available to V;. From Definition 4.2 we have that the probabilities Pr(é,- | V;) equal the

function values Av,(V;) of the compound diagnostic parameter Ay, for V;. Substitution
yields

)\1‘2(1/;) = Av(vi) - wil(vi | Vi) + Avi(ovi) - wi(-vi | V) =

= Loy, Avilevi) - wilevi | V5)
o

Similarly, the causal parameter a vertex has to send to a successor can be computed from
its compound causal parameter and the diagnostic parameters it receives from its other
successors. The following lemma states this property.

Lemma 4.8 Let B = (G,T) be a belief network as before Let V; € V(G) be an uninstan-
tiated probabilistic variable with o(V;) = {Vi,,...,Vi.}, m > 1. Furthermore, let wy, be
the compound causal parameter for V;. For each successor V;, € o(V;) of V;, let 7rV' be the

causal parameter from V; to V,,, and let )\3‘_ be the diagnostic parameter from V,J. to V;.
J
Then,
i (Vi) = @ mvi(Vi) Memt,omisi M, (Vi)

where o is a normalization constant.

15



Figure 5: Exploiting d-Separation for Computing 7"‘2,- V3).

Proof. Let Pr be the joint probability distribution defined by the belief network B. For
each vertex V € V(G), let V* and V= be as before. Then, by definition we have
v (Vi) = Pr(Vi|éys) =
Pr(éy+ | Vi) - Pr(V;)

JP r ( EV.'O- )
]

using Bayes’ Rule for the last equality. Now consider Figure 5 showing a fragment of
the directed tree G. Since V; is an uninstantiated variable, we have that é,+ = Cy+ A
.J' %

(Ak=1,...m k5 EV..'; ). So,

Pr(éy+ A (Ak=t,..m it Ev'.:)l Vi) Pr(Vi)
Pr(évﬁ)

) =

From G we observe that (X|{V;}|Y){ for X CVtandY C V[, k=1,...,m, and for
XCV,;adYCV ,k=1,...,m,l=1,...,m, k #. Now, exploiting the observation
that G is an I-map for Pr, it follows that

g P"(Ev..+ | Vi) - Ti=1,....m kst P"(év,.; | Vi) - Pr(Vi)
ij( = Pr(éy+) -

Pr(Vi|eys) - Tle=y,..mkps PrCy- | Vi) - Pr(éys)
Pr(éy+)
i

16



using Bayes’ Rule once more for the last equality. From Definition 4.2 we have that
the probabilities Pr(V; | cV+) equal the function values my;(V;) of the compound causal

parameter wy; for V;. The probablhtles Pr(cv- | V;) equal the function values )\V (Vi) of

the diagnostic parameter )‘V.*k vertex V; receives from its successor V;,. In addition, we
observe that the factor

Pr(éy+) 1
Priévﬂ» )~ Pr(Gy+ |&V_+ )
|j 'j 1

is dependent on the variables V; and V;; but not on their values; this factor may therefore
be viewed as a normalization constant for Vi and V;;, which will subsequently be denoted
by a. Substitution yields

i (Vi) = e mv(Vi) Mm,miss MW, (Vi)
]

The previous lemma applies to uninstantiated variables only. The property, however, can
be taken to hold for instantiated variables in the way described before.

Now all parameters and their computation have been considered, we will take a closer
look at how the influence of new evidence will spread through the network. Initially, the
belief network is in an equilibrium state: recomputing the parameters will not result in
a change in any of them. When a piece of evidence for a specific variable is entered into
the belief network, this equilibrium is perturbed: the parameters from that variable to
its neighbours are modified to reflect the entered evidence. These modifications activate
updating parameters throughout the network: after receiving modified parameters, the
neighbours in turn compute new parameters to send to their neighbours. The way the
causal and diagnostic parameters are computed enforces that the influence of the entered
evidence is passed on correctly. We note that the neighbour from which the modified
parameter originated will not receive a new parameter since a causal parameter or a di-
agnostic parameter to a vertex is not affected by the diagnostic parameter or the causal
parameter, respectively, from that vertex. This property guarantees that feedback and
circular reasoning are prevented and that the evidence is propagated through the network
in a single pass. The belief network will therefore reach a new equilibrium after a finite
number of steps.

We conclude this section by stating some additional properties concerning the com-

pound diagnostic parameter. These properties are useful when investigating the spreading
of evidence.

Lemma 4.9 Let B = (G,T) be a belief network as before. For each vertez V; € V(G), let

Av.(V;) be the compound diagnostic parameter for V. If év(g) = true, then Ay, (Vi) =1 for
al V; € V(G).

17



Proof. The property stated in the lemma is proven by (reverse) induction on the depth
of the directed tree G. Let n be the maximal depth of the tree.

Induction Basis
The property holds for every leaf of the tree on depth n by definition.

Induction Hypothesis
For a specific d < n, we assume that Ay,(V;) = 1 for all vertices V; at depth d,d+1,...,n.

Induction Step

Now consider a vertex V; at depth d — 1 in the tree. We distinguish two cases. If V; is a
leaf of the tree, then Ay,(V;) = 1 by definition. Now, suppose that V; has m successors
Viis-++yVim, m 2 1. From &y(g) = true, it follows that V; is an uninstantiated variable.
Therefore, it follows from Lemma 4.6 that

W) = Ijm,.m W, (V)
For each parameter /\5: (V;) we have from Lemma 4.7 that
M. (Vi) = Ty, v, (ev,) i (ev, | Vi)
3 (2 7 3 3 3

Since vertex V;, is a successor of V;, it is at depth d in the directed tree G. From the
Induction Hypothesis we have that )\V'.j(V,-j) = 1. So,

)‘“;:J(V‘) = ZCV",- '7V.'J(CV.‘J|V:') =1

From )\“2 (Vi) = 1 for all successors V;; of V,, it follows that Av;(Vi) = 1. Since vertex V;
was chosen arbitrarily, it follows that for each vertex V; € V(G), we have Ay;(V;) =1. O

It will be evident that the previous lemma can be taken to apply to subtrees of a directed
tree, yielding the following property.

Corollary 4.10 Let B = (G,T) be a belief network as before. Let V; € V(G) be a proba-
bilistic variable and let Ay, (V) be its compound diagnostic parameter. If é,- = true, then
Mi(Vi) =1.

4.2 Singly Connected Digraphs

In the previous section we have discussed Pearl’s algorithms for computing probabilities
and for processing evidence in a belief network comprising a directed tree. In this section,
these algorithms are extended to apply to belief networks where the qualitative part is a
singly connected digraph.

The absence of loops in a singly connected digraph allows for algorithms for computing
probabilities and for processing evidence that are based on the same basic ideas as the

18
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algorithms applying to directed trees. More in specific, the following topological property
can be exploited: the removal of any arc from a singly connected digraph splits the graph
into two separate components. From this property we have that in a singly connected
digraph G we can identify with a vertex V; having m neighbours, m subgraphs of G each
containing a neighbour of V; such that after removal of V; and all arcs incident on V;
there does not exist a path from one such subgraph to another. The following definition
introduces these notions more formally; Figure 6 illustrates the basic idea.

Definition 4.11 Let G = (V(G), A(G)) be a singly connected digraph. For each arc
(Vi,V;) € A(G), let G, vy = (V(G), A(G)\ {(V;,V})}). Now, consider vertez V; € V(G).
For each predecessor V; € p(V;) of Vi, let G;rv,,v,-) be the component of G(v,v;) containing
Vis G?-V,,Vi) is called an upper graph of Vi. For each successor Vi € o(V;) of V;, let Gy, v,
be the component of G(v, v,) containing Vi; Gy, v,) 18 called a lower graph of V;.

Now consider computing probabilities from a belief network comprising a singly connected
digraph. It will be evident that the probabilities of the values of a specific vertex in the
digraph are dependent upon the evidence entered into the graph. As was true for the
vertices in a directed tree, the probabilities of the values of a vertex in a singly connected
digraph can be written in terms of factors describing the influence of evidence entered into
the upper graphs of the vertex and the influence of evidence entered into the lower graphs
of the vertex. In fact, the data fusion lemma presented in the previous section for directed
trees applies to singly connected digraphs as well. Before discussing this in further detail,
we redefine the compound causal and diagnostic parameters for a vertex.
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Definition 4.12 Let B = (G,T) be a belief network where G = (V(G), A(G)) is a singly
connected digraph, and let Pr be the joint probability distribution defined by B. Further-
more, let V; € V(G) be a probabilistic variable in G and let V¥ = Uy,epvy) V(G&,w))
and V7 = V(G)\ Vi*. The compound causal parameter my, for V; is the function
my,: {vi, v} — [0,1] defined by

(Vi) = Pr(Vi|éy)

The compound diagnostic parameter Ay, for V; is the function Ay, : {vi,~v;} — [0,1]
defined by

(Vi) = Pr(g,-|V)

Note that this redefinition of the compound parameters differs from Definition 4.2 only
with respect to the sets V;* and V™ for a vertex V; € V(G); the basic idea is the same.
For a vertex W with an in-degree equal to zero, we once more find 7w(W) = Pr(W); for
a vertex V with an out-degree equal to zero, we have Ay(V) = 1. The observations we
made in Section 4.1 concerning instantiated variables also hold here.

The data fusion lemma, that is, Lemma 4.3 from the previous section, now is taken to

apply to belief networks comprising a singly connected digraph G: for each probabilistic
variable V; € V(G), we have

Pr(Vi|év) = a-mv(Vi)-Ay(Vi)

where « is a normalization constant.

The two compound parameters for a vertex specify information concerning the joint
probability distribution from all its descendants combined and from all its ancestors com-
bined. Once more we observe that to be able to exploit the graphical part of a belief
network as a computational architecture, these compound parameters have to be decom-
posed into separate causal and diagnostic parameters corresponding with the neighbours
of the vertex. We redefine these separate parameters before discussing the decomposition
of the compound ones.

Definition 4.13 Let B = (G,T') be a belief network as before and let Pr be the joint prob-
ability distribution defined by B. Let V; be a probabilistic variable in G having a successor
Vik. The causal parameter W:,/; from V; to Vi is the function r},,;: {vi, ov;} — [0,1] defined
by

B0 = PriVildvgy, )
Now, let V; be a probabilistic variable in G having a predecessor V;. The diagnostic param-
eter /\xf from V; to V; is the function )\“2: {vj,~v;} — [0,1] defined by

v; .
VAR P"(CV(G' )"/3)

vV, %)
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The separate causal and diagnostic parameters defined above can once more be viewed as
associated with the arcs of the graphical part of a belief network.

The following lemma now shows how a vertex can compute its compound causal pa-
rameter from its associated conditional probability assessment function and the causal
parameters it receives from each of its predecessors.

Lemma 4.14 Let B = (G,T') be a belief network as before. Let V; € V(G) be a probabilistic
variable with p(V;) = {V;;,...,Vi.}, m > 1. Furthermore, let 7y, be the compound causal

Vi
parameter for V;, and for each V;; € p(V;), let my’ be the causal parameter from V;; to V.
Then,

Vi
(Vi) = Zegw, WwilVil o) - Mizt,m 7v/ (ev,)

where cyviy) = Aj=1,..m v, -

Proof. Let Pr be the joint probability distribution defined by the belief network B.
Furthermore, let V;* = Uj=1,..m V(G v,)) as before. Then, from Definition 4.12 we have
]7 L

(Vi) = Pr(Vi|éys)=

)=

= Pr(V |éV(GE’"_ REARRREAR T

viy Vi %)

).

= ZCp(V.‘) Pr(Vi | covyy A éV(G()'Vq.v.-)) Ao A CV(GF"-‘m"’i))

)

Now consider Figure 7 showing a fragment of the singly connected digraph G. We observe
that ({V;}p(V;)|X)% for all subsets X C V;*. Since G is an I-map for the joint proba-
bility distribution Pr, it follows that Ip.({V;}, p(V;), X) for all X C V;*. Exploiting this
observation, we find

.PT(CP(V‘.) | CV(G?.V.-I _V'.)) A A CV(G:’V‘-m_V‘))

(Vi) = Zeyuy PrVileowy) - Pricywvy | Evay, ))A"'AéV(GZ"Vl_m’V‘)))

(Vi Vi
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In addition, we observe that Ip.(X,{V;;},Y) for all subsets X C V(G?’V‘,j,v‘,)), Y C
V(GTV.-,,,V.-))’ k=1,....m, 7 =1,...,m, k # 5. Exploiting this observation, it follows
that
™i(Vi) = Teyw, Pr(Vileowy) - Priey, |EV(G(+V“‘V‘) ) oo Prievig | evgy, )

where c,v;) = Aj=1,..m cv;, - The probabilities Pr(V; | Cyv;)) have been specified as func-
tion values v;(V; | Cyv;)) of the conditional probability assessment function -y, associated
with vertex V;, and hence are available to V;. 11‘1, addition, the vertex receives thevproba-
bilities Pr(V; | EV(G(+V‘ V‘))) as function values 7.’ (V,) of the causal parameter ry;’ from

its predecessor V;,, j = 1,...,m. Substitution yields

3?

Vi im
(Vi) = Tepw WVl Govy) -1yt (evy) oo i (ew,,) =

v Vi,
= Teywy WilVil o)) - izt v, (ev5))

where c,(v;) = Aj=1,..m ey;,- 0

Equally, a vertex can compute its compound diagnostic parameter from the separate di-
agnostic parameters it receives from its successors. This property is similar to Lemma 4.6
from the previous section, that is, for an uninstantiated probabilistic variable V; € V(G)
with o(V;) = {V;,,..., Vi..}, m > 1, we have

WiVi) = Mietm W, (Vi)

This property can be taken to apply to instantiated variables also as suggested in Section
4.1.

A vertex in turn has to compute the proper parameters to send to its neighbours.
The following lemma states how a vertex can compute the diagnostic parameter to send
‘to a predecessor from its own conditional probability assessment function, its compound
diagnostic parameter and the causal parameters it receives from its other predecessors.

Lemma 4.15 Let B = (G,T') be a belief network as before. Let V; € V(G) be a probabilistic
variable with p(V;) = {V;),...,Vi,.}, m > 1. Let Ay, be the compound diagnostic parameter

v, . . v,
or Vi. ermore, ic ; € € aragnostic parameter jrom v; 1o Vi, ana let my. € €
Vi. Furth let Ay be the diagnostic parameter from V; to Vi,, and let 7y’ be th

causal parameter from V;, to V;, j =1,...,m. Then,
Vi, Vi
W (Vi) =a-d dilev) | X wilevileovngmp AV IT mv*(ew,)
°y; cP(V.')\{V.'J-} k=1,...,m,k#j

where CoV\Vi,} = Ak=1,...m k5 €v;, and o is a normalization constant.

22



Proof. Let Pr be the joint probability distribution defined by the belief network B. Then,
from Definition 4.13 we have

Vi, -
N (V) = PT(CV(G(‘V‘j'Vi)) |V;)
Now consider Figure 8 showing a fragment of the singly connected digraph G; observe that

EV(G(—ViJ--V,-)) =&y~ A (Ak=1,..m kit CV(G?wk,v;)))' It follows that

Vi, - ~
AW (Vi) = Pr(ey- ANe=t,misi Svial, ) 1Y) =
lk’ 3
= ZCV-‘ Zcp(v'.)\{v‘j} Pr(év“ A (Ak:l,...,m,k#j éV(GE"V‘,’:’V‘_)))|CV-‘ A Cp(V,)\{V.J} A V'J)

-Pr(cv, A covingiy) | Vi)

Since G is an I-map for the joint probability distribution Pr, we may exploit the indepen-
dencies read from G. We find

Vi ~ ~
A, (V) = ey, Ec,xv.-)\{v.-,-} Pry-lev) - Pr(fe=i,..misi Cvicy, ,olcovrv,})

(Vi Vi)

“Pr(ev, A covingiyy | Vi) =

= Yoy, Pr(éy-lew)- [Ec,,(vi)\(v‘_} Pr(ev; | cpvngviy A Vi; )-
I

- Pr(cvingiy | Vi) - Prife=r,..omisi Cviar, ) | Covingv,))| =

(Vi Vi)

«- Ecv‘- PT(EV'.' I cV.') . [Zcp(vi)\{vij} PT(CV-‘ | Co(Vi\{V;} A V:J)
- Pr(congvi} | Ae=t,..mis Eviay, V.)))]
lk' s

using Bayes’s Rule for the last equality; « is a normalization constant. Exploiting the
independencies portrayed by G, we find

V.. -~
MW (Vi) = ar T, Pridy- | ev) [Zc,,(v,,)\{v,.j, Pr(cvilcpvingmiy A Vi)
Tle=t,m ks Pricy, | 6"(G<+v.-,‘:v.~>))]

The probabilities Pr(é, - | V;) equal the function values Ay;(V; ) of the compound diagnostic
parameter )y, for vertex V. Furthermore, the probabilities Pr(V; | Cp(V,’)\{V;j} ANV =
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Pr(V; | Cyv;)) have been specified as function values y,(V; | Cpv;)) of the conditional

probability assessment function 7y, associated with V; and therefore are known to V;. To

conclude, we note that vertex V; receives the probabilities Pr(V;, | EV(G(+V v))) as function
iV

values w“;:“ (Vi) of the causal parameter r“;:" from its predecessor V;,, k =1,...,m,k # j.
Substitution yields

V. Vi
W (Vi) =a Y dilev)- | 2 wlevleavnvipAVy) - IT wvt(ew,)
v A V; )\(V.‘]. } k=1,....m,k#j

where CoViN(Vs;} = Ak=1,....m k#; ¢v;, and a is a normalization constant. O
Equally, the causal parameter a vertex has to send to a successor can be computed from

its compound causal parameter and the diagnostic parameters it receives from its other

successors. This property is similar to Lemma 4.8 from the previous section, that is, for
an uninstantiated probabilistic variable V; € V(G) with o(V;) = {V;,,..., Vin}, m 2 1, we
have

W“;:J(‘/,' ) = a-mv (Vi) Tle=t,..mrej /\“2* (Vi)

where a is a normalization constant. Again, this property can be taken to apply to instan-
tiated variables as well.

5 Conclusion

The belief network framework provides a formalism for representing knowledge concerning a
joint probability distribution on a problem domain and a set of algorithms for manipulating
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the knowledge represented. Both aspects of the framework have been covered by this
paper. The belief network formalism has been introduced and has subsequently been
taken to constitute a computational architecture for reasoning with a belief network. We
have presented an in-depth discussion of the set of algorithms for efficiently propagating
evidence and computing probabilities of interest proposed by J. Pearl, including full proofs.
The rigorousness of the approach provides a point of departure for further investigation of
these algorithms.
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