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Abstract

In this paper we give a review of the Plotkin powerdomain construction over al-
gebraic cpo’s. Algebraic cpo’s are cpo’s that are completely determined by their
collection of finite elements. We show how one can build an algebraic cpo out of
any pre-ordered set using the method of chain completion. We apply this method to
define the powerdomain over an algebraic cpo. We then show how to interpret the
powerdomain as a subset of the powerset of the base domain together with a suit-
able ordering relation. This ordering relation is the Plotkin order and it extends the
Egli-Milner order. We give a necessary and sufficient condition on the base domain
to ensure that the Plotkin order and the Egli-Milner order coincide. We also show
how one can construct continuous functions between powerdomains out of functions
between the underlying base domains. It follows that the powerdomain construction
is a continuous functor on the category of algebraic cpo’s.

1 Introduction

This paper arose as the author tried to digest the available literature on powerdomains.
While “normal” domain theory is well-understood and has a smooth presentation, the
“computational counterpart to powersets” is surprisingly difficult. Nevertheless, the power-
domain construction forms an important mathematical tool in the study of the semantics
of non-deterministic and concurrent languages. It is surprising, therefore, that there does
not exist a comprehensive and detailed exposition of the theory: as far as we know, apart
from the unpublished [Plo81], only the defining papers by Plotkin [Plo79] and Smyth
[Smy78], and the expository paper by Gunter and Scott [GS90] are widely available. This
paper tries to remedy this situation. It contains an elementary exposition of the theory of
(w-)algebraic cpo’s and of how one can construct powerdomains out of them.

For the powerdomain construction we use a technique that we call chain completion. It
is closely related to ideal completion, but does not need new concepts such as ‘ideals’. It
is therefore accessible to anyone who is only familiar with basic domain theory. Also, it
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has a very strong underlying intuition. Specifically, in the context of the powerdomain
construction, it is “convenient to work with (equivalence classes of ) w-chains rather than
directed ideals”, as Smyth already noted [Smy83]. While chain completion seems to be
usable in most situations that arise in the practice of semantics, it seems not to be widely
known. Apart from a brief description in an excercise in [Plo81] and a special case of the
construction in [dV90], the author knows of no paper that deals with the general construc-
tion. We therefore discuss it at length in this paper. The construction is very powerful,
yielding an algebraic cpo out of any pre-ordered set. We also give a brief comparison with
the more familiar notion of ideal completion.

Given D, first of all one must define a (countable) pre-order of sets of elements from D.
These elements will become finite elements in the chain-completion. It is natural to define
these sets as sets of finite elements from D. Also, since this theory only applies to finite
non-determinism, the sets should be finite. We then specify an order. A natural choice is
the Egli-Milner order: X Cgy Y if Vz € X3y € Y.z C y and VyeYIz € X.z C y. We
read this as: X approximates Y if everything X can do, Y can do better, and everything
Y can do, X yields something that approximates it. We now define the powerdomain to
be the completion of the resulting structure.

Having defined the powerdomain over some data domain D using chain completion, we
then turn to the task of interpreting the abstract construction as a collection of sets of
elements from D together with a suitable ordering relation. This proved technically quite
involved. Let’s look at one chain of finite sets of finite elements from D. It consists of sets
X; so that

X1Cem X2 Cem -+ Cem Xn CEM -+

A natural choice is to consider the set of all least upperbounds of chains (in D) that run
through these sets. But it is easy to see that we can have equivalent chains with different
such upperbound sets. So we have to define a closure operation on the sets. One problem
now is that, in general, not every set of elements from D that is closed (with respect to
this closure operation) actually arises as such a closure of a least upperbounds set. This
implies that we have to work with chains all the time.

The next problem is that, in general, the order on the upperbound sets no longer is the
Egli-Milner order, but “becomes” a new order, the so-called Plotkin order, that extends
the Egli-Milner order. The Plotkin order has a “difficult” definition. A new result in this
paper is the formulation of a precise order-theoretic restriction on the underlying domain
D that ensures the Plotkin order to coincide with the Egli-Milner order, as opposed to the
topological characterization given by Plotkin [Plo81].

The aim of the present paper is modest: we only want to give a concise introduction to
the ‘classical’ theory of the powerdomain construction. We feel that the paper contains
most of the theory needed in the practice of building denotational semantics for non-
determinism. More advanced theory on powerdomains, like the algebraic characterisation
of powerdomains by Hennessy and Plotkin [HP79] or Heckmann [Hec91], the topological
description of powerdomains by Smyth [Smy83], and the logical approach by Winskel
[Win85] or Abramsky [Abr91], is not covered. We feel that an elementary exposition of
the theory reported in those papers requires a full length paper itself. Furthermore, Vickers
[Vic89] has already covered most of this theory from a slightly different perspective in great
detail. Likewise, other approaches to the concept of powerdomain, like the categorical
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notion of Abramsky [Abr90], the ‘mixed’ powerdomain of Gunter [Gun91], and the game
theoretic approach by Moschovakis [Mos91] are not treated. Nonetheless we feel that
a thorough understanding of the theory presented in this paper is a prerequisite for an
understanding of that work.

Furthermore, there seems to be a general misunderstanding in the literature of how to in-
terpret, or represent, the powerdomain by a collection of subsets of the underlying domain
together with a suitable ordering relation. We try to remedy this situation by developing
this interpretation in quite some detail.

Apart from its purpose as an introductionary text, the paper contains a few new results.
We have given a new order-theoretic description of the Lawson compact cpo’s. We also
give a negative answer to a question posed by Plotkin {Plo81] whether or not all ‘closed’
(in a suitable sense) subsets of a w-algebraic cpo are present in the powerdomain on that
cpo.

The paper is organized as follows. In section 2 we give the necessary definitions of complete
partial orders and such. In particular, we define the notion of algebraicity. In section 3
we define the method of chain completion and show that it constitutes a functor from the
category of pre-orders with monotonic functions, to the category of cpo’s with continuous
functions. In section 4 we use this completion procedure to define the powerdomain P*(D)
of an algebraic cpo D. In section 5 we show an isomorphism between a subset of P D with
a suitable ordering relation, and the powerdomain P*(D). This section can be seen as
giving an interpretation of the (rather abstractly formulated) powerdomain. In section
6 we identify a class of domains for which the Plotkin order and the Egli-Milner order
coincide. In section 7 we study some functions related to powerdomains.

- Acknowledgements. The author wishes to thank Raymond Hoofman, Jan van Leeuwen
and Frank Nordemann for critically reading draft versions of the paper. We also thank the
Amsterdam Concurrency Group and the Utrecht Formal Methods Group for stimulating
discussions during presentations of the work. Finally, we like to thank Paul Taylor for the
use of his diagram macros.

2 Domains
In this section we give a short review of notions relating to cpo’s.

Definition 2.1 1. A set D with a relation CC Dx D is a pre-ordered set iff
(a) Yd € D.d C d (reflezivity);
(b) Vdy,d,,ds € D.d; CdyCd3=>d, C ds (tmnsitivity)
2. It is called a partially ordered set iff moreover Vd;,d; € D.d; Cd;Cdy = dy =4d,
(anti-symmetry).

We will call the order relation C a pre-order, or partial order, respectively. Sometimes
we call a pre-ordered set (partially ordered set) simply a pre-order (partial order). In
case z C y in a (pre-/partial) order, we say that z approzimates y. Intuitively, y is



“more defined” than z, or has more “information content” (for a discussion regarding
these notions, see [Sco76, Sco81]). In case z Z y and y Z z we say that z and y are
incomparable. In case z C y and y C z, then z and y are isomorphic, denoted by z = y.
In case the structure in question is a partial order, we have z = y iff z = y.

In the sequel we assume that all pre-orders/partial orders have a least element denoted
by L, that is, L C z for all z € D. Using the above terminology, L is the least defined
element, i.e., it is undefined or has no information content. In a pre-ordered set all least
elements are isomorphic, in a partially ordered set there is a unique least element.

Two pre-ordered/partially ordered sets D and E are isomorphic (D = E) iff there is a
bijection f : D — E such that for all z,y € D, z C y iff f(z) C f(y). Two pre-ordered
sets X and Y are equivalent (X ~ Y) iff there exist monotone functions f : X — Y and
9:Y — X such that forall z € X and y € Y, g(f(z)) = = and f(g(y)) ¥ y. Note that
isomorphic pre-orders are equivalent.

Given a pre-ordered/partially ordered set D, any collection {d; : i < w} such that for all
t, d; C di41. is called a chain. We denote such a chain as (di)i. An element d € D such
that d; C d for all i is an upperbound for (d;);. A least upperbound (lub) for a chain (d;);
is an upperbound d such that for all other upperbounds d’: d C d'. It is easy to see that
for two least upperbounds d and d’ for some chain, we have d = d’ and hence d = & in
a partial order. That is, in a partial order, lubs are unique. The least upperbound for a
chain (d;); (if it exists) is written as | J; d;.

Definition 2.2 1. A pre-ordered set D is called complete iff it has least upperbounds
for all chains.

2. A complete partially ordered set (cpo) D is a partially ordered set D that is complete
(as a pre-order).

An element d € D is finite if for all chains (di)i, if d C |; d;, then d C dy, for some k. A
finite element d has the property that any chain (d;); with lub d stabilizes. That is, there
exists a k such that d C di C d. Hence dyr = d for all ¥’ > k. We denote the collection
of all finite elements of D by K (D). The elements of D \ K(D) are called the infinite
elements in D.

Definition 2.8 1. A pre-ordered/partially ordered set D is algebraic iff for alld € D
there ezists a chain (d;); C K(D) such that | |; d; = d.

2. An algebraic pre-ordered/partially ordered set D is called w-algebraic iff K(D) is
countable.

If D is algebraic, then K(D) is called the basis of D. An (w-)algebraic cpo is also called
a (w-)domain. The only difference between an w-domain and a domain is the cardinality
of the basis. Since none of our results depend on the cardinality of the basis, we will
use the term ‘domain’ in both cases. Note that domains have a strong computational
intuition, as the denotation of a (recursive) program is defined as the lub of its finite
approximations, with each approximation corresponding to a finite depth of the recursion.
Hence a denotational semantics will always map programs to elements of a domain.

The ordering relation on a pre-order X induces an ordering relation on chains.
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Definition 2.4 Let X be a pre-order. Let (z,,), and (¥m)m be chains in X. We say that
(Zn)n approximates (ym)m, denoted as (2,)n < (Ym)m, iff VoIMm.z, C yn.

Likewise we say that a chain (z,), is equivalent to a chain (ym)m, denoted as (z,), ~
(ym)ms i (Zn)n = (Ym)m and (Ym)m < (zn)n. We note the following simple but important
result.

Proposition 2.8 Let (d;); and (e;); be chains in a domain D such that (di)i, (e5); C
K(D). Then (di)i = (ej),- il di C Uj €;.

Proof For all i, we have d; C Li;e;. Hence | );d; C L;e;. Conversely, if | J;d; C U; ;5
then for all ¢, d; C Ll; e; hence d; C ¢; for some j, by finiteness of d;. a

The proposition does not hold for chains in the whole of D: take a chain (d;)i with lub
d # d; for all i, and consider the constant chain (d);. Then LJidi = d = |; d but not
(d); < (d;)i hence not (d); ~ (d;);.

Corollary 2.6 Let D be algebraic. Then for all z,y € D,
zCyiffVae K(D).aC z impliesaC y

Corollary 2.7 Let D and E be domains. Then D = E iff K(D) 2 K(E).

2.1 Continuous functions

Next we consider functions that preserve (some of) the structure present in a domain.

Definition 2.8 Let D and E be domains and f: D — E.

1. f is monotone iff d C d' implies f(d) C f(d') for all d,d' € D.
2. f is continuous iff it is monotone and commutes with taking least upperbounds, that

is, f(Li di) = L; f(ds).

Note that we do not insist that functions should preserve the bottom element. Functions
that do so are called strict.

Now we are able to define the following categories:

1. (w-)Dom is the category of (w-)domains and continuous functions

2. (w-)POrd is the category of (countable) pre-orders and monotone functions.
Note that (w-)Dom is a subcategory of POrd, but not a full subcategory since not every
monotone function between between domains is also continuous.
Let D and E be domains. Every monotone function f : K (D) — E yields a function
1f: D — E given by
1f(z) = | (=)
i<w

where (z;); C K(D) is some chain such that z = | |; z;.



Lemma 2.9 Let D and E be domains. Let f : K(D) — E be monotone and letg: D - F
be monotone and continuous. Then

1. 1f is well-defined and continuous.
2. f=(1f) I K(D).
3. g =1g | K(D)).

Proof For the first claim, let (y;); be another chain with lub z. Then, by Proposition 2.5,

(%:)i ~ (2:);. Hence (f(%:))i ~ (f(z:))i by monotonicity of f. Hence U; f(w) = U; F(2).
The second claim is obvious. For the third claim, write =g | K (D). Then

9(2) = g (=) = Uo(z:) = | d(2:) =15(z)

2.2 Domain constructions

First of all, observe that we can turn each countable set X into a domain X 1 by adjoining
a least element L and stipulating that L Czandz Cz forall z € X. Cpo’s of this form
are called flat. Every set-theoretic function f : X — Y can be extended to a continuous
function f, : Xy — Y, by defining f, (L) = L and f\(z) = f(z) for z € X.

Let D and E be domains. We define the following constructs yielding new domains:
® D, is the ‘lifted version’ of D. The underlying set is {{0,z) : z € D} U {L}. The
order is given by L C (0,z) for all z € D, and {0,z) C (0,y) iff z C y.
¢ D x E is the cartesian product of D and E. The underlying set is
{(z,y):z2 € D,ye E}

The order is given by (z1,31) T (z2,¥;) iff 2) C ¢, and y; C y,. Its bottom element
is (L, 1).

* DQE as a tensor product of D and E. The underlying set is {(z,y): z € D\{1},y€
E\{1}}u{l}. Forz,y € DQE wedefinez C yiffz = Lorz = (1, 11),y = (22, ¥2)
and z; C 2z, and o, C y,.

e Obviously we can generalize these constructions to arbitrary finite products. We will
denote these by [] and ), respectively.

¢ D+ E is the sum of D and E. The underlying set is
{(0,2): 2 € D\{1}}U{(1,9):y€ E\{1}} U {1}
This is just the counterpart of the disjoint union of ordinary sets. For z,y € D+ E,

the orderis given by s Cy iff = L or z = (i,2'),y = (i,9') and 2’ C ¢/ (:=0,1).
Note that D + E is the coproduct of D and E with respect to strict functions.

e One can generalize + to arbitrary finite sums. We denote this by Dy +.--+ D,,.

Proposition 2.10 If D and E are (w-)domains, then so are D x E,DQFE, D+ F and
D;.



3 Chain completion

In this section we investigate how one can construct in a uniform way a domain out of
a pre-ordered set. Intuitively, this construction adds (formal) limit points to the chains
that exist in the pre-order. Such a situation often occurs in practice: we are capable of
inductively defining a set of finite elements with an ordering relation (e.g. finite lists,
finite trees) and then need to “complete” this set to a domain. We call the construction
chain completion. Chain completion also extends to mappings: every monotone function
between two pre-ordered sets induces a continuous function between the completions of
those pre-orders. Thus we obtain a functor from (w-)POrd to (w-)Dom.

3.1 Completing pre-orders

Since we want to complete a pre-ordered set to a domain, Proposition 2.5 suggests the
following construction. Given a pre-order X, form the collection C(X) of all chains in X.

Lemma 8.1 C(X) with < is a pre-ordered set.
Let CX = C(X)/~ be the corresponding partial order induced by the pre-order.

Theorem 3.2 Let X be a (countable) pre-order. Then CX is a (w-)domain. Moreover,
K(CX)~X.

Proof First we check all requirements. Obviously, (4); is the least element and < is a
partial order on the equivalence classes induced by ~. We calculate with representatives
of these equivalence classes. Let

@)is@)is - s@)is-
be a chain. Define the following collection {y, : n < w} inductively:
*h= 1‘%;

® Yn+1 = zpT! where k is the least index such that gy, C zpt! and for all m < n + 1
and ¢ < n 4+ 1, we have that z* C a:;:'H.

By assumption, this collection {y,, : n < w} is well-defined and has the following properties.
1. {yn :n < w} is a chain;
2. for all n there exists a k > n such that y,, = z3;
3. for all » and k, we have that z} C Ymax{n,k}-

We call (y,), the diagonal of the chain ((2%);),, and sometimes denote it by V.(z?);.

We have to check that the construction of this diagonal is a congruence with respect to
the equivalence relation ~. So let

(is@is (s



be another chain such that (z?); ~ (2P); for all n. Let (y/,),, be the diagonal of this chain.
We have

yf’z = zg C z? c Ymax{n,i}
for some I > k. Hence (%)i ~ (¥.,)n-

(9n)n is a least upperbound for the chain: for all » and %, 23 T Ymax{n,}. This shows that
(Yn)n is an upperbound. Let (2,), be another upperbound. Then, for all n, y, = zp C 2y
for some m. Hence (yy, )y, is least.

Let (a); be a constant chain for some a € X such that (a); < (¥n)n- Then a C y, for
some n. Hence (a); < (z?);. Hence, for all a € X, (a); is a finite element. Moreover, each
chain (z;); is the lub of the chain of chains (z,); < (z3); < --- Let (¢;); be another finite
element. Then (e;); ~ V, (en)i. Hence (¢;); < (ex); for some k. Conversely, (ex)i < (ei)s.
Hence all finite element are equivalent to a constant chain (a); for some a € X. This
shows that CX is a domain.

If X is countable, we have (at most) countably many of such chains (a);. Hence CX is an
w-domain. =

There is an interesting subcase in the proof of the preceding theorem, namely when for
all n, z} C z*! for all i. In this case the diagonal is indeed (z3)n. Moreover, it is not
hard to see that any chain (with respect to <) in CX can be brought into this form. It is
interesting to see what happens if we apply the construction to a domain D, that is, form
the structure CD. In this case, let (z;); be a chain of finite elements with (infinite) lub z.
Then (z;); < (z); but not conversely. So we lose isomorphism between D and CD since
all infinite elements z € D appear, in a sense, twice in CD: once as an infinite element
(%i); and once as a finite (!) element (z);.

Corollary 8.3 Let X,Y be pre-ordered sets. Then CX 2CY iff X ~Y.

3.2 Completing monotone functions

In the previous section we saw that one can map the objects of (w)-POrd onto the objects
of (w)-Dom. In this section we look at the arrows in the categories and show that each
monotone function f: X — Y induces a continuous function Cf:CX — CY.

We can generalize Proposition 2.9 as follows. Let X and Y be pre-ordered sets and let
f:X =Y be monotonic. Then f can be extended to Cf:CX — CY given by

Cf([(za)n)]) = [(f(zn))n]

where [(ym )] denotes the equivalence class of the chain (Y, )m With respect to ~. Below
we will work with representatives of these equivalence classes.

Lemma 3.4 Cf is well-defined, monotone and continuous.
Proof By monotonicity of f, Cf is clearly monotonic and well-defined. C f is also contin-

uous: Let ((z]')i)n be a chain in CX, that is, (z?); < (z"*!); for all n. Let Vo((@M)i)n =
(¥n)n- By definition, Cf(V,,((2F)i)n) = (f(yn))n-



On the other hand, there exists a chain (Cf((27)))n = ((f(z?))i)n in CY by monotonicity
of f. This chain gives rise to the diagonal V,.(Cf((z7)i))n = (¥L)n-
We have to prove that (f(yn))n ~ (¥,)n. Consider y, = z} for some k. Then f(y,)

f(z}) is an element of the chain (f(z?));. Hence f(yn) C y’mx{n’k}. Hence (f(yn))n
(% )n. The converse is proved similarly.

O Wi

Theorem 8.5 C: (w-)POrd — (w-)Dom is a functor.

Proof Well-definedness of C follows from lemma 3.4, and it is easy to see that C1 = 1 and
C(fog)=CfoCg. a
We can ask whether K can be extended to a functor. Ideally, the resulting functor X should
be in some sense “inverse” to C. That is, we want C and K to form an adjunction [Lan71].
This is impossible, for take f : D — E as f(z) = e for some e ¢ K(E). Some further
reflection shows that this essentially the only case that goes wrong. A continuous function
f is called finitely continuous if f(K(D)) C K(E). Let (w-)FDom be the category of
(w-)domains with finitely continuous functions. Then X : (w-)FDom — (w-)POrd given
by K(D) = K(D) and K(f) = f | K(D) is a functor. In this case, we have that Co X 2 1
and K o C corresponds to dividing out the equivalence induced by the pre-order.

Proposition 8.8 The functor K : (w-)FDom — (w-)POrd is right adjoint to C.

Proof We already have observed the bijection of hom-sets

X—-KD
CX-D

for any pre-ordered set X and domain D. We leave it as an exercise to show that this
bijection is natural:

$(foh)=¢(f)oCh  $(Kko f) =k o ¢(f)
for all monotone functions f : X — KD and all arrows k¥ : D — D’ and h: X' —» X ,
where ¢ denotes the bijection. 0

In the following corollary, (w-)Ord denotes the category of (countable) partially ordered
sets and monotone functions.

Corollary 3.7 The adjunction C 4 K restricts to an equivalence of categories [Lan71]
(w-)Ord ~ (w-)FDom.

3.3 Ideal completion

In this section a short introduction is given to a completion method that is used frequently

in the literature. It is based on a slightly different notion of complete partially ordered
set.



Definition 3.8 Let D be a partially ordered set.

o A subset S C D is directed ifVa,b€ SIc€ SaCcAbC cand S # 2.

¢ D is a directed complete partially ordered set (dcpo) if D has lubs of all directed
subsets.

For example, every chain in a cpo is a directed set. The next proposition shows that the
difference between a cpo and a dcpo is only a matter of cardinality.

Lemma 3.9 Let S be a countable directed subset of some partially ordered set D. Then
S contains a chain (a,), such that | ]S = |, a, (if both lubs ezist).

Proof Let S C D be countable and directed. Let sg, sy, 32,... be a enumeration without
repetitions of S. Consider the following collection

® ay J sg, 31

® an4i ; Qg Spit1

Since S is directed, we may choose some a,, for all n such that a,, € S and the conditions
are satisfied. By construction, (a,), forms a chain and it is easy to see that |, a, = | ]S
and one exists iff the other does. o

It follows from the lemma that directed subsets are a natural generalization of chains and
indeed they seem to be more convenient to work with, at least on a theoretical level. On
the level of constructing a semantics for a programming language, however, chains will be
the things one encounters mostly. From this point of view the the following definitons are
the natural generalizations of the previous ones. An element a in a dcpo D is called finite
if whenever a C | |S for a directed set S, then there exists an element s € S such that
a C s. The collection of finite elements of D is denoted by K (D). A dcpo D is called
algebraic if for every d € D the collection of finite elements below d is a directed set with
lub d. D is called w-algebraic if moreover K(D) is countable.

Proposition 8.10 Let D be a partially ordered set. Then D is an w-algebraic dcpo iff D
s an w-algebraic cpo.

Proof In order to avoid confusion, we write K*(D) for the finite elements in a dcpo and
K(D) for the the finite elements in a cpo, the difference being definitional.

Let D be an w-algebraic dcpo. Then D is obviously a cpo and K*(D) C K (D). That
is, every element that is finite according to the dcpo definition is also finite according to
the cpo definition. For d € D, write F(d) C K*(D) for the collection of finite elements
below d. For a directed set S, write F(S) for J{F(a) : a € S}. It is easy to show that
F(S) is also directed and [ |$ = |JF(S). Moreover, F(S) is countable. Let a € K(D).
Let S be directed such that a C | |S. Then a C || F(S) and hence a C L, an for the
chain (an), C K*(D) C K(D) as given by Lemma 3.9. By assumption, a C a,, for some
n and hence @ € K*(D). This shows that K*(D) = K(D) which therefore is countable.
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Let d € D. Then d = || F(d). Since F(d) is countable we have by Lemma 3.9 a chain
(an)n € K(D) such that d = ||, a,. This shows that D is algebraic with basis K*(D).

Conversely, assume that D is an w-algebraic cpo. First we show that D is a dcpo as well.
Let § C D be directed. Let F(S) C K(D) be the set of finite elements below some s € S.
We show that F(S)is a directed set. First of all, since S in non-empty, F(S) is non-empty.
Let a,d € F(S). Then there are elements sy,s; € S such that a C s; and b C s;. Since
S is directed, there exists an element s3 such that s;,3; C s3. Let (e,)n € K(D) be a
chain with lub s3. Then for some m, a,b C e, and e, € F(S). F(S) is countable and
hence there exists a chain (@n), such that ||, a, = [JF(S) = |JS. Hence D is a dcpo.
Analogously to the previous case we can show that K*(D) = K(D). Finally, let d € D.
Then F(d) is directed and d = | | F(d). Hence each d € D is the lub of the directed set of
finite elements below it. a

A notion closely related to directed sets, is that of an ideal. For a pre-ordered set X,
a subset I C X is an ideal if it is a downwards closed directed set. Downwards closed
means that if z € ] and y C z then y € I for all z,y € X. The ideal completion TX of
a pre-ordered set X is defined as follows: the underlying set of ZX is the collection of all
ideals of X, and the order is C.

Proposition 3.11 X is an algebraic dcpo.

Proof First of all, TX is a dcpo: The least element of X is {1} and the lub of a directed
set S of ideals is given by |JS. Next, for z € X, write

le={yeX:yCa}

for the prinipal ideal generated by z. Then |z is a finite element in ZX and for any ideal
I, I is the lub of the directed set {|z : z € I}. a

Corollary 3.12 Let X be a countable pre-ordered set. Then TX 2 CX.

Proof First, by the assumption on X and Proposition 3.11, TX is an w-algebraic dcpo
and hence an w-algebraic cpo by Proposition 3.10. Next, for every z,y € X, z C y iff

lz Cly. Hence there exists an order preserving bijection between the basis of ZX and the
basis of CX. The claim now follows from Corollary 2.7. ()

The reason why we prefer to work with chain completion instead of ideal completion will
become apparent in the next section: chain completion seems to give a firmer grip on
least upperbounds than ideal completion does. Nevertheless, as the proof of Proposition

3.11 indicates, for most theoretical matters ideal completion is easier to handle than chain
completion.

4 The Powerdomain Construction

Let D be a w-algebraic cpo and K(D) its countable set of finite elements. We want to
construct a domain P*(D) that is the “computational” powerset of D.
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First of all, we need to determine the elements of the powerdomain P*(D). We go back
to the original intuition for the set of outcomes of a finitely nondeterministic program
(c.f. [Plo79, Smy78]). In these programs all choices that can be made are between finitely
many alternatives. The possible executions of a program, then, can be seen as a finitely
branching, possibly infinite tree. The actual runs of the program are the paths in this
tree. Every branching point in the tree corresponds to a nondeterministic choice made by
the program.

We can label the tree with the finite approximations to the final outcomes: each branching
point is labeled with the finite element computed along the unique path to that point.
The collection of outcomes of the program is the set of least upperbounds of chains of
finite elements that label the paths in the tree. Thus we are led to the following definition.
The finite elements of the powerdomain correspond to cross-sections of a computation tree
and hence the basis of the powerdomain P*(D) is the collection F(D) of finite, nonempty
subsets of finite elements from D. If D is w-algebraic, then F(D) is countable. Note that
different computation trees may have the same cross-sections. There is, however, no a
priori reason why the computation trees should be operationally equivalent. The power-
domain cannot model the differences and hence may indeed identify two operationally
non-equivalent programs. We will come back to this later.

Next, we need a notion of approximation between these sets of elements from D. Since we
have “destroyed” the information of how the elements in some finite set X C K(D) were
obtained, we can only refer to the elements in X. Intuitively, we can imagine three such
orders.

1. The Hoare order: which has the reading everything X can do, Y can do better.

XCpYiffVze X3yeYzCy

2. The Smyth order: which reads everything Y can do can be approzimated by X.

XCsYifVyeYIze XzCy

3. The Egli-Milner order which consists of the conjunction of the previous two:

XCemYif XCygYand XCgY

Obviously, these are only pre-orders. In the sequel we restrict attention to the Egli-Milner
order since this seems to be the most natural choice. The powerdomain P*(D) is defined
as the chain completion of the pre-ordered set (F(X),Cgap). More precisely, it is the
Plotkin powerdomain [Plo79]). The name seems a bit confusing since the ordering on the
finite elements in P*(D) is called “Egli-Milner”. We come back to this later.

In order to make P* intb a functor on (w-)Alg, we need to define its action on continuous
functions. That is, for a continuous function f : D — E, we want to define a continuous
function P*f : P*(D) — P*(E). The theory in section 3.2 shows that it is sufficient to
define a monotone function f : F(D) — P*(E). We proceed as follows: Let X € F(D).
Consider the set

Fx ={f(z):z € X}
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which is essentially the desired image of X under P*f. This is a finite set since X is finite,
hence we may write it as

Fx = {el,...,e,,}

Fx need not be a finite set of finite elements however, thus we have to be careful about
how we define P* f which must map chains in F(D) to chains in F(E). Observe that, as
E is a domain, for every e; € Fx there is a chain (e;;)k in K(E) with lub e;. Now define

fX)y=(Fh={eh:0<i<n}n
Obviously, for every k, F} is a finite set of finite elements. Furthermore, F} Cem F,’}“
for all k. So (F%)i indeed forms a chain in F(E). Also, F% Cgm Fx for all k. Now define
P*f :P*(D) — P*(E) as 1f, that is,

P (X)) = V £(X))

i<w

Lemma 4.1 For any continuous function f : D — E, f : F(D) — P*(E) is well-defined
and monotone.

Proof This follows immediately from Lemma 5.3 below. o

Theorem 4.2 Let D, E be domains. Let f : D — E be monotone and continuous. Then
P*f : P*(D) —» P*(E) is monotone and continuous.

Proof Immediate from Lemma 4.1 and Theorem 3.5. a
Theorem 4.3 P*(.) is an endofunctor on (w-)Alg.

Proof It is easy to check that P*(1p) = 1p+(p) and P*(f o g) = P*f o P*g. o

5 Interpreting the construction

At this point the question remains: how should one interpret the equivalence classes of
chains that arise in the above construction? We would like to view them as sets of elements
from D. This section is devoted to establishing exactly which sets arise in the construction.
More formally, we want to define a subset of P(D), the full powerset of D, with a suitable
partial order such that this structure is isomorphic to (P*(D), <).

If a chain (X;); becomes stable, that is, X; = X4, for all k larger than some N, the answer
is provided by the next lemma. In the lemma, Con is the convex closure operation:

Con(X) = {y:321,22 € X.21 C y C 25}
Lemma 5.1 For all X,Y € P(D),

1. XCemY iff Con(X) Cgnm Con(Y).
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2. X =gm Y iff Con(X) = Con(Y).

From this lemma it follows that the finite elements of P*(D) are in a one-to-one corre-
spondence with the convex closures of finite sets of finite elements from D. Note, however,
that these convex closures themselves need not be finite, as the following example shows.

Example 5.2 Consider the ordinal 2w + 1, ordered in the usual way,
0<1<2<-Swsw+1<L---L 2w
The only infinite elements are w and 2w. One easily shows
Con({l,w+1}) ={1,2,...,w,w+ 1}

Hence this convez closure not only has an infinite number of elements, but contains an
infinite element as well.

The situation is less clear, however, when a chain does not become stable. Chains with
this property correspond to the infinite elements in the powerdomain. Given a chain (X;);,
intuitively this chain arises as the cross-sections of some infinite tree. Hence we define the
following collection for a chain (X;); C F(D)

Up(X))i = {Ux,- 1 z; € X; & (2;); chain}

The next proposition shows that we are on the right track.

Lemma 5.3 Let (X;); C F(D) be a chain. Then for all A € F(D),

A Cem Up(X;)i iff for some it A Cppm X;

Proof Assume that A Cgay Up(X;);. Let a € A. Then there is a | J; z; € Up(X;); such
that a C | J; z;. Hence, by finiteness of a, there is an n such that a C z,, € X,,. For each
a € A, let m, be the minimum of such n’s. Since there are only finitely many a € A, there
is a maximum m for the set of all those m,. Hence A Cy X,,.

We now show that A Cg X,/ for some m’ > m. Assume towards a contradiction that
such m’ does not exist. This means that for all n > m, there exists a z,, € X,, such that
a L x, for all @ € A. Then for each such z,, € X,,, there exists a finite chain

cmEcm-HE"'Ezn

such that a [Z ¢ for all @ € A and ¢x € Xj for all m < k < n. Since each X} is finite, we
get a finitely branching, infinite tree, and hence, by Kénig’s lemma, an infinite path

dnCdny1 T Cdnyi C---

exists in this tree. This path determines the element | |; dn4; € Up(X;);. Since by assump-
tion A Cgym Up(X;)i, there exists an a € A such that a C |J; dyq;. Hence a C dyyir for
some ¢'. Contradiction.

The other direction is trivial. ]
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Proposition 5.4 Let (X;)i,(Yr)x C F(D) be chains. Then
(X3)i = (Ya)e iff VA € F(D)ACEem Up(Xi)i = A Cem Up(Yi)i]

Proof Immediate from Lemma 5.3. O
We now define another pre-order on P(D). For X,Y € P(D),let X 4 Y iff

e for all y € Y, there exists some 2 € X such that 2 C y, and

o for all chains (a;); € K(D),if ], a; € X, then for all i there exists some y € Y such
that q; C .

4 clearly is a pre-order. We denote the induced equivalence relation by £.
Lemma 5.5 Let (X;);,(Yi)x C F(D) be chains. Then
(Xi)i = (Ye)e iff up(X:)i Q Up(Yi)k

Proof Let (X;); < (Yi)r. Let y € Up(Yi)i. Then, for all ¢, there is some element z; € X;
such that z; C y. By Konig’s lemma, there is an element z € Up(X;); such that z C y.
Next, let (an)n C K(D) be a chain such that | |,, a, € Up(X;)i;. Then, for each n, there
exists an element z; € X; for some ¢, such that a, C z;, by finiteness of a,,. Hence for
some k there exists an element y; € Y; such that a,, C yi by definition of <. Hence there
is an element y € Up(Yi)x such that a, C y.

Conversely, let A € F(D) such that A Cgap Up(X;);. We want to prove that A Cgy
Up(Yi)r which is sufficient in view of Lemma 5.4. Let a € A. Then there is some
z € Up(X;); such that a C z. Hence there exists an element z; € X; for some ¢, such
that @ C z;. Hence there is some y € Up(Yx )i such that a C z; C y, by assumption. Let
y € Up(Yx)k. Then there is 2 € Up(X;); such that z C y. Hence there is a € A such that
aC z Cy. Hence A Cgapr Up(Yi)k- a

Obviously one can give chains (X;); and (Yi)ix such that (X;); ~ (Yi)e but Up(X;)i #
Up(Yi)r. We therefore seek a closure operator Clsuch that (X;); ~ (Yi )i iff C{Up(X,);) =

CKUp(Yk)x). The following example shows that the convex closure of such sets does not
work.

Example 5.8 Let A be a (countable) alphabet and define A = {@ : a € A}. Let D =
(AUA)*U(AU Q)Y U (AU A)*-{L}. We define the following order on D. First define
an order on AU A by puttinga C a, @ C @ and a C @ for all a € A. Then define, for
z,y€ D,z Cy iff

o |z| = |y| and (z); E ()i for all 0 < i< |z, or
o z=2z'1 and y = y'y" such that |z'| = |y'| end (2'); C (y')i for all0 < i < |2'|.

Here |z| denotes the number of symbols in z and (z); the i*® symbol in z. It is easy to see
that D with the given order is a domain. Consider the following sets, for some a € A,

X, ={a,...,a",a"1}

15



Y, = {&,...,a",a"L,a" L}
Then Xn Cem Xns1 ond Yo EEM Yon for all n. We have
Con(Up(Xn)a) = {a}" U {a*}
Con(Up(Ya)n) = {a}* U {a*,d%a",d%, ..., a"}

But for alln, X, Cem Yy and Y, CEM Xnta- Hence (Xp)n ~ (Ya)n but Con( Up(Xn)n) #
Con(Up(Yn)n)-

Plotkin [Plo79] defined a closure operator (-)* based on topological considerations. Later
on, he defined a closure operator more directly in terms of the Up-sets [Plo81]. The
following definition is a slight variant of this closure operation. It is derived from Lemma
5.5.

Definition 5.7 Let X € P(D). Then
C(X) = {Uy.' :dz € Xz C Uy.- & Vidz; € X.yi C i}
where ()i € K(D).

Obviously, Con(X) C CKX) for all X € P(D). Also, Con(X) = CKX) for all finite
X € P(D). Note that Cl does not enjoy all properties of Con. In particular, Lemma 5.1
cannot be adapted: X Cppy Y does not necessarily imply C{X) Cem C(Y).

In the sequel the closure operator Clis only used in conjunction with Up. It is therefore
natural to ask if both operators can be merged into one. The following proposition, due
to Frank Nordemann, shows this can be done. The proof is straightforward and therefore
omitted.

Proposition 5.8 Let D be w-algebraic. Let (X;): be a chain in F(D). Define Cl by
Cr((X:)s) = {| v : Vi3j 2 i.s € Con(Xi U X;)}
i
Then Cl( Up(X,),) = C’((X.).)
We first give a few technical lemmas.
Lemma 5.9 For all X,Y € P(D),

1. X € CUX);
2. X CY implies CKX) C CAY);
3. CHCIX))= CIX).

Proof
1. X C Con(X) C CKX).
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2. Obvious.

3. Let z = | J; z; € CCKX)), all z; finite. Then there is a y € Ci(X) such that y C z.
Hence there is a 3’ € X such that y C y C z. For all ¢ there exists a y; € CY(X)
such that z; C y;. Let ¥; = Ll ¥ik, all yix finite. Then z; T yirs for some k’. Hence
there exists a y' € X such that z; C y’. Hence z € CKX). The converse inclusion is
trivial. a

Clis a (set theoretic) closure operator that extends Con, but differs on the infinite sets.
It also follows from the lemma that in order to prove CKX) C CIY), it is sufficient to
prove that X C C(Y).

Lemma 5.10 For all X,Y € P(D),

1. X & c(Xx).

2. CKX)2 CKY) iff CKX) = C(Y).
Proof

1. Immediate from the definition of Cland 4.

2. Assume CIX) 2 CKY). Let z € CIX). Then thereis a y € CAY) such that
y C z. Let (z;)i C K(D) be such that | |;z; = z. Then for all 4, there exists

some y; € CY) such that z; E y;. Hence z € Cl(Y) from which it follows that
CIX) C CKY). Likewise, CY) C CIX). The other direction is trivial. o

Theorem 5.11 Let (X,);, (Yi)x C F(D) be chains. Then
(X:)i ~ (Vi) iff CAUP(Xi)i) = CUUp(Yi)x)
Proof

(Xo)i~ (Ye)e i Up(X:)i £ Up(Yi
iff CKUp(X;):) £ CUp(Yz)x)
iff CHUp(X:)i) = CHUPYk)x)

Summarizing, we arrive at the following characterization of the powerdomain over D:

e its elements are the sets CK Up(X;);) where (X;); C F (D) is a chain;
e these sets are ordered by d;

o least upperbounds are given by | l,<., CKUP(XP)i)n = CUUP(V <o ((X])i)n))-
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We still use P*(D) to denote this structure.

There is another characterization of the order <. First, define the domain O = {1, T}
ordered by L C T. Then consider the collection [D — O] of all continuous functions from
D to O. Such a function can be viewed as an ezperiment on D [Plo79, Plo81]. Define the
following pre-order on P(D)

XCpY iff Vf € [D - O).f(X) Eem f(Y)

where f(X) denotes the direct image of X under f. Cp is the so-called Plotkin order.

We are going to relate Cp to Q. First we need a lemma.
Lemma 5.12 For all X,Y € P(0), X Cem Y iff

o LY implies L € X;

o Te X impliesTeY.
Proposition 5.18 Let X,Y € P(D). Then XCpY if X Y.
Proof

(¢<=) Let f:D — O. Then L € f(Y) implies Iy € Y.f(y) = L. Hence 3z € X.f(z) = L
by monotonicity of f. T € f(X) implies 3z € X.f(z) = T. Hence f(z;) = T for
some finite z; C z. Hence 3y € Y.f(y)=T.

(=) Let y € Y. Define f : D - O by f(d) = T iff d Z y. f is clearly monotone and
continuous. Then L € f(Y), hence L € f(X) which means that there exists some
z € X such that  C y. Let z € X and assume z = | J; z;. Consider, for any i, the
step function (z;, T) which is defined as

T ifa; Cd
1 otherwise

(2i, T)(d) = {

Then, for all i, T € (z;, T)(X). Hence, for all i, T € (z;, T)(Y) which means
Vidye Y.z; C y. m]

Corollary 5.14 For all X,Y € P(D), X =p Y iff CKX) = C(Y).

This gives us the next description of the powerdomain over D: it is the collection of sets
CK Up(X;);) ordered by Cp.
Remarks

o The first question one might ask is whether or not the collection of all closed subsets

of P(D) equals the collection of sets in P*(D). The answer is “no” as we now show.
Consider a countable alphabet A and define A*", the streamset over A, as

A = AtuAavu At {1}
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where L ¢ A is a new special symbol. Here, as usual, A* denotes the collection of
all finite sequences and A“ the collection of all infinite sequences over A.

We order A®" by z C yiff z =y, or z = 2’1 and y = 2y’ for some 3’ € A**".

Obviously A**" is a domain. It differs slightly from the well-known domain of finite
and infinite sequences over A, ordered by the prefix ordering. This difference turns
out to be crucial for this example.

Now consider the sets
X ={a}t Y ={a}tu{a*}

for some a € A. Then we have C{X) = X and C(Y) =Y. However, X can never
arise as Up(X;); for X; € F(D); it then should contain a“ as a simple application of
Konig’s lemma shows. That is, Y is the lub of such a chain. Note that we do have
Y Cp X, but not X Cp Y. Note also that this example does not contradict [Plo81],
since X is not Scott-compact.

Our second remark uses the streamset A®" as the domain for the denotational se-
mantics of a simple programming language. Given the alphabet A and a countable
set P of procedure variables or names, the statements of the language £ are induc-
tively defined as

s u=a|s;s|s+s|x

where a € A and z € P. ; denotes sequential composition and + denotes nondeter-
ministic choice. A declaration d is a mapping d: P — L.

The denotational semantics [-] : £ — A®*" is straightforward and the precise defini-
tion is omitted.

Now consider the declaration d(z) = (z;a) + b. In establishing [z] we need to
compute the lub of the following chain

XO = {-L}a Xl = {b7 -L}’XZ = {b7 ab’ J-}

Xp41 = {b,ab,...,a"b, 1},...

We then have Up(X;); = {b} - {a}* U {L} and we see that ba* € CUUp(X;);)-
But ba” is an infinite (diverging) stream that does not correspond to any possible
computation of z. Hence the denotational semantics [-] is not correct with respect
to our intuitive operational model.

Actually, this is quite a serious situation. Even for the simple language L, a straight-
forward denotational semantics fails to be correct. Analyzing what goes awry, we
see that the problem is essentially caused by the dual role of L: it denotes both an
“unspecified”, or “least informative” element and as such the starting point for the
iteration by which we determine the value of a recursive procedure, and at the same
time it denotes “divergence” which should be some maximal element. In the context
of deterministic programs, this blurring of both roles is quite harmless. Here it is
not.

One way out is by insisting that a declaration such as d(z) above is not well-formed:
we require that every recursive call to a procedure is preceded by (at least one) real
action. This requirement is called guarded recursion, and is adopted in most process

19



algebras (c.f. [dBK90]). In the context of concurrent logic languages, at least, this
requirement comes quite naturally: before we can make a recursive call we have to
unify an atom with the head of a clause, and this unification step delivers guarded
recursion.

In the context of parallel imperative languages, however, we see no reason why we
should have guarded recursion: z seems perfectly reasonable defined. The way out
here seems to be to make the procedure call visible in the denotation. For instance,
we could define our semantics such that we would obtain

Xo= {1}, X1 = {b,7L}, X3 = {b,mab, 7w L},...

where 7 ¢ A denotes the “act of calling”. This option has some intuitive justification
since in a real computer we have to make an incarnation record before can execute
a (new) instance of a procedure.

Another way out consists of defining an altogether new notion of powerdomains
using multisets, as advocated by Abramsky [Abr90]. His notion of powerdomain is
capable of describing unguarded recursion. It is moreover able to capture unboun-
ded nondeterminism where a choice-construct may choose between infinitely many
alternatives. Unbounded nondeterminism is very hard to deal with in the setting of
domains (see [AP86] and references therein).

Next we study the classes of continuous functions on powerdomains. For the rest of this
section, fix some continuous function f: D — E. We need a few technical lemmas.

Lemma 5.15 For all X C D, Cl{f(z):z € C{X)} = C{f(z):z € X}.

Proof Let | |;y; = y € LHS where all y; are finite. Then there is an z € C{X) such that
f(z) C y. Also there is an z’ € X such that 2’ C z. Hence f(2') C y. Furthermore, there
are z; € C(X) such that y; C f(z;). Let z; = |l zit. Then y; C f(zi) for some k'
Now, for all ¢ and k, there are z!, € X such that z;x T z!,. Hence y; C f(ziu) C f(2l).
Hence y € RHS. The converse inclusion is trivial. a

Lemma 5.16 LetY C D be finite. Then XCpY iff XCegm Y.

Proof It is straightforward to show that X Cgp Y implies X Cp Y. For the other
direction, we have Vy € Y3z € X.z C y. For the second conjunct, let z = | J;z; € X. We
have, for all ¢, there is some y; € Y such that z; C y;. Since Y is finite, infinitely many of

those y; are the same. Hence there is a y € Y such that z; C y for all 4, or z C y. a

Lemma 5.17 Suppose {(XF); : k < w} is a collection of chains such that (X¥); < (X**1);
for all k. Suppose furthermore that Up(X¥); is finite for all k. Then

CUp\/(XE):) = CK{| ok : ax € CUUN(XF):)})

Proof By Lemma 5.16, Up(X¥); Cgm Up(XF+!); for all k. From this it follows that
Cl{Uak : ax € CAUXE))}) = CH{Uax : ar € Up(XK);}). Assume w.lo.g. that for
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all + and k, X,-" Cem X!""l. We prove that {| Jax : ax € Up(X,-").-} =p Uka(X!‘),- from
which the lemma follows.

We first prove that {{Jax : ax € Up(X¥);} Cp UpVi(XF)i. Assume a € UpVi(XF);,
where a = || a; with @ € XF. For each k and i < k, the set Y¥ = {z € X} : 2 C a}
is non-empty. By Kénig’s lemma we can choose for each k a chain (y¥); where yF € X¥
such that | Jy* C a. Since by assumption every set Up(XF); is finite, we can apply Konig’s
lemma again to find a chain (yi)x with yx € Up(X¥); such that | Jyx C a. Let (bg)i be
a chain with lub b such that b € Up(XF);. Suppose furthermore that b = | |y, where
(Yn)n € K(D). Then for all n, y, C by for some k. Hence y, C z for some z € X¥ for
some ¢. Hence y, C 2’ for some z’ € X™ where m = max{k,:}. From this it follows that
there exists some element y € \/;(X¥); such that y, C y.

We now prove that UpVi(X¥); Cp {Uak : ar € Up(XF);}. Let (ax)x be a chain with
lub a such that a; € Up(XF);. Each a; determines an element z) € X,’:. By Konig’s
lemma, there exists an element z € Up(X ,’:)k such that z C a. Let (bg)x be a chain with
lub b such that bx € Xf. If (24)n C K(D) is a chain such that | | z, = b, then for each =,
Zn C bi for some k. Hence 2, C z for some z € Up(X,!‘).-. Hence there exists an element
v € {Uax : ax € Up(X¥);} such that 2, C . o

Define f : P(D) — P(E) by
f(X)=CHf(z):z € X}

We are going to show that, for every f, f is indeed the desired extension of f to the
powerdomain.

Lemma 5.18 f(X) = CKUp(f(X)) for all X € F(D), where f is defined in section 4.

Proof In the notation of section 4, f(X) = CIFx). Furthermore, Up(f(X)) = Fx since
X is finite. a

Theorem 5.19 f(ClUp(X;);)) = CKUp(P*f((X:):))) for all chains (X;); C F(D).
Proof By Lemmas 5.15, 5.17 and 5.18, we have

f(CAUP(X:)i)) = CHf(z):z € Up(X)i}
CLUNP*f((X:)i)) = cuup(\ f(X)))
= CK| |ei:e; € CHUP(F(X)))}
= CH| Jei: e € f(Xi)}

Let (2;); be a chain with z; € X;. Then (f(z;)); is a chain with f(z;) € f(X;). Hence
{f(z):z € Up(X:)i} € CH| Jei: ei € F(Xi)}

Let, for all ¢, y; € f(X.-) such that (y;); is a chain. Then each y; determines the set

X! ={z€X;: f(z)Cw}
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For all 4, X! is non-empty. Hence, by Konig’s lemma, we find a chain (z;); through (X;);
such that |J; f(z;) = f(; z:) € LJ; i- Since X; is a finite set, y; C f(z) for some z € X;.
Hence y; C f(a') for some 2’ € Up(X;);. Hence

{Lei: e € f(Xi)} C CHf(2): 2 € Up(Xi)i}

6 Compatible domains

It is quite surprising that the Egli-Milner order ‘becomes’ the Plotkin order on infinite
sets. The purpose of this section is to explore some of their relationships. In particular,
we want to establish under what conditions (on a domain D) the Egli-Milner order and
the Plotkin order coincide. Example 6.1 appears to provide a prime case for the difference
between both orders.

Example 6.1 Let D be a cpo given by the following data

o the elements are {L} U {(a,n):n Sw}U {(b,n):n < w}U{(T,R):n <w};
o the order is given by (a,n) C (a,m) iff n < m; (b,n) C (b,m) iff n < m; (a,n),(b,n)C
(T,m)if n<mand LCz forallz € D.

See figure 1.

Consider the following sets
Xi= {-L, (a, 0)’ teey (a’ 1’)}
Y; = {(b,9),(T,0),...,(T,?)}
We have X; Cpp Y; for all i. Hence (X;); < (Yi)i. But

Cl( UP(X.),) = {-Lv (av 0)’ ceey (a’w)}ZEM
CUNY;);) = {(b,w),(T,0),...,(T,R),...}

We readily see what goes wrong in the previous example: the element a“ does not ap-
proximate anything in C{ Up(Y;);). Therefore we impose the following restriction on the
underlying domain D. It effectively states that a situation as depicted in the example
cannot occur.

Definition 6.2 Let D be a (w-)domain.

1. Let (2;)i,(yi)i € K(D) be chains with lubs = and y, respectively. Assume that
{zi : i < w} is a collection of elements such that for all i, z;,y; C 2z;. Then (z;);

and (y;); are compatible iff there is a chain (¢;); C K(D) (with lub ¢) such that
Vidk > i.¢;C zr and z,y C c.

2. D is compatible if all chains in K(D) are pairwise compatible.
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(a,w) (b,w)

(a,n+1) (T,n) (byn+1)

L

(a,n) (b,m)

(a,1) (T,0) (5,1)

(a,0) (b,0)
1

Figure 1: A non-compatible domain
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For some examples of compatible domains:

e all flat domains are compatible;

o if D has all (binary) joins, then D is compatible. Hence all (w-algebraic) (semi-)
lattices are compatible.

e if D has bounded (binary) joins, then D is compatible. By bounded binary join we
mean that if there is z such that z,y C z then z V y exists. From this it follows that
all Scott-domains (w-algebraic bounded complete cpo’s) are compatible.

We now give another description of compatible w-domains. We need to introduce some
notation and a lemma.

For X C D, let mub(X) denote the set of minimal upperbounds of X. That is, elements
d such that  C d for all z € X and if d’ is any upperbound of X such that moreover
d' C d, then d’ = d. We say that mub(X) is complete if for any upperbound d’ of X there
is a d € mub(X) such that d C d'.

Definition 6.3 Let D be a w-domain. Then

1. D has property M if for each finite A C K(D), mub(A) is finite and complete.

2. D is SFP if D has property M, and moreover for each finite A C K(D), the set
U>(A) is finite, where

U%A) = A
U™tl(A) = mub(U™(A))
v=(4) = U4
n<w

Note that if a, b are finite, and d is a minimal upperbound for {a, b}, then d is finite too:
Let d = |J; d; for some chain (d;); C K(D), then a, b C d; for some i, hence d = d; € K(D).
Note also that D has property M iff for all {a,b} where a # b € K(D), mub({a,b}) is
finite and complete.

We need a lemma concerning greatest lower bounds.

Lemma 6.4 Let D be a compatible w-domain. Let {z; : i < w} be an anti-chain, that is,
z; J iy for all i. Then \;z;, the greatest lowerbound for the anti-chain, ezxists.

Proof Consider the set
X ={a€ K(D):Vi.aC z;}

Since L € X, X # @. Let ag,a1,a2,... be an enumeration of X. First we claim that
X is directed. Let a,b € X and consider the constant chains (a); and (b);. Let the ith
occurrence of @ and b be majorated by z;. Since D is assumed to be compatible, there
exists a chain (¢;); with lub ¢ such that a,b C ¢ and for all n, ¢, C z; for all i. Hence
¢ C z; for all . Since a and b are finite, there exists an n such that a,b C ¢,,. Now ¢, € X.
Hence X is directed.
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By Proposition 3.10, X has a lub a. We claim that a is the desired glb. Obviously, a C z;
for all 7 and hence is a lowerbound. Let b = | J; bi be another lowerbound. Since, for all
k, b C z; for all ¢, b, € X. Hence by C a and b C a. a

Proposition 6.5 Let D be w-algebraic. Then D is compatible iff D has property M.

Proof Assuming that D has property M, an easy application of Konig’s lemma shows that
D is compatible. Conversely, let a,b € K(D) and let a,b C z for some z € D. Consider
the set

C={ceK(D):a,bC cC z}
By finiteness of a,b, C # @. Let ¢p,c1,¢3,... be an enumeration of C.

Let f : N — N be the following increasing function: f(0) =0 and f(n+ 1) is the minimal
m > f(n) such that ¢, € ¢4(n), if such an m exists, and f(n+1) = f(n) otherwise.

Then ¢ = A, ¢4(n) exists, by Lemma 6.4, and a,b C ¢ C z. We have to show that c is
minimal. Suppose that there exists a (finite) ¢’ such that a,b E ¢/ C c. Then ¢’ € C and
cdC cy(n) for all n. Since ¢ €C, ¢ = ¢, for some m. By the construction of f, we must
have m = f(n) for some n. Hence ¢ C ¢’ which means ¢ = ¢’ This shows that ¢ is minimal.
Hence mub({a,b}) is complete.

Assume by way of contradiction that mub({a,b}) is infinite. Let do,d,,d;,... be an enu-
meration without repetitions of mub({a,b}). By compatibility of D, there exists a chain
(¢;); with lub ¢ such that a,b C ¢ and Vidk > i.c; C dp. By minimality of the dy,
Vidk > i.c; = di. Fix some i and let k > i be such that ¢; = di. Then for ¢’ > k,

dp =¢; C cyp = dp
for some k' > ¢’ > k. By minimality of dy, di = dys. Contradiction. a

Corollary 6.8 If D is SFP, then

1. D is compatible.
2. P*(D) is compatible.

The importance of this Corollary lies in the fact that the category SFP is closed under
all (standard) domain constructions, and that one can solve reflexive domain equations
involving these contructors in SFP [SP82]. This means in particular that the solution of
such an equation involving the powerdomain constructor, may use the Egli-Milner order.

Remark From the 2/3 SFP Theorem [Plo81], it follows that compatible w-domains are
precisely the Lawson-compact w-domains. Note, however, that the latter notion is topo-
logically defined. Here we have only used familiar order-theoretic notions.

From Example 6.1 it is clear that compatibility is a necessary condition on D for the
order to be Cgas: if a domain D is not compatible then there exist chains (z;); and (%;)i
such that for all 4, z;,y; C z; for some 2; but no chain (¢;); with the required properties.
Hence we can build a chain in F(D) just like in Example 6.1, that gives the required
contradiction. That the condition is sufficient is the content of the next theorem.
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Theorem 6.7 Let D be compatible. Let (X;); and (Yi)x be chains in F(D). Then
(Xi)i < (Ye)e iff CUP(X:)i) Eem CAUP(Yi)r)

Proof Assume (X;); < (Yi)x. By Proposition 5.14 we know Ci( Up(X;);) Ep CIUp(Yi)x)
hence
Vy € C{Up(Yi)x)Iz € C{ Up(Xi)i)xCy

To prove the other conjunct, assume, without loss of generality, that X; Cga Y; for all <.
Let z € CK Up(X;);) and assume z = |}, a,, for some chain (a,), C K(D). Assume (a,)n
does not stabilize. For each a,,, there is some z,, € Up(X;); such that a, C z,. Hence for
each n, there is a z; € X, such that a, C z, for some minimal k. Each z},  gives rise
toaset Y] CYp,:

Y. ={y €Yk, : 2, Cy}

By assumption, all Y/ are non-empty. Hence they determine a finitely branching infinite
tree through (Yx)x. By Konig’s lemma, there exists an infinite chain (y;);, with lub y.
Note that x and y may be incomparable. However we have that for all ¢, there exists a
yi € Y} for some k > i such that y; C y;; also, a,, C y} by definition of the sets Y. Hence,
by assumption, there exists a chain (c;); such that z,y C ¢ = |J; ¢; and, for all 4, ¢; C ;.
for some k’. Hence there exists a y' € Up(Yx ) such that ¢; C y'. Hence ¢ € CY Up(Yk)).
Hence
Vz € CUp(X;)i)Iy € CHUp(Yi)x).zCy

The other direction is immediate from Lemma 5.5. (=]

We know that one can form a domain from the closures of upperbound sets, but we do
not yet fully know what the least upperbounds in this domain are. The following theorem
shows that they are exactly like we would expect them to be, at least when D is compatible.

Theorem 8.8 Let D be compatible. Let, for all n, (X*); C F(D) be a chain such that
(XP)i S (X1, Then (C{Up(XP):)),, forms a chain with lub C{X) where

X = {Uz,, 1z, € CHUNXM))}

Proof Theorem 6.7 implies that (C{ Up(X);))n forms a chain with respect to Cga. We
already know what the least upperbound of such a chain is: it is the element defined by
the diagonal as defined in Theorem 3.2. So we show that this diagonal delivers the set
from the theorem. We write (D,;),, for this diagonal. Since we may assume for all n that
X! Cgm XM for all i, D,, = X2

We are going to show Up(D,), =p X. It is easy to see that Up(Dn)n Cp X. For the
other direction, let z € X and z = |,, z.(€ CUp(X);)). Also, z = |J; e; for some chain
(ei)i € K(D). Hence, for all i, ¢; C z, for some n. Hence there exists a z;, € X} for
some k, such that ¢; C z/,. Hence there exists some d € Up(D,)n such that ¢; C d. For

the other conjunct, let (y,)s be a chain through (D,),. Then each y, gives rise to the
following sets

Yn" = {yﬂ}
and for1 <i<n, . . .
Yi={zeXi:eVitzCy)
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We can view the formation of these sets as “pulling yn back” over the approximation
relation. By construction we have that y C yn forall y € Y, for ¢t < n.

All these sets are finite, hence we can apply Kénig’s lemma in the following way. First
determine a chain (¢;); through X}, by considering the finitely branching infinite tree
generated by all finite chains leading up to some element from Y. Let U;ci = . We
have that ¢; C |, Yn- The chain (ci)i determines a set
Zl = {z €Y, : Ji.c;C 7}
Infinitely many of these Z} are non-empty. They select sets Z2 C Y;2:
Z={s'€Y?:3x € Z,.2C2'}

We use Konig's lemma again to find a chain (z7); through the X2 as previously. Since
D is compatible, there exists a chain (c); such that L e, Ui % © Ui ¢l = c2. Again we
have that ¢; C L, yn. Since for all i, ¢; C y € Y2 for some n > i, ¢z € CK Up(X?):)-
We continue this way, using (c!); as starting chain. Thus we get a chain (¢y)n through
CH Up(X!)i), such that U, ¢n € Uy ¥n- Hence XCpD. ]

Remark. Note that we have proved the previous theorem only for compatible domains.
The question arises whether or not it holds for arbitrary domains. Intuitively, we would
expect so, but we were not able to prove it. In order to prove such a theorem, we have
to prove that for all d in the diagonal there is an z € X such that z C d. We needed
compatibility to do this.

7 More about functions

In this section we study continuous functions that are closely related to the notion of
powerdomain in more detail.

Singleton There exists a function {-f} : D — P*(D) given by {zf} = ({z})iforz € K(D).
Then for z = |J; z; where (z;); C K(D), {zl} = ({2:})i- We have C{Up{z}) = {=}.
Union We define W : P*(D) x P*(D) - P*(D) by
(X)iw(Y)i=(XUY)
for finite elements X,Y € F(D). ¥ lifts in the standard way to the whole of P*(D).
We have
CHU(X:)i® (Yi)i) = CK{||di : di € XiUYi})
These two constructions give us another way of characterizing P*f. A function
f: P*(D) — P*(E) is called linear if F((X)iw (Ya)i) = f((Xi)i) ¥ F((Y:);). We can
prove: P*f is the unique linear function such that the following diagram commutes.

*f
P*(D) ---> P*(E)
{-0 {-t
/

D———>FE
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Note first of all that, by definition, P*f is linear and obeys the equation. For
uniqueness, assume g obeys the equation. Then, for finite (X Yi = ({15 > Zn})is
we have

9(X)) = g{mlw---w{zal})

g({z:}) ¥ - @ g({zal})
{f(z)h - ¥ {f(za)]
= P*f((X))

Big union We define i : P*(P*(D)) — P*(D) by

WEX )i, -0 (Xa)iDe = (X1 U -+ U Xn)i

l is obviously monotone and hence lifts to a continuous function on P*(P*(D)).
Given a function f : D — P*(E) we can form f°: P*(D) — P*(E) by

o= yoPs

Note that f° is the unique function making the following diagram commute.

i

0

f
P*(D) -+ > P*(E)
{0

D

In the preceding sections we saw that, given a function f : D — E, we can construct
P*f : P*(D) — P*(E). We now show that P*(-): [D — E] - [P*(D) —» P*(E)]is a

continuous function itself.
Proposition 7.1 P* is monotone and continuous.

Proof We prove the proposition in two steps.

o Let f,g€[D— E] such that f C g. This means that Vz € D.f(z) C g(z). Consider
f and §. Take X € F(D). It is easy to see that {f(z):z € X}Cgm {9(z): 2 € X}.
Hence P*f C P*g.

e Let f; be a chain in [D — E] with lub f which is defined as f(z) = L; fi(z). Let
X € F(D) and consider

Xy = {f(z):z € X}
Xz = {{Jwi s v € fi(X)}
Obviously, X; € X;. For the other direction, we first note that the cardinality of
each f;(X) is bounded by the cardinality of X. Now consider some |J; v € Xs.

There exists an € X such that y; = fi(z) infinitely often. Hence X2 C X;. This
shows that P* (U] f;) = UP* fi. =]
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Corollary 7.2 P*: (w-)Alg — (w-)Algisa continuous functor.

Proof The preceding Proposition states that P* is a locally continuous functor, and these
functors are continuous [Plo81, SP82]. a

Given f : A X B — C we can define ft: P*(A) x P*(B) — P*(C) by X)) (X)) =
(Yx )& where Yi = {eu, .- .,enk} such that | lp e = f(z,z') for some z € X and ' e X'.
Then we have

K Up(f1(X,X")) = C{f(z,2') : 2 € X, ' € X'}
Likewise, for f : A x B — C we can define f1 : P*(A) x B — P*(C) such that
FH(X,b) = CHf(z,b):z € X}
Like before we can prove that
() : [4 x B = C] > [P*(4) x P*(B) = P*(C)]

and
(W} :[Ax B —C]—[P(A)xB— P*(C))

are continuous functions.

8 Summary

In this paper we have described a completion procedure that constructs an (w-) algebraic
cpo from a (countable) pre-ordered set. The procedure is called chain completion. It
induces an equivalence of categories (w-)Ord =~ (w-)Dom. Chain completion is used
to define several notions of powerdomains on a given domain. In particular, we have
described the Plotkin powerdomain construction in detail. This domain is isomorphic to
a certain collection of subsets of the underlying domain, ordered by the Plotkin order.
This identification is relevant for the purpose of defining denotational semantics for a
programming language. We have given an order theoretic description of the condition
on the underlying domain that ensures that the Plotkin order and the Egli-Milner order
(which is used in the defintion of the Plotkin powerdomain) coincide.
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