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Abstract

In this paper we prove that a minimum length schedule on 2 machines can
be found in linear time for a set of n unit length tasks with a forest of intrees
as precedence relations, and with unit interprocessor communication delays,
while duplication of tasks is not allowed.

1 Introduction

For the implementation of a parallel program, considered as a collection of processes,
on a parallel computer, one of the major problems is to determine which processor
should execute which process and at what time; the purpose is that the moment of
time that all processes have been executed (i.e., the execution of the parallel program
has finished), occurs as early as possible. Besides the possibility that processes may
have different execution lengths (possibly not exactly known in advance), processes
might use (intermediate) results computed by other processes. Making these results
available may require an additional (to the execution length) amount of time, the
communication delay. During this communication delay processors may execute
processes that have already obtained all necessary data.

The necessary communication delay is dependent of both the parallel program and
the system on which it must be implemented. The parallel program with its input

*This research was done while the author was on sabbatical leave at the Department of Opera-
tions Research and Stochastics, Technical University of Eindhoven, Eindhoven, The Netherlands.
Moreover it was partially supported by ESPRIT Basic Research Action No. 7141 (project AL-
COM 1I: Algorithms and Complerity) and by EC Cooperative Action IC-1000 (project ALTEC:
Algorithms for Future Technologies).



determines how much data must be sent from one process to the other processes.
The paralle] system has a different impact on the communication delay. Has it
a shared memory or is it a distributed memory system with some interconnection
network of processors? How much routing time is used if many data items must
be made known simultaneously? Are special routing processors responsible for the
routing, or must a processor temporarily uphold the execution of some process in
order to help with the routing of data? Does the system allow duplication of tasks?
In case of task duplication several processors will execute the same process, and this
may lead to less data to be routed, and/or more evenly balanced routing problems.
In that case we would expect to see a decrease in routing time, at the cost of an
increase in execution time (used for the execution of processes).

In this paper we will deal with only a subclass of the above mentioned problems
of assigning tasks (processes) to machines (processors).! We assume that task du-
plication is not allowed. The tasks as well as their execution lengths are given. The
precedence relations are given as an directed acyclic graph on the tasks, and if task
v needs data from task w, then w has to precede v and the communication delay
is given as a positive number. We assume that this communication delay is only
imposed if w and v are executed by different machines. We assume that processors
to execute tasks are not involved in the routing of data. Hence it seems that we
assume either a shared memory parallel system or a system with a complete proces-
sor interconnection network. Furthermore, preemption of tasks is not allowed, i.e.,
a task cannot be split and its pieces executed in nonconsecutive time intervals. Of
course we assume that each machine has enough local memory to store all the data
that must be kept available for tasks that this machine still has to execute. The
number of machines can be finite or infinite.

To state it mathematically: we are given m identical machines and a set V =
{v1,...,vn} of n tasks; with each task v € V is associated a positive integral number
p(v), its length; there is an acyclic graph G = (V, A) and with each arc (w,v) € Ais
associated a non-negative integral number c,.,, its communication delay. A sched-

ule S consists for each v in V of a 2-tuple (¢(v), m(v)) of integers that satisfies the
following two conditions:

C10<t(v)and1 <m(v)<mforeachv eV,
C.2 for all v and w in V with v # w and m(v) = m(w), the half open intervals
[t(v),t(v) + p(v)) and [t(w),¢(w) + p(w)) have an empty intersection.

We say that v is scheduled at time ¢(v) on machine m(v). § is a feasible schedule if
in addition condition C.3 is satisfied.

C.3 if (w,v) € A then:

t(w) + p(w) if m(v) = m(w)
t(v) 2 { t(w) + p(w) + cw—y otherwise

1We will switch here to terminology commonly used in the field of scheduling theory.
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For such a feasible schedule S the completion time Cpax(S) is defined as

Conex($) = max(t(v) + p(v))
The problem is to find for given m, G, task lengths, and communication delays, a
feasible schedule of minimum completion time. Such a schedule is called an optimal
schedule. In the corresponding decision problem, we are given m, G, task lengths,
communication delays, and a deadline D, and are asked to find out whether a feasible
schedule S exists such that Cy,ax(S) < D. We call this problem the multiprocessor
scheduling problem with communication delays, for short the MSCD problem.

In case ¢y, = 0 for all (w,v) € A, we obtain the classical multiprocessor
scheduling problem, which is NP-complete (cf. [10]). For several special cases of the
multiprocessor scheduling problem polynomial algorithms have been designed: G
is a forest of intrees, p(v) = 1 for all v (cf. [6]); G is the complement of a chordal
graph, p(v) =1 for all v (cf. [7]); m = 2, p(v) = 1 for all v (cf. [4]). Other special
cases have been proven NP-complete: G is a forest of intrees and outtrees, p(v) = 1
for all v (cf. [5]).

Obviously, the MSCD-problem is NP-complete; but compared with the multi-
processor scheduling problem, much less is known about the complexity of special
cases. NP-complete or NP-hard are:

G arbitrary G is tree of depth 2 | G bipartite

p(v) =1 p(v) arbitrary plv) =1
Cwmy = 1 Cw—v arbitrary Cowop = 1
m unbounded | m unbounded m arbitrary
D=6 D=4

cf. [12] cf. [3] cf. 8]

Polynomial algorithms exist for:

G arbitrary G a forest of intrees | G arbitrary | G a forest of intrees

p(v) =1 p(u) arbitrary p(v) =1 p(v) =1

Cwop =1 Cw—y arbitrary Cymy = 1 Cyop =1

m unbounded | m unbounded m is fixed

D=5 p(u)zcw-—w D=3

cf. [12] Time O(n) (cf. [2]) | cf. [8] Time O(n*™) (cf. [11])
O(n?) if m =2 (cf. [9])

For a more extensive overview we refer to [13].

In this paper we will improve on the last special case that G is a forest of intrees,
p(v) =1 for each v € V, ¢y, = 1 for each (w,v) € A, and m = 2. We will design
a linear time algorithm for it, which is obviously optimal. Our approach differs
fundamentally from the approach in [9] that leads to a quadratic time algorithm.
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While in the latter, subtrees of tasks were scheduled based on their size, we use a
list-scheduling approach. Unfortunately our algorithm cannot easily be adjusted to
give optimal schedules in case m = 3 machines are available.

The remainder of this paper is organized as follows. First we will review some
terminology. In section 2 we will use the general approach of list scheduling that
yields feasible schedules, and prove that under certain conditions the algorithm runs
in linear time. Then in section 3 we will concentrate on the creation of the list, such
that the list-scheduling algorithm of section 2 yields an optimal schedule and runs
in linear time.

Terminology Given two lists H = (hy, hg,..., ki) and E = (ey1,...,€p). by is at
the front of H, h; occurs before (after) h; in H if ¢ < j (¢ > 7). E is a sublist of H
if there are indices i3 < i3 < -+ < %, < k such that h;; = ¢; for each j (1 < j < p).
Let G = (N, B) be a directed graph with a set N of vertices and a set B of arcs.
The indegree (outdegree) of a vertex v is the size of the set {w € N : (w,v) € B}
(the size of the set {w € N : (v,w) € B}). A path in G of length k£ (k > 0) from
vertex vp to vertex v is a sequence (vg, vy, . . ., Uk ) of vertices such that (vi_y,v;) € B
for all7 (1 <1 < k). A cycle of length k (k > 1) is a path of length & from a vertex
vo to vg. A directed graph G' = (N', B’) is a subgraph of G if N'C N and B’ C B.
G’ is the subgraph of G induced by N’ (denoted by G’ = G(N')), if G’ is a subgraph
of G, and (v,w) € B for v,w € N’ implies (v,w) € B'.
In an acyclic directed graph G, a vertex w is a predecessor if G contains a path from
w to v (v is a predecessor of itself). v is then a successor of w. Pred(v) denotes the
set of predecessors of v. w is a direct predecessor of v if (w,v) € B. Two vertices v
and w are unrelated if w is neither a predecessor nor a successor of v. A topological
order of G is a list L of vertices of G such that each vertex of G occurs in L after
its predecessors.
A directed graph T is an intree if it does not contain any cycle, there is one vertex
(the root) with outdegree 0, and all other vertices have outdegree 1. A directed graph
F = (V,A) is a forest of intrees if it does not contain any cycle and each vertex has
outdegree at most 1. For each vertex r in F' with outdegree 0, the subgraph induced
by all vertices for which a path to r exists, forms an intree. A leaf in F is a vertex
with indegree 0. In a forest a direct predecessor w of v is also called a son, and v is
then the father of w. Two vertices are brothers if they have the same father. In this
paper we consider roots to be brothers (they have the same imaginary superroot).
For a given acyclic directed graph G = (N, B) a schedule S consists of a 2-tuple
(t(v), m(v)) for each v € N that satisfies the conditions C.1 and C.2. A partial
schedule consists of the assignment of 2-tuples satisfying C.1 and C.2, to a subset
of the tasks. A partial schedule is feasible if the assigned 2-tuples satisfy C.3, and
for each task with a 2-tuple each of its predecessors has also been assigned a 2-tuple.

A task v is ready with respect to a (partial) schedule if at time ¢ the following two
conditions hold:



C.4 for all direct predecessors w of v we have t(w) + p(w) <t ,

C.5 for at least indegree(v) — 1 direct predecessors w of v, we have t(w) + p(w) +
Cwv S T

Condition C.4 states that all predecessors of v must have been executed at time ¢,
and C.5 states that all data that v needs can be available at some machine.

2 The list-scheduling approach

In this and the following section we consider n tasks in a forest F' = (V, A) of intrees,
where p(v) = 1 for all v € V and ¢y, = 1 for all (w,v) € A. We develop a linear
(i.e., O(n)) time algorithm to find an optimal schedule for F on m = 2 machines, but
we will try to formulate and prove theorems to hold for arbitrary m. The conditions
C.4 and C.5 reduce for these weights and communication delays to:

C.4' for all direct predecessors w of v we have t(w) +1<t,
C.5' for at least indegree(v) — 1 direct predecessors w of v, we have t(w) + 2 < t.

The list-scheduling approach to find good schedules consists of two stages. In

the first stage one creates a list L of tasks. In the second stage one scans for
increasing time steps ¢ the list L (starting at the front) to find as many (but not
more than m) ready (with regard to the partial schedule obtained so far) tasks and
tries to schedule them on the available machines at time ¢. We will modify the list-
scheduling approach slightly in order to deal with the communication delays; and
moreover prove that stage 2 can be implemented to run in O(mn) time, provided
that L is a topological order of F. Then in the next section we will show how to
create in linear time a specific topological order that leads to an optimal schedule
in case m = 2.
We modify stage 2 of the list-scheduling approach in such a way that condition C.4’
implies C.5’. This can be done by preventing two brothers to be scheduled at the
same time while all their brothers have been scheduled earlier. In figure 1 the time
assignment of the modified stage 2 is given, and in figure 2 an example is given
which shows that the modification seems to be really necessary.

Without proof we state:

PROPOSITION 1 Suppose each vertex v has been assigned a time t(v) by algo-

rithm Tassign. If condition C.4' holds for v with t = t(v), then C.5' holds also for
v and t.

DEFINITION 1 If during the execution of algorithm Tassign a task v is assigned
to the variable x; for some i at some time t, then v is an i*h-choice task.



(1) teme:=0;
(2) while L#0
(3) do for t:=1tom

(4) do Let z; be the first ready task in L such that

(5) indegree( father(z;)) # 1 or

(6) (zo, Z1,...,Zi—1) does not contain a brother of z;;
) if such an z; exists

(8) then t(z;) :=time; delete z; from L;

(9) indegree( father(z;))— =1

(10) endif ;

(11) enddo ; time:=time+1

(12) enddo ; Cpax :=time

co The statements using father(z;) must be properly adjusted in case z; is a root.
co

Figure 1: Algorithm Tassign for the assignment of schedule times to tasks.

Actually algorithm Tassign assigns only time units to tasks, but not machines to
tasks.

PROPOSITION 2 Suppose each vertex v has been assigned a time t(v) by algo-
rithm Tassign. Then in O(n) time each task v can be assigned a machine m(v)
such that the set of 2-tuples (t(v),m(v)) constitute a feasible schedule.

Proof. First we will present the algorithm for the machine assignment. The
i*P-choice task at time ¢ = 0 is assigned to machine 7. Suppose all tasks scheduled
before time ¢ are assigned to a machine. A task v scheduled at time t with a direct
predecessor w at time t — 1, is assigned to machine m(w). The other tasks scheduled
at time ¢ are assigned to the remaining machines.

Obviously this algorithm runs in linear time, provided the right information is stored
with the tasks during the execution of algorithm Tassign. No two tasks can be
assigned to the same machine at time ¢ because in an intree no two tasks have pre-
decessors in common. Moreover no task v scheduled at time ¢ can be assigned to two
machines, because by the algorithm Tassign v has at most one direct predecessor
at time ¢t — 1.

It is obvious that the schedule obtained is feasible. Q.E.D.

Now we will work onto the main result of this section that the time assignment
runs in O(nm) time in case L is a topological order of F. Therefore, from now on
we assume that L satisfies this property. With L(® we denote the list L as it is in
algorithm Tassign at the moment that the value ¢ is assigned to the variable time.

Hence LO) = L.



F:
L:acdfbe
Machinel: |a |d [ b e Machinel: [a {c | b
Scheduling: Machine 2: | ¢ | f Machine2: |d | f | e
Unmodified stage 2. With modified stage 2.

Figure 2: Example of modified stage 2 of list-scheduling algorithm.

LEMMA 3 At each time t, the first-choice task is at the front of Lo,

Proof. Let z be at the front of L. Because L is a topological order, all prede-
cessors of ¢ occur in L before z and must have been deleted from L at some time
before . Hence w satisfies C.4’, and by Proposition 1 also C.5'. By definition z is
ready at time . Q.E.D.

As a consequence we have that the sequence of first-choice tasks (for increasing time)
forms a sublist of L, and hence the searches for the first-choice tasks together take
only O(n) time.

LEMMA 4 Suppose (zi,...,2p) (p < m) are unrelated tasks such that z; (1<
j < p) is a j®-choice task scheduled at time t. Let u be an i*h_choice task scheduled
before time t. Then u occurs in L before z;.

Proof. For i = 1, the lemma holds by Lemma 3. Because the obtained schedule
S is feasible, we have that at each time t' < t a predecessor y; of z; is ready. With
ti,...,Zp unrelated, the tasks yi,...,yp are also unrelated, and y; = z; or occurs
in L before z;. Moreover, z; occurs in L after z;_, (2 < j < p), and hence, there
are at least ¢ ready tasks in L®) before x; (z; was not chosen at time t'). Thus the
scan for the i*"-choice task in L(*) encountered a task z; occurring before z;. Q.E.D.

COROLLARY 5 The sequence of i*-choice tasks is a sublist of L.

COROLLARY 6 If at time t > 0 p tasks are scheduled, then at least p tasks are
scheduled at time t — 1.



THEOREM 7 If L is a topological order of the tasks in the forest of intrees, then
algorithm Tassign can be implemented to run in O(nm) time.

Proof. With the previous lemma, it is enough in algorithm Tassign to keep for
each 7 (1 < i < m) a pointer for the scan for the 7*"-choice task. The scan for choice
; at time t proceeds from where the scan for choice ¢ at time ¢t — 1 finished. Hence
the scans for the i*"-choice tasks together take O(n) time for each . The theorem
follows. Q.E.D.

3 Finding the right topological order

In this section we want to design an efficient algorithm that creates a topological
order L such that the application of algorithm Tassign to L yields an optimal
schedule. Unfortunately we were only able to prove optimality for m = 2, and we
found a counter example for the case of m = 3 machines.

Like Hu (cf. [6]) did for the case of no communication delay, we create a list
in which tasks are ordered according to their distance to the root. In case of no
communication delays, this distance is just the number of arcs. It gives a sharp
lower bound to the difference between the moments of time that a task and its
root successor are scheduled. Incorporating communication delays the concept of
distance should be adjusted not only to comprise the number of intermediate tasks,
but also the amount of time required for communication; and it should give the
precise schedule times in case of an unbounded number of machines.

Several researchers (cf. [1], [2]) have published algorithms to find an optimal
schedule of a forest when an unbounded number of machines is available. Most of
them schedule each task also as early as possible, and hence compute for each task
v the value ept(v) defined as:

DEFINITION 2 Let F be a forest of intrees, and v a task of F. Then the earliest
processing time ept(v) of v is the time that v is scheduled in an optimal schedule of
F(Pred(v)) in case of m = oo machines.

The values ept(v) can be computed in O(n) time according to the following recur-
rence relation

(0 if v is a leaf
1 + ept(wo) if v has exactly one son wo such that ept(w) <
ept(v) = ¢ ept(wp) for all sons w of v
2 + ept(wo) if v has at least to different sons wp and w, such
L that ept(w) < ept(wo) = ept(w;) for all sons w of
v



Next we assign to each task a so-called scheddist-label. It comprises a distance
concept between a task and an imaginary root that has all roots of F' as sons. Obvi-
ously this imaginary root has scheddist-label 0. If a non-leaf task v has scheddist-
label d then exactly one son wo of v has scheddist(wo) = 1 + scheddist(v) and

moreover ept(wg) > ept(w) for all sons w of v. Observe that the scheddist-labeling
is not unique.

DEFINITION 3 Let v be a non-leaf in F. Task w is the eldest son of v if w is a
son of v and scheddist(w) = 1 + scheddist(v). Task u is the eldest brother of v’ if
u s the eldest son of u'.

(Roots are considered to have a common imaginary father.)

The basic idea is more or less to schedule tasks in decreasing order of scheddist-
label, and in this way an eldest son is scheduled later than its brothers. For a correct
proof that the schedule is optimal, we use a list L with an additional property.

Let v and v’ be tasks. Let u be the eldest brother of v if v is not the
eldest son of its father; in the other case let u be the father of v. v’ is
defined similarly with respect to v'. If v occurs before v’ in L, then u
occurs before v’ in L.

In figure 3 we give the algorithms for the creation of the list L. It is left as an exercise
to the reader to verify that the list L as created has indeed the above property.
The equivalent of the longest path (in case of no communication delays) is formed

by a longest sequence of tasks that starts with a leaf and then proceeds with the
eldest brother or the father.

DEFINITION 4 A sequence (Zx,Zk-1,..-,%o0) of different tasks is a brother path
of length k from xy to xo if for each i (1 < i < k) xi_y is the father or the eldest
brother of z;, and moreover scheddist(z;) = 1 + scheddist(z;_,).

LEMMA 8 Let = be a task such that ept(z) = k. Then there is a brother path P
to z with length k. If k > 1, then the one but last task in P is the eldest son of z.

Proof. We prove this by induction on k. The lemma obviously holds for k = 0.
Now let £ > 0, and suppose the lemma holds for all tasks y with ept(y) < k. Let
z be a task with ept(z) = k. Let z; be the eldest son of z. Then scheddist(z:) =
1 + scheddist(z).

Case 1. ept(z;) = ept(z) — 1. Then ept(z;) = k — 1 and by the induction hypoth-
esis applied to z; there is a brother path (zx,zk-1,...,%1) to z;. Extending this
sequence with z yields a required brother path.

Case 2. ept(z,) = ept(z) — 2. Then z, has a brother z; with ept(z,) = ept(z:1) and
scheddist(z;) = 2+ scheddist(z). Apply the induction hypothesis to 3, and extend
the brother path ending at z, with z; and z. This yields a brother path to z of
length k. Q.E.D.



Let vy, v2,. .., Vs be a topological order of F = (V, A). Assume that for each task v
ept(v) and the indegree indegree(v) have already been computed.

co Assign to each task a scheddist-label co

Let zo be a root with largest ept-value; scheddist(zo) := 1;
for all roots z with z # o do scheddist(z) :=2 enddo ;
for i := n downto 1
do 1if v; has an unlabeled son
then Let among all sons of v; son wp have a maximum ept-value.
scheddist(wo) :=1 + scheddist(v;);
for all w with w # wp and (w,v;) € A
do  scheddist(w) := 2 + scheddist(v;) enddo
endif
enddo

co Creation of list L co

Let Broth(zo) = {z € F : =z is a root and z # To}.
L:=0; Insert zoin L; Let ptr point to the last task in L;
while ptr # nil
do  Suppose ptr points to task y;
Insert all tasks of Broth(y) at the front of L;
if y has a son in F
then Let z be a son of y such that scheddist(z0) =1 + scheddist(y);
Insert zo at the front of L;
Broth(zo) :=={z € F : (z,y) € A and z # 20}
endif ;
if y has a left neighbor y' in L
then set ptr toy' else set ptr to nil
endif
enddo

Figure 3: The algorithm CreateList to create the list L.

PROPOSITION 9 A brother path of F is a sublist of L.
Proof. Left to the reader. Q.E.D.

Now we come to a fundamental lemma, necessary for the proof that the obtained
schedule is optimal in case of m = 2 machines.

LEMMA 10 Let S be a schedule of a forest F, obtained by applying the algorithms
CreateList and Tassign to F. Suppose there is a time interval [t — k,t] of k time
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units (k > 1) in which a, @k-1,..., @ and b, ..., by are the first-choice and second-
choice tasks, respectively. Suppose that for each 1 (2 < i < k) b; occurs in L after
As—1-

Then (ak,ak-1,---,01) 15 @ brother path and moreover (ak-1,ak-2;- - - ,ap) is a path

in F.

Proof. We will assume that either ¢ — k = 0 or the time interval [t — k—1,t]
does not satisfy the requirements of the lemma. (If the latter would occur, we could
prove the lemma for [t — k — 1,%] and the subsequence (ak, - ..,ao) is then a path
in F with consecutive decreasing scheddist-values, and hence satisfies the lemma.)
Let, in case t > k, ax41 and bpy1 be the first-choice and second-choice tasks at time
t — k — 1, respectively. By taking k as large as possible, b1 occurs in L before ay.
Because the first-choice tasks as well as the second choice tasks form a sublist of L
(lemma 4), we have that a1 and a; are consecutivein L = L), Similarly, a; and
a;_y are consecutive at the front of Lt for 2 < i < k. Hence, during the scan of
L9 in algorithm Tassign, a;—1 is checked whether it can be used as second-choice
task, and rejected. a;-; must be the father or last remaining brother of a;. We know
even more.

Claim 1. a,_; is the father or the eldest brother of a;.

Proof of Claim. Suppose that a;_; 1s a brother of @;. Let v be the eldest brother
of a;. v must be unequal to a; because otherwise the list of first-choice tasks would
not be a sublist of L. Suppose v # a;—1. @i_1 is the last remaining brother of a; in
L at time t — i + 1. Hence, v is scheduled at some time ¢’ <t — . a; and a;-, are
unrelated tasks, and therefore at time t' two unrelated predecessors of a; and a;—
are ready. These predecessors occur in L before v. Thus v would not be chosen at
time ¢. With contradiction we have proved the claim.

End of proof of claim.

Claim 2. If g; is the father of a;4; then ept(a;) > k—1, otherwise ept(a;) > k—1—1.
Proof of Claim. By induction over . Obviously the claim holds for ¢ = k and
i = k — 1. Assume that the claim holds for k,k—1,...,4 +1 (1 <¢ < k—2).
Case 1. a; is the father of a;41. If @iy is the father of aj;q, then ept(a;) 2>
1 + ept(aiy1) = k — ¢ by induction applied to a;41. If @iy is the eldest brother
of ajy2, then a4, is the father of ai;3 or k = 1+ 2. By application of the induc-
tion hypothesis to a;42 we get ept(aizs) > k—1—2. If ept(a;y1) = ept(aiy2) then
ept(a;) > 2 + ept(aiyz) = k=3 otherwise ept(a;) > 1 + ept(aiy1) =2+ ept(aiy2) =
k—1.

Case 2. a; is the eldest brother of a;41. Then a;4; is the father of a;42 and by
induction applied to a;41 we have ept(a;) = 1+ ept(aiyr) 2 k— 7.

End of proof of claim.

Claim 3. (ak-1,...,01) is a path in F.
Proof of Claim. Assume the claim does not hold. We will prove the claim by con-
tradiction. Let ko (2 < ko < k — 1) be the largest index such that ax, is not a son
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of ag,—1. Such a ko exists by assumption. By claim 1 the eldest brother v of ag,
must be task a,-1, and ag, must be the father of ag,+1. By claim 2 we have that
ept(ak,) > k — ko and thus ept(v) > k — ko. By lemma 8 there is a brother path
(Vk—1,Vk=2, - - y Uk, V) in Which vy, is the eldest son of v. By construction of L, vk,
occurs in L between ai,;; and ag,, and in general v; (ko < ¢ < k — 1) occurs in
L after a;;;. Because ax and ap_; are consecutive in L = L© v._; occurs after
akx—1, and all tasks vx_1,..., v, are scheduled not before time t — k. v, must be
unequal to by, (by the conditions of the lemma), and with lemma 2, vy, must have
been scheduled before time t — ko. Hence, the tasks vg_q,..., vk, must have been
scheduled as second-choice tasks at times t — k,t — k+1,...,t — ko — 1, that is in
k — ko time slots. Thus bx = ve_1, br_1 = vk_2, etc. With vg_; occurring in L after
ax—1 and vy, occurring in L between a1 and ag,, and by the pigeon-hole principle,
there must be an ¢y > ko such that v;,4; and v;, occur in L both between a4, and
a;,. As a consequence a; 41 is not the eldest son of a;, and it must have an eldest
brother w # a;,+1. However, no room is left for the scheduling of w. It cannot have
been scheduled before time ¢t — k because it occurs in L after ap. With g > ko, w
must be unequal to v but it is a predecessor of v. Hence we have to conclude that

the schedule produced by our algorithm is not feasible, contradicting lemma 2.
End of proof of claim.

In order to conclude that (ag,...,a;) is a brother path, we only have to show that
they have consecutive scheddist-values.

Claim 4. For each i (1 < i < k) the equality scheddist(a;41) = 1 + scheddist(a;)
holds.

Proof of claim. The proof of this claim is similar to the proof of claim 3. Hence,
assume that the claim does not hold, and let ky (1 < ko < k) be the largest index
such that scheddist(ar,+1) = 2 + scheddist(ak,). Then ax,41 is a son of ax, but
not the eldest son. Let v be the eldest brother of ax,+1. With claim 2 ept(v) >
ept(aky+1) > k — ko — 1 and there is a brother path P = (vk-ko-1,-.-,%1,% = v) in
which v, is the eldest son of v. All tasks of P are scheduled not before time t — k.
On the other hand v must be scheduled before ay,, and it cannot be scheduled at the

same time as its brother ay,4; (by communication requirements). Hence the k& — ko
tasks of P must have been scheduled as second-choice tasks at k& — kg — 1 slots at

times t — k,...,t — ko — 2, which is impossible. Contradiction.
End of proof of claim.
This completes the proof of the lemma. Q.E.D.

LEMMA 11 Suppose the schedule S satisfies the conditions of lemma 10; and let
k be such that the second-choice task at time t — k — 1 occurs in L before ar. Then
all tasks scheduled before time t — k are predecessors of the father of ax.

Proof. Suppose the lemma does not hold. Let z be a task scheduled before time
t—k. Let (z = p,...,x1) be the brother path from z to a task z; such that z; is a
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root in F or z; = a; for some a; a proper successor of the father of ax, and x; is not
a proper successor of a. There must be a g such that z, and z,-1 occur before and
after a in L, respectively. Then, by construction of L, T4-1 occurs in L between ax
and az_;. This contradicts the fact that a; and ax_; are consecutive in L=1L10,

Q.E.D.

With these two lemmas it seems that under the conditions of lemma 10 the subgraph
of F induced by aj,...,ar and all predecessors of the father of aj is scheduled
optimally.

THEOREM 12 Application of the algorithms CreateList and Tassign together
gives an optimal schedule for each forest F of intrees on m =2 machines.

Proof. Suppose the theorem does not hold, and F is a forest for which algorithms
CreateList and Tassign together yields a suboptimal schedule 5. Let A = Cmax(5).
An optimal schedule for F' has completion time Aopr < Cmax(S) and hence, S has
s > 2 empty slots. By lemma 4 these empty time slots occur at times A—s,..., A—1.
In these time slots there are no second-choice tasks.

Consider these empty slots as empty tasks that are added at the end of L. Let a;
and b; be the first-choice and second-choice tasks, respectively, scheduled in S at
time A — i. by and b, are empty tasks. Let k be the largest number such that b
occurs in L after ax_;. Obviously k > s > 2.

Claim. k > 2.

Proof of claim. Suppose k = 2. Then the optimal schedule for F' contains no idle
time slots at all. Hence, F consists of at least 2 trees. Obviously z; is a root, but
also x, is a root, because otherwise the sublist of second-choice tasks (except for the
empty tasks) would end with a root that would occur in L after z,, and k would
have been chosen larger. So with z; and =, both roots, z; must occur in L after 2,
and therefore, ; is considered to become the second-choice task at time A — 2. It
would not have been rejected. Contradiction.

End of proof of claim.

With lemma 10 we know that (ak,...,aq) is a brother path, and moreover that
(@k-1,---,a1) is a path in F, and by lemma 11 all tasks a; and b; (k+1 < < A)
are predecessors of the father of aj. Let V' be defined as

V' ={a; : 1<i<k—2}U Pred(father(zx))

and let F' = F(V'). We will show that each schedule of F' on m = 2 machines has
completion time A, and hence each schedule for F has completion time A, and as a
consequence S is an optimal schedule.

Case 1. zp_1 is the father of zx. All predecessors of ax-1 (except ax and ax-1 are
scheduled before time A — k. By lemma 11 no other tasks are scheduled before
)\ — k. Because b is not a predecessor of ax_1, ak-1 has exactly 2(A — k) + 1
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predecessors (itself not counted). Hence scheduling F(Pred(ak—1)) requires at least
[2(A — k) +1] +1 units of time. Scheduling ax_2, - . - , a1 requires an additional k —2
time units because these tasks form a path in F'. Hence

Ao ZA—k+2+k—2=)

Thus S is optimal in this case.

Case 2. ai_p is the eldest brother of ay. Then ax_, exists (by the claim) and is the
father of ax. The only predecessors of ax—2 could be: all tasks scheduled before t —k,
and ag,ar_1, and ag—z. bx cannot be a predecessor of ax_z, because it would then
occur in L before the eldest son ax_;. Hence Pred(ak-2) has a size of 2(A — k) + 3.
In an optimal schedule of F(Pred(ak-2)) the task ap_s is scheduled in the last time
unit, and in one time unit earlier only one direct predecessor of ax_2 can be scheduled

because of communication delays. Knowing that (ak-2,- .. ,a1) is a path in F' we
get that
A—-k)+1
Aopi:_>_ ['2‘(—‘—2-)‘;*__-‘+1+k—2=)\—k+2+k—2=/\
Thus S is optimal in this case. Q.E.D.

In case of m = 3 machines the combination of CreateList and Tassign does
not necessarily yield an optimal schedule. Consider the graph of figure 4. ept(b) =
ept(g) = 3. If b is chosen to have scheddist(b) = 2, then the created list becomes

mfdlkijehcgba

and Tassign will find a schedule with completion time 7.
If on the other hand g is chosen to have scheddist(g) = 2, then the list will be

fdmelhijckbga

and Tassign will find a schedule with completion time 6.
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