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Abstract

In this paper the problem of detecting erosion in hierarchical infor-
mation structures is studied. This problem manifests itself particularly
in environments where there is little or no possibility to guarantee struc-
tures in accordance with a specification and furthermore where there is
a high frequency of mutation of structures. The notion of information
structure is formalized in terms of so called structural expressions. The
erosion of information structures is paralleled by increased optionality
in the associated structural expressions. In order to detect erosion the
Choice Normal Form for structural expressions is introduced. In this
normal form all implicit optionality is made explicit. It is shown how
arbitrary structural expressions can be brought into the normal form via
transformations which are semantic preserving. A graphical formalism is
presented whereby analysis of erosion is made more convenient.

1 Introduction

In the world of publishing there is increasing competition to produce information
products quicker and cheaper for narrowing market segments. Crucial in this
regard is quick retrieval of the relevant information to fill in the content of a
new product. Unfortunately, in many situations, quick product development
is hampered because the raw material of the information products, the texts,
are stored in a layout-oriented fashion suitable for a particular type-setting
system [RP92]. In this way, pages can be quickly printed, but in order to create
anew product the developer must sometimes know precisely which pages contain
the relevant fragments of information. When these pages have been identified,
they are fed to the type setting system, printed out and bundled to form the
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product. Sometimes there is no possibility to retrieve pages via content-based
queries. In such cases, it takes years of experience for the product developer to
become familiar enough with the material in order to develop products quickly
and efficiently.

In short, the product developer does not design a product at the concep-
tual level, but typically works at the physical page level. This is in some ways
comparable to the situation in the days of pre-relational databases. Develop-
ers in those days struggled with aspects related to the physical storage of the
information. The advent of the conceptual approach to database design allows
designers to first focus on the “what” of the problem, that is, the conceptual
aspects, and produce a so called concepiual description. This can thereafter be
(automatically) translated to an internal representation where aspects such as
physical storage are taken into account (the “how” aspects) .

A similar line of development is now emerging in the world of textual in-
formation. The lack of conceptual description of the information has been ac-
knowledged and is being filled by standards such as SGML (Standard General
Markup Language) [Smi89] and ODA (Office Document Architecture) [HH86).
These standards are doing for the world of textual information what the con-
ceptual schema approach did for database development. Information products
are no longer a series of amorphous pages; they have a structure. This struc-
ture is not only useful for disclosing the information in the product [Wri92], but
can be maintained in accordance with a structural specification. The structural
specification opens the door to designing information products at a conceptual
level and thereby promotes development in a media independent way.

The ability to maintain the structure of a product is important, particularly
for those products with a high frequency of mutation. As mentioned above, in
the current situation products are typically not developed from a conceptual
description, so structural integrity cannot be guaranteed. As a consequence,
the structure of the product can become more and more chaotic. We will refer
to this process as structural erosion. It is the central theme of this paper.

A concrete example of structural erosion can be found in [HvL92]. This
example deals with a rapidly mutating information product based on loose-
leaf legal texts. An important element of these texts is a commentary on a legal
article. Analysis of the structure of commentaries over a period of time revealed
the following: Sometimes a commentary was a short introductory paragraph,
sometimes it was a table of contents, followed by the introduction. In other
cases the structure of the commentary was an introduction followed by items of
description broken down by legal article. Still in other cases the articles were
preceded by a table of contents.

The research cited above revealed that some structural variations of an ele-
ment are not due to changing product requirements, but appear more or less by
chance, for example, an error, or a change of product developer. As the number
of possible variations of an information product rises, so to does its inconsis-
tency; sometimes the commentary is presented in one form, and in the following



version of the product it has another form. Such inconsistency may not only be
annoying for the user but can hamper them in finding relevant information.

This paper presents the theoretical basis of a method designed for identifying
structural erosion in hierarchical structures, the skeletons of information prod-
ucts. The insights for this theory emerged from a case study in a publisher’s
house [HvL92]. Our point of departure is the Information Systems Paradigm
which features the well know distinction between the conceptual description of
information and the information itself. An important component of the con-
ceptual description are so called structural ezpressions, with which hierarchical
structures are specified. Structural expressions are brought into the Choice Nor-
mal Form so that structural erosion can be detected. The erosion can thereafter
be filtered out in a restructuring process.

2 Formalization of the Conceptual Description
of Hierarchic Information Structures

Usually information is structured according to some rules. For example, if the
information has the form of a book, it usually consists of chapters, a chap-
ter consists of sections, and so forth. Another example is legal texts. These
generally must adhere to fairly strict guidelines. Adoption of the Information
Systems Paradigm (see figure 1) implies that an explicit distinction be made
between the rules and the information it governs [Bub86]. More specifically,
a conceptual description describes the rules pertaining to the structure of the
stored information. The information base contains the actual information. The
information base is sometimes referred to as an instantiation (population) of the
conceptual description. For the research presented in this paper the information
processor and user interface are not relevant.

user
interface
conceptua
description
information /
processor information
base

information model

information system

Figure 1: Information Systems Paradigm

The Information Systems Paradigm is a general framework applicable in
various contexts. As such, a number of formalisms are available to specify a
conceptual description. In traditional database design support for the speci-



fication of entity and relationship types are featured. In the world of textual
information, context free grammars are a well known formalism. (See [GT87,
BvdW92, Mac91, 1SO86]). The ISO document standard SGML uses context
free grammars as the core of its so called document type definitions. Basically,
a document type definition is a specification of a set of permitted hierarchically
structured documents, or said equivalently in terms of formal language theory:
the DTD is a grammar where each parse tree generatable from the grammar cor-
responds to a valid structured document. In terms of the Information Systems
Paradigm, a set of context free production rules can be viewed as constituting
a conceptual description, and the associated parse trees as being valid elements
of the population of the information base. As SGML is widely used in the pub-
lisher’s world and together with the fact that context free rules form a useful
mechanism for structural specification, we pursue the grammar-based approach
further.

The starting point is the notion of a conceptual description. We follow a
similar line to [BvdW92] in which a basic formal language approach is taken,
but where a strict separation is made between structure and content.

Definition 2.1
A conceptual description is a tuple ¥ = (E,R) where

e E is a set of names denoting structural elements

e R is a set of context free production rules
]

The structural element names E can be compared to the entity type names of
traditional database conceptual schemata. Basically, a structural element name
denotes a class of structural elements. For example, the name commentary
introduced in the previous section is such a class name. The information base
contains a population of structural elements which are members of the class
commentary. Users often use the strings in E as footholds for localizing a search
for information. The symbol ¢ (¢ in E) will be used as the name of the empty
structural element.

A production rule specifies how a structural element is broken down. For
example, the rule

Book — Title,Chapter+

specifies that a book constitutes a title followed by one or more chapters. As the
above example illustrates, a production rule has a left hand side (LHS) and a
right hand side (RHS). The LHS is the name N, (N € E) of a structural element.
The RHS describes a so-called structural expression. Structural expressions will
play a central role in this paper. It is these expressions which are normalized for
the purpose of detecting so called structural erosion. The normal form thereafter
serves as the basis of a restructuring process for the rectification of the erosion.



Structural expressions are basically an extension of the regular expressions of
formal language theory. They are defined as follows:

e Each member of E is a structural expression
e If A and B are structural expressions, so are (A,B), (A | B) and (A & B)
o If A is a structural expression, so are A%, A+, A? and (&)
In the above,
e A,B denotes that A precedes B
e A & B denotes the order of A and B is arbitrary
e A | B denotes a choice between A and B and
e A? denotes that A is optional, that is ¢ | A
e In A+, the + operator is used for denoting a sequence of one or more A’s.
o Finally, A* denotes optional repetition, that is (A+)?

L will be used to denote the structural expressions over E. Formally then, the
production rules P are a subset of E x £,_. The following is an example of a
production rule

Book — ContentsTable?, (Chapter+ | Paragraph*),(Appendix & Index)

which specifies that a book may have a table of contents, consists of either a
series of one or more chapters or a series of zero or more paragraphs, followed
by an appendix and index which may be in any order.

The semantics of structural expressions can be established in the usual way
by mapping structural expressions to formal languages [LP81]. Structural ex-
pressions with the same semantics are said to be equivalent. The normalizations
of structural expressions presented later in this paper are semantic preserving.
This is important because in our normalization of expressions to a form suitable
for erosion detection, we do not wish to disturb the intention of the structures
suggested by the expressions.

Note the above definition of a conceptual description consists solely of rules
and structural element names. This can be viewed as a pool of rules from which
hierarchical information structures can be defined using a information structure
description. This notion is defined as follows:

Definition 2.2

Let ¥ = (E,R) be a conceptual description. An information structure
description is a tuple (P, S) where

e PCR



e S € E, the start symbol
0

An information structure description is basically a context free grammar. The
parse trees derivable from this grammar correspond to information structures.
These reside in the information base and are composed of the structural elements
mentioned earlier.

3 The Erosion of Information Structures

The second law of thermodynamics pronounces that everything proceeds to-
wards chaos. So it is with production rules, in the sense that via a series of
mutations a rule ends up implying more and more possibilities, or choices. Fig-
ure 2 depicts the atomic mutations of a structural expression A via the addition
of an operator. Note that if A constitutes the RHS of a rule it implicitly specifies
the constraint that there is a single occurrence of A. Now, if A mutates to A?
the constraint is weakened as this signifies zero or one occurrences of A. Said
differently, there is now a choice between A and ¢, the empty information struc-
ture. This is an example of erosion. An other example is the mutation from A
to A+. This means that the constraint that there be a single occurrence of A is
weakened to there being at least one A. In other words, after the mutation there
are the possibilities A or A,A or A,A,A etc. A similar situation arises when A?
mutates to A*. When A? or A+ mutate to A% erosion also occurs as they both
imply an increase in the number of inherent possibilities.

The mutation from A to A | B is an increase in optionality and therefore
erosion. Note that the mutation from A to A,B is not erosion as it does not
imply an increase in the number of inherent possibilities. However, the mutation
from A,B to A & B constitutes erosion because this represents a shift from a
mandatory ordering to a choice between the ordering A,B or B, A.

?
A<:‘. >
As
A+

L— A | B

Figure 2: “From order to chaos”



Mutations often arise out of the need to extend an information structure.
For example, a product developer may consciously mutate some rules in order
to increase the possibilities of a product. In practice, not all mutations are
atomic. For example, a frequently occurring mutation is from A to A,B*. Note
that this comprises two atomic mutations: From A to A,B to A,B*. The first
atomic mutation is not considered erosion, whereas the second is. Therefore,
the combination of the two mutations is considered to be erosion.

A concrete example of erosion

In this example we will trace the mutations of a table of contents from an
information product on environmental pollution laws [HvL92]. Environmental
pollution is currently a very relevant topic so this product has a high frequency
of mutation. The initial table of contents is depicted in figure 3. Formally, the
table of contents is described by the following Information Structure Description:

e Production Rules: P = {ContentsTable — (Sectno,Title,Pageno)+}

o Start Symbol: § = ContentsTable

1. TUNIVERSAL LAWS 3
9.  AIR POLLUTION LAWS 30

Figure 3: The original Table of Contents

Soon the sections become divided into subsections (see figure 4). Some
sections have subsections and some do not. This constraint is expressed by
using optional repetition:

ContentsTable — ((Sectno,Tltle,Pageno), )+

(Subsectno,Title,Pageno)*

After some time the developer wishes to extend the product to include as-
pects of jurisprudence which leads to a completely new option in the current
structure description.

ContentsTable — (

I

(Decision,Date,Code,Definit ion)+

(Sectno,Title,Pageno), +
(Subsectno,Title,Pageno)*



1. TUNIVERSAL LAWS 3
1.1 Constitution
1.2 Civil rights 5

w

AIR POLLUTION LAWSs 30
3.  SoIL POLLUTION LAWS 50

™

Figure 4: The changed Table of Contents

As an aside, this last mutation has undesirable consequences for the consis-
tency of the table of contents. Previously searching involved page numbers,
now searching for a decision involves looking up dates and codes.

The erosion is not yet complete. Passing the time, some elements become
optional.

ContentsTable — ((Subsectno,Title,Pageno)*

(Decision?,Date,Code?,Definit ion)+

(Sectno,Title,Pageno), ) +

This example of erosion will be used throughout this paper. For notational
convenience structural element names are abbreviated as follows:

cr — ((s,T,P),(Ss?,T,P)*¥)+ | (De?,Da,C?,Df)+

4 The Choice Normal Form, an enumeration
of possibilities

In order to detect erosion it is necessary to analyze the structural expressions in
a given Information Structure Description. We have seen in the previous section
that erosion has to do with an increase in the number of inherent possibilities.
Note, then, that & ? and * entail implicit choices. For example, A? denotes
two possibilities: A or €. It is necessary in erosion detection to have all such
possibilities explicitly represented so that the developer can easily see which
possibilities are desirable or not.

The Choice Normal Form is an enumeration of explicit possibilities. For this
reason *, & and ? are not featured.

Definition 4.1
Let (P,S) be an information siructure in the context of the conceptual



description (E,R). Furthermore, let X € Lg. Then, X is in Choice
Normal Form (CNF) if and only if

X =M1 ... A

where A; =By, ... ,Bx, 1< j <i such that

e BiEF, or
[ ] Bl = Cm_’
where 1 <1< k,m >0 and C in CNF. o
Remark 4.1
The notation C™ is a convenient way to signify that there are at least
m elements in a sequence of C’s. Formally, C™™ = cmicmtl| ... where

¢t denotes a sequence comprising i C’s: C,...,C. Note that there are
e e’

i
infinite number of choices implied by C™—. The purpose of this notation
will become clear when we discuss the translation of mandatory repetition
to CNF. 0

In order to bring an arbitrary structural expression into CNF it is necessary
to filter out the *, & and ? operators without disturbing the semantics of the
expression at hand. This is the purpose of the Ezplicit Choice Function:

Definition 4.2
LetA, B€ Lg and N € E. Then,

ECF(N) = N

ECF(A+) = ECF@)'™

ECF(A*) = ECF(clA+)

ECF(A?) = ECF(clh)

ECF(AIB) = ECF(a)| ECF(8B)
ECF(A,B) = ECF(A),ECF(B)
ECF(AtB) = ECF(A,B)| ECF(B,A)

ECF((a)) = (ECF(A)

Remark 4.2
With regard to translation of mandatory repetition: A+ means that there is
a sequence of A’s, but we do not know how long the sequence is. We only
know that the sequence contains at least one A. In terms of the notation
introduced earlier we ezpress this as A1~ . Sometimes, however, it is known



that there must be at leasti A’s in the sequence. Such cases will be signified
by A

We do not deem it necessary to specify a mazimum for sequences because
in this case the number of choices is finite. These choices can be specified
by explicitly stating them. |

The Explicit Choice function removes all the hidden choices within an expres-
sion. It will be evident, however, that after applying the function the resultant
expression need not be in Choice Normal Form. For example,

ECF(A,(B | ©))=4,(B | C)

The Choice Normal Form equivalent of this expression is (4,B) | (4,C). There-
fore, in order to bring ECF expressions into CNF the following two distributivity
rules should be brought to bear. The symbol = denotes semantic equivalence.

A, (B | C)
(B1C)A

(A,B) | (A,C)
(B,4) | (C,8)

In summary, employment of the Explicit Choice Function and thereafter dis-
tributing the sequence operator , over the choice operator | is sufficient to
bring an arbitrary structural expression in Choice Normal Form.

Example 4.1

The Choice Normal Form of our running example is as follows:
(S.T,P) -
| ((S,T,P),(Ss,T,P)'™)
| ((5,T,P),(T,P)!7)

1—
(De,Da,C,Df)

| (pa,C,Df)
| (pa,Df)
| (De,Da,Df)

m]

Expressions which are in Choice Normal Form can be simplified via the usual
transformations from formal language theory. As a special notation (i —) has
been introduced additional transformations are necessary. We have found the
following transformations to be useful. Here it is assumed that A and B are

10



structural expressions and i,j > 0.

U Eind = M- = A~
ML M = AT AT = AT
€, A = A ,e = A~
(Ai=)i= = A

e = ¢

(A= A=) = aminGi)-=
(al—1B)i~ = (AlB)™

(ale)i— = A le

(The proofs of these transformations can be acquired by filtering out the —’s
with the formal language equivalent).

Example 4.2

(AZ—» | 6)3—> ,AS—v
((A2—->)3—o | 6) ’A5—-¢

(A1 ), 45~ =
(a8~ ,457)| (e,4%7) =
All—»' AS—» =
AS—

5 Analyzing CNF Expressions for Erosion

Once a structural expression has been transformed into Choice Normal Form
all possibilities are explicitly represented. Erosion detection, then, amounts to
identifying unwanted possibilities. The algebraic form of the CNF expression
can be translated to a graphical formalism for a more convenient perusal of
possibilities. Figure 5 shows the general scheme for translating an arbitrary
CNF expression into a graphical representation by means of the function A.
The i — 1 next to the loop in the translation of A(A*) means that the loop has
to be followed at least i — 1 times. In this way is a sequence of at least ¢ A(A)’s
is forced. Note that the translation of A(A'~) involves no constraints on the
loop. Figure 6 depicts the graphical representation of our running example.

The graphical representation (such as depicted in figure 6) can be compared
to a road map. A journey through the graph corresponds to a possible informa-
tion structure. The build up of such a structure occurs as follows: Starting from
the root node one can traverse the flows. Passing through a labeled node means
that the corresponding name denotes a participating structural element. Nodes
without names can be compared to a road junction. A loop back to a junction

11



A(N) N

A(A,B) A(l‘)
A(®)
A(Ar) ... 14§) ifAj=e€

A(A) A(dj-1)

A(Ay! ... 145)

A1) Asy)

AL A@ i-1

Figure 5: CNF expressions and their graphical representation

node allows a choice to be made between the same or alternative substructures.
A journey ends at any of the leaf nodes.

Erosion can be analyzed by examining junctions, loops and so called open
nodes which are denoted by (. Each of these express optionality. All branches
dangling from an open node depict substructures that are not mandatory com-
ponents of the information structure. The question should be asked whether
it is indeed the intention that all of these substructures may be optional. A
junction with many branchings may depict an advanced stage of erosion. Anal-
ysis should be performed to determine whether all of the possibilities suggested
by the branchings are indeed desirable. Furthermore, combinations of junc-
tions, loops and open nodes should gain special attention because it almost
certainly corresponds to a weak structural specification. For example, consider
figure 7. This corresponds to the formal language {41,..., Aj}*. This is the
weakest form of specification because it entails all possibilities over the alphabet
Ay, ..oy Aj .

Looking at our example (see figure 6) we see that there are no open nodes.
There is, however, a considerable amount of branching combined with loops.
We could therefore conclude that the table of contents is fairly eroded. It was
indeed concluded in [HvL92] that only a fairly small subset of the possibilities
suggested by figure 6 did constitute desired tables of contents.

12
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Ss T Df

*1‘ P
l@r

—o—o-

Da

De

Da

Figure 6: Graphical representation of the running example

A Aj

Figure 7: The weakest structural specification
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6 Conclusions

The theory presented has been tested with real life examples like the one running
through this paper. It was surprising in some cases how much hidden optionality
there was. For example, one seemingly harmless structural expression revealed
one hundred and twenty-eight explicit possibilities after being rendered in Choice
Normal Form. In such cases the graphical form of the expression proved un-
wieldy. Nevertheless, the formalism proved useful in communicating structural
specifications to product managers who have no background in formal language
theory.

The transformation of an arbitrary structural expression to the normal form
is a straightforward process as it involves purely syntactic transformations. The
choice for purely syntactic transformations was deliberate as semantic-based
transformations are sometimes complex, and furthermore, difficult to automate.

Even though the theory is hinges on the notion of an Information Struc-
ture Specification, it can applied in environments where these specifications are
unavailable. In such cases one need only reverse-engineer the structural specifi-
cation at different points in the structure’s lifetime. The resulting specifications
can then be analyzed for erosion. This technique was applied with success in
the tests mentioned above.

Even though the normal form makes all possibilities explicit, more practical
experience is necessary in formalizing the analysis of erosion. First steps in
this direction are described in [HvL92]. Structural expressions are classified
according to the types of operator used. On the basis of this a formalized
notion of the consistency of a structural specification can be defined.
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