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Abstract

In this paper we address the problem of optimum piecewise linear approxi-
mation of general quadratic functions in R® for d 2 2. In particular the prob-
lem is posed as follows: Given a quadratic function f : R* — R of the form
f() = 2" Az + b"x + ¢, where matrix A symmetric and positive definite and
z € R Let X = {x,,x,, -y Zn} a set of n points in R? and let F = {f1, fas ey fr}
the set of values of function f at each of the points of set X (i.e f(z;) = f; for
t=1,2,..,n).

For each triangulation T of the convex hull CH (X) of X and for each set
of corresponding values F there exists a unique piecewise linear function L
R* — R which approximates function f. We address the problem of finding
a triangulation T, of CH(X) such that TR best approximates f with respect
to the L, error in any finite dimension d. Since there are exponentially (in n)
number of possible triangulations of the point set X it would be impossible to
find the optimum using brute force approach. Recently Rippa [7] has provided a
solution for the same problem for two dimensions (d = 2) only. First we show that
the approach of [7] does not generalize in more than two-dimensions. Then we
present a completely different technique, than of [7], which enable us to generalize
the optimality result of [7] in any finite dimension d. As a consequence of our
proofs the optimum triangulation may have long and thin tetrahedra something
that people used to avoid. Additionally our proofs are simpler than those in [7].
According to our knowledge this the first result about higher dimensional optimum
data dependent triangulations.

*This research was supported by the Dutch Organization for Scientific Research (N.W.0) and by
the ESPRIT Basic Research Action No 7141 (project ALCOM 1I.)



1 Introduction

The problem of piecewise linear interpolation of functions from sampled data is well
known and of significant importance. The problem can be posed as follows:

Let f : R? — R be a function. Let X = {x1,22,...,2,} a set of n points in R? and
let F = {fi, fa,..., f»} the corresponding values of function f at each of the points of set
X (ie f(zi)=fifori=1,2, ...,n). We call F as the sampling vector.

The standard way to solve the problem is to a) triangulate the convex hull CH (X) of
the point set X b) for each point p; we define a linear function ¢; such that #i(p;) =1 and
¢i(q;) = 0 for every neighbor g; of p; in the underlying triangulation. Then a piecewise
linear interpolant of f is a function 7E = w1 i s

It is clear that given the point set X and the sampling vector F then for each
triangulation T of the convex hull CH (X) of X there exists a unique piecewise linear
function 77 which approximates f. It is also well known that there are exponential
number of possible triangulations of a point set in R%. A reasonable question is which
triangulation is optimal in some sense.

In two dimensions, Azevedo and Simpson [13], proved optimal triangulations with
respect to Lo, norm using coordinate transformation. Rippa [7], generalizes the result
of [13] for Ly norm with 1 < p < oo, however his results holds for two dimensions only.

It was believed that the number of “long” and “thin” triangles or tetrahedra should
be minimized. This comes from the theoretical analysis of the interpolation error.

Specifically, Bramble and Zlamal [11] and Ciarlet [12] show that the interpolation
error with respect to some norms depends on the smallest angle of the underlying tri-
angulation. Babuska and Aziz [10], proved that the small angle condition is too strong
and what matters is that no angle should be “very large”. Krizek [36], generalized the
result of [10] in three dimensions.

Since the Delaunay triangulation ( tetrahedrization) usually consists of “well shaped”
triangles (tetrahedra) it became the default triangulation for piecewise linear interpola-
tion problem.([23], [35] , [17], [9]).

However recent experimental results [13], [31] show that “bad shaped” triangles are
not always bad for linear interpolation. Specifically the experimental results in [13], [31]
show instances where the interpolation error we get if we have a triangulation with many
“long” and “thin” triangles is much smaller than the error we get if we use the Delaunay
triangulation.

As Rippa [7] reports, this inconsistency between the theoretically derived error es-
timates of [11] and the experimental results of [13], [31] has to do with the way the
error estimates were derived. According again to [7], these error estimates were derived
with the implicit assumption that all the second derivatives of the function f ( which
we want to approximate) have magnitude of the same order. If this is not true, then
we cannot apply the theoretical result and thus the Delaunay triangulation may not be
appropriate.

In an other work Nadler [37], shows that among triangles of given area, the trian-
gle which gives the optimum L, approximation of a quadratic function f by a linear
polynomial, is “long” in the direction of minimum second directional derivative of f
and “narrow” in the direction of maximum second directional derivative of f. However
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Nadler [37] does not address the problem of constructing optimal triangulations.
Therefore whenever the function f has some “directionality”, if for example

then for better approximation it is advisable to “stretch” the triangles (tetrahedra)
along the y direction.

These observations about the accuracy of piecewise linear interpolation depending
on the underlying triangulation, led to a newly developed area of data dependent trian-
gulations.

In other words, this paper appears as an attempt of finding optimum data dependent
triangulations.

“Stretching” the triangles or tetrahedra has not only been considered by approxima-
tion theory people. Independently has been considered by researchers working on Finite
Element Methods for Computational Fluid Dynamics (CFD). Specifically, in numerical
simulations of fluid flow around an airfoil using unstructured meshes, it is desirable to
“stretch” the triangles along the direction of fluid flow in the boundary layer region of
the airfoil. See for example [19], [28].

In this paper we address the problem of optimum piecewise linear interpolation of gen-
eral quadratic functions in R? for d > 2. In particular the problem is posed as follows:
Assume that we have sampled a quadratic function of the form f(z) = 27Az +b"z +¢
where matrix A is symmetric and positive definite and z € R? at each of the n z;i =
1,.n points of a set X C R% Let f; = f(z;)i=1,...,n and let F = {f1, fas s fn}
be the sampling vector. Given the sampling vector F, for each triangulation T of the
convex hull CH(X) of X there exists a unique piecewise linear function 7% which ap-
proximates function f. The question is to find the triangulation Ty of CH(X) such that
TR best approximates f with respect to the L, error. Since there are exponentially (in
n) number of possible triangulations of the point set P it would be impossible to find the
optimum using brute force approach. In this paper we address the problem of finding
the optimum triangulation with respect to L, error in polynomial time. Specifically we
prove that the optimum triangulation may have “long” and “thin” tetrahedra something
that people used to avoid. In such a way we generalize the recent result of Rippa [7] in
higher dimensions.(d > 3). So far all the results for optimal data dependent triangu-
lations are two-dimensional. According to our knowledge this is the first result about
higher dimensional optimal data dependent triangulations.

The problem of approximating functions polynomial or not by polynomial functions
of lower degree is of significant importance in many other areas. For example in Com-
puter Aided Geometric Design this problem arises because different systems use different
representations for curves and surfaces. Therefore we need to convert from one repre-
sentation to the other. For example Patrikalakis [27], presents an algorithm which ap-
proximates a NURBS curve by a lower degree polynomial curve. Bardis and Patrikalakis
[26] generalized the result in [27] for surfaces also. Other related results on approximat-
ing curves and surfaces by lower degree curves and its importance in Computer Aided
Geometric Design applications appears in [24], [25], [26].



The paper is organized as follows: In section 2 we present some background informa-
tion, in section 3 we show why Rippa’s technique [7] does not generalize in more than two
dimensions. In section 4 we present our main result which is a proof that the optimum
triangulation in any finite dimension d > 2 is obtained from a Delaunay triangulation
after applying a linear transformation and thus our triangulation may have “long” and
“thin” simplices.

2 Background

In this section we introduce the basic definitions and notation as well as well known
results which are necessary for our proofs.

2.1 Definitions and Notation

Let z be a point in R¢, then 2',x2,..., 2% represent the coordinates of z. Let X be a
set of points in R? (either finite or infinite), (X) represents the boundary of X and
CH(X) represents the convex hull of X.

Clearly 9(CH(X)) represents the boundary of the convex hull of X. For any point
p € O(CH(X)) there exists at least one hyperplane h : 29 = Y &1 ,xt such that either
p* < S iptorp? > TLp¢. In the first (second resp.) case we say that p lies in the
lower hull (upper hull resp.) of X .

If A represents a matrix then A" represents the transpose of A and det(A) the de-
terminant of A and I represents the identity matrix. A function f: R¢ — R is called
quadratic ff f(z) = 27 Ax + bz + c where matrix A symmetric and positive definite,
b € RPandc € R.IfA = Iand b= 0 and ¢ = 0 then function f is called the unit
quadratic function or unit paraboloid.

Let f : R — R be a function. Let X = {z1,22,...,2,} be a set of n points in
R% and let F = {f}, fo, ..., fa} the corresponding values of function f at each of the
points of set X (i.e f(z;) = fifor i =1,2,...,n). We call F as the sampling vector. Let
X = {21,23, ..., 2.} be a set of n points in R? and let = be another point in R%. If there
exist k; € [0,1] for i =1,..n such that ¥% ,k;, = land z = Y i1 Kix; then z is called
convex combination of the zy, z,, ..., z,,.

It is clear that given the point set X and the sampling vector F then for each
triangulation 7' of the convex hull CH(X) of X there exists a unique piecewise linear
function 7% : R? —s R which approximates f.

The L, error of such an approximation is defined as

1
@) =mE@lls, = ([, 15 a7l 22, )P et da..de®)” (1)

For notational simplicity from now on the integral on the right hand side of (1) will
be represented as

g, 1@ = 5@ d)”



where dz = dz' da?...dze.

In our proofs we are going to use the well known relationship between Delaunay
triangulation in dimension d and convex hulls in dimension d + 1. This fundamental
relationship allows us to compute Delaunay triangulations using convex hull algorithms.
(see for example [3],[29],30],[4]).

Let X be a set of n points in R?. Let K be k + 1 affinelly independent points of X.
The convex hull CH(K) defines a k-simplez in R®.

Consequently the convex hull of any d + 1 affinelly independent points in R® define a
d-simplez in R%. In R? for example, a 2-simplez is a triangle and in R3 a 3-stmplez is a
tetrahedron. A 0-simplex is always a vertex and an I-simplez is an edge. A triangulation
P is a set of k-simplices k = 1,..,d such that a) for any two simplices t;,t; their
intersection is either a k-simplez or the empty set and b) their union is the convex hull
CH(X) of X. For example in 2-D means that two triangles either intersect at a vertex
0-simplez or at an edge I-simplez or they have empty intersection.

2.2 Lifting Transformation

Apointz = (z',2%,...,2%) € R%is lifted to the point 2* = (z}, 22, ...,2%, T4, (z'))) €
R*1. (ie. point # € R?is vertically projected onto the unit paraboloid in R4+!))

Let ¢ be a d-simplex in R? with vertices p;, ps, .-y Pd+1 and let s, be the hypersphere
in R? which passes through py, ps, ..., pas1. Let ¢ be a point in B¢ and let DY D%y oy Dl
and ¢* the corresponding lifted points on the unit paraboloid in R+!.

Then ¢ lies in the interior, boundary, exterior of sy, iff ¢* lies below, on, above h
where h is the hyperplane in R%+! which passes through p},p3, ..., P, 1.

The lifting transformation gives a direct relationship between Delaunay triangulation
in R? and convex hull in RH1 [5], [2].

In other words a d-simplez s in R? is a Delaunay simplex iff the d + 1 vertices of s
lifted onto the unit paraboloid define a d — face of the lower hull of the lifted points.

For example in two dimensions we have the following:

Let A, B,C, D four points in R? and let C,pc the circle through points A, B, C.
Let A*, B*,C*, D* the lifted versions of A, B,C, D on the unit paraboloid. Then D lies
inside, on, or outside of Cypc iff D* lies below, on, or above respectively the plane
defined by points A*, B*,C*. (see fig. 1).

2.3 Flipping in Higher Dimensions

This subsection is not necessary for the proof of our result since as we will point out in
the next section flipping does not in general produce globally optimal triangulations in
more than two dimensions. Thus the reader may completely skip this section. However
as we prove in lemma 4.4 flipping in d dimensions produces locally optimal triangulations.

The concept of flipping or diagonal swapping goes back to the work of Lawson in
1977, [16], [17].

Assume that you are given a set P of n points in R? and you want to construct the
Delaunay triangulation of P. You can start with any triangulation T of P and apply
repeatedly the following transformation. Let BC be an edge of T and let AABC, ADBC
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Figure 1: The Lifting Transformation



be the two adjacent triangles of BC. Let Capc be the circle through points A4, B, C.
If the quadrilateral ABCD is not convex or point D does not lie in the interior of
Casc then do nothing. If D lies in the interior of Capc then delete edge BC from the
triangulation and insert edge AD.

The above transformation is called flipping. Lawson [16], [17] used this transforma-
tion to construct 2-D Delaunay triangulations.

However the concept of flipping goes beyond the concept of diagonal swapping. In
2-D has to do to the number of possible triangulations of the convex hull of four points.

Let A, B,C, D be four points in the plane. Then a) either A, B, C, D are all in convex
position or b) one of them, say D, lies in the convex hull of the other three. In case of a)
we get two possible triangulations namely AABC, ADBC or AABD, ADAC. In case
of b) there are again two possible triangulations namely AABC and the other consists
of three triangles ADAB, ADBC, ADAC. However the case where the four points are
not in convex position is not of interest since point D is ignored something unacceptable
for a triangulation algorithm. (see fig. 2).

Thus in two dimensions there are exactly two ways to triangulate the convex hull of
these 4 points.

Lawson [18], generalized the idea of flipping in any fixed dimension d. Other authors
like Joe [9], Rajan [6], Edelsbruner and Shah [1] used flipping in higher dimensions in
order to construct d- dimensional Delaunay triangulations.

According to [18], given d + 2 points in R?, there are exactly two ways that you can
triangulate the convex hull of these d + 2 points. These two triangulations correspond
to the lower and upper convex hull of the lifted d + 2 points on the unit paraboloid in
Rd+1_

For example in 2-D the four points A,B,C,D are lifted to the four points
A*, B*,C*, D* on the unit paraboloid z = z% + y®. Points A*, B* C*, D* correspond
to the vertices of a tetrahedron. Assume that A, B, C, D are in convex position. The
two possible triangulations of the convex quadrilateral ABCD are the projections of the
upper and lower faces of the tetrahedron A*, B*, C*, D*.

The transformation between these two triangulations is defined as flipping.

3 Why Rippa’s approach does not generalize to
more than two dimensions

Rippa’s approach [7] can be summarized as follows:

a) First proves that the 2-D Delaunay triangulation is the optimum triangulation for
the quadratic function z = 22 + 2.

b) Second uses coordinate transformation to prove optimal triangulations for convex
quadratic functions in two variables z, y.

The part that makes his technique not applicable to more than two dimensions is
the way he treats part a). Thus we are going to comment on part a) of his technique.
(i.e the optimality proof of the 2-D Delaunay triangulation).



a.

A A
D D
B B

C

c b.

A A
D
D
B B
c C
c.
A A

Figure 2: In a, and b the two possible cases of flipping in 2-d. In ¢ and d the two possible
cases of flipping in 3-d.



The proof of [7] about the optimality of 2-D Delaunay triangulation can be sketched
as follows:

a) First proves that diagonal flipping, according to the empty circle criterion, reduces
the L, error.

b) Secondly uses Lawson’s results [16], [17] about the following property of the 2-D
Delaunay triangulation: A triangulation 7 of a point set P C R? is Delaunay if
and only if flipping is not applicable.

¢) Then combines a) and b). In other words if the optimum triangulation with respect
to L, norm was not Delaunay then according to b) flipping is applicable. But then
according to a) flipping reduces L, norm thus a contradiction.

First the technique which uses to prove that flipping reduces the L, norm relies
on a property of the 2-D Delaunay triangulation and there is no corresponding 3-D
counterpart of this property. (see lemma 2.3 of [7]).

Second and most important, the proof of [7] relies on the following fact about two-
dimensional Delaunay triangulation: Starting with any triangulation of a set of points in
R? we can construct the Delaunay triangulation of the point set using diagonal flipping.

Unfortunately the above is not true for more than two dimensions. Although flipping
generalizes in higher dimensions (see [18], [8],[1], [6]) there is no guarantee that starting
with any triangulation in R% d > 3 and applying flipping as necessary we will eventually
construct a Delaunay triangulation.

B. Joe [9], shows cases where the flipping in 3-D stucks although the current tetra-
hedrization is not Delaunay. In other words if you start with any tetrahedrization of a
point set in R3 and you apply flipping you may stuck before you reach the Delaunay
stage. That in turn means that if flipping is not applicable we cannot imply that the
triangulation is Delaunay. (In order to construct a higher order Delaunay triangulation
using flipping this can be done only incrementally. We have to start with a Delaunay
triangulation of k points, then add the k + 1 th point and after the insertion apply
flipping. (see [8], [6], [1]). The conclusion is that using flipping the L, error may stuck
at local optima.

In the following section we provide a proof that the Delaunay triangulation is opti-
mum, for unit quadratic functions, for any finite dimension d > 2. The proof technique
is “global” in the sense that does not make use of any local transformations like flipping.
It is based on the well known relationship between Delaunay triangulations and Convex
Hulls, [5], [2]. Based on this optimality property of the higher dimensional Delaunay
triangulation we use coordinate transformation as in [7], [13] to prove optimality results
for general quadratic functions in any fixed dimension d. This result casts more light in
the new research area of data dependent triangulations.

4 Main Result

Theorem 4.1 Given the unit quadratic function f : R® — R, d > 2, a set of X =
{z1,2,...,2o} of n points in R, and a set F = {f1, fa,..., fn} of n values of f such
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that f(x;) = fi for i = 1,...,n, then the piecewise linear function which corresponds to
the Delaunay triangulation of set X minimizes the L, error.

Proof:

Let 7% (x) (727(z) resp.) be the piecewise linear function defined over the data values
F and a triangulation T (the Delaunay triangulation resp.) of the point set X.

By definition the L, error is

If(z) = 5@l = ([ |f(@) - 75@)f dz)”

CH(X)

where z = (z!,22,...,z%) and dz = dz!dz?.. dz?

Let
Ef = (I1f(z) — 7% @)|I,)"
Then we get
EL = 00 |f(z) — 75 (2) dz (1)
Ep’ = CH(X) |f(z) — 72T (@) dz (2)

From (1) and (2) we get

BT -pf= [ @@l e~ [ 1@ - @) da =

= (1f (@) = 72" (@) = 1f(2) = 75 (@)[) dz (3)

CH(X)

Let a = 727(x) — f(z) and b = 7%(z) — f(z)
Because of the convexity of f we have that a,b > 0.
According to the mean value theorem we have

@ -V = (@-0)p&”

for some £ € (a,b) then (3) becomes

DT _ pT _ _ p—1 — DT _ . T p—1 4
B -Bf= [ (a-bped= [ @R @) - mhe)pe e ()

But according to the lemma below 4.2
mp! (z) — mp(z) <0

and thus (4) is always non-positive. Q.E.D. ]
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Lemma 4.2 Let X = {z1,%2,...2,} be a set of n points in R?, let f RY — R be the
unit quadratic function F = {f1, f2,.., fa} be a set of values such that f(z;) = fi. Then
for any triangulation T of X we have np”(z) < nx(x) Vz € CH(X).

Proof:

Assume we lift the points in X onto f and let @ = {q1,,-.., ¢} be the set of the
lifted points.

Let z € CH(X) , with coordinates (z*, 22, ...,z%) and let ¢ be the d-simplex of T
such that z € t and let dt be the d-simplex of DT such that z € dt.

Let a = 72T(z) and b = 7L (z).

Consider the points g, = (2,22, ...,2% a) and g, = (2, 4%, ...,2%,b) in R,

Let eq (e; resp.) be the d — simplex of nPT (nF resp.) such that g, € eq and
® € €.

According to the lifting transformation, g, lies on the lower hull of set @ which means
that for every point ¢ = (21, T2, ..., T, ¢) € CH(Q) we have ¢ 2 a.

Since g, € e; implies that g, can be expressed as a convex combination of the
vertices of ;. But since the vertices of e are in @ then g, can be expressed as a convex
combination of the vertices in Q) which implies that g, € CH(Q) which implies b > a.

a

Theorem 4.3 Let f : R* — R be a quadratic function f(z) = 2" Az +b7z +c¢ such
that A is a d x d symmetric and positive definite matriz and b is a d * 1 vector and
¢ € R. Let X = {x1,%a,...,Zn} be a set of n points in R? and let F = {f1, fay-es fu}
the corresponding values of function f at each of the points of set X (i.e f(x;) = fi for
i=1,2,..,n). Then there exists a linear transformation L which maps each point z; €
X to a point y; € R? such that the Delaunay triangulation of Y1, Y2y -, Yn COTTESPONAS
to the optimal triangulation of X with respect to the L, error.

Proof: In our proof we will assume that b = O and ¢ = 0 since b"x + c represents the
linear term of the quadratic function which clearly can be approximated exactly in a
piecewise linear approximation.

Since matrix A is symmetric then there exists an orthogonal matrix S (i.e SS™=1)
such that

A=8DS

where D is the diagonal matrix of the eigenvalues of A. (i.e D = diag(A1 A e Ad))-
Since A is also positive definite implies that A; > 04 = 1,...,d thus D = ETE where

E = diag(v/21 V2 .-v/Aq) and thus
A=S"EES
Thus we get

flz) = 2" Az = 2" STE'ESz = y"y = g(y) (1)
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Let T be any triangulation of the point set X. Consider the linear transformation
y = E Sz which maps each point z; in X to a point y; such that y; = E Sxz;. Then a
triangulation T of X is mapped to a triangulation T* of Y and the convex hull CH(X)
of X is mapped to the convex hull CH (Y) of Y. Let also G be the sampling vector of
function g(y) at points ¢ i =1,..,n (e G = (9(v1), 9(y2), - 9(Yn))-

Let 75(z) (x& (y) resp.) defined as usual.

Then 75(z;) = f(z;) and 7% (3:) = g(y:) by definition. But f (z;) = g(y;) because of
(1). Thus 75(z;) = 7g () for i = 1,..n which implies 7L(z) = 75 (y) Vy € CH(Y)
such that x = S"E"y.

Then

Wf@) - 7E @I, = [ |f@) 5@ do =

CH(X)

= det(sTEN) [ 106) ~7E W) dy = det(S"E")(lo(s) =& Wllzy)’
Thus

1f(@) = 7% @)l = (det(STEN)?llg(@) = 7& @)llzp (2)

But according to theorem 4.1, the norm in the right-hand side of (2) is minimized if
the triangulation T* is the Delaunay triangulation of Y.

Thus in order to compute the optimal triangulation for the point-set X

a) apply the transformation y = Lz with L = E S on the point-set X, thus obtaining
a transformed point-set Y.

b) Compute the Delaunay triangulation of Y. The triangulation of Y induces a
corresponding triangulation for X which according to (2) is the optimal one.

O

The following lemma 4.4 is not necessary for the proof of our result since as we
pointed out we cannot use the flipping to prove global optimality results for more than
two dimensions. Thus the reader may skip it. Lemma 4.4 justs says that flipping in d
dimensions locally improves the L, error.

Lemma 4.4 Let T be a triangulation of n points in d-space. Let f be a d-1 simplex of
T. If f is flippable with respect the empty sphere criterion then the L, norm decreases.
Let s, and s; be two d — simplices which share a d — 1face. If flipping is applicable
between s, and s;

Proof: Let t; and t; be the two d-simplices adjacent to f. If vy, vy, ...vq are the d vertices
of f then a, vy, s, ...vq are the vertices of t; and b, vy, vy, ...va are the vertices of . Let
D be the set a, b, v1,v2,...V4-

For each triangulation of CH(D) there corresponds a piecewise linear. According to
Lawson [18], there are two possible triangulations of the convex hull CH(D) of above
d + 2 points of set D. According again to [18], these two possible triangulations are
the projections, onto R? space, of the upper and lower hull of the convex hull of the
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lifted d + 2 points onto the unit paraboloid. Let Ty and T3 be the above mentioned two
possible triangulations of CH (D) and let npTt and 7’2 be the corresponding piecewise
linear functions. Without loss of generality, let T3 (T, resp.) corresponds to the lower
(upper resp.) hull of CH (D*). Since f is flippable implies that b € sphere(t,) implies
that the lifted point b* lies below the hyperplane of the lifted vertices of ¢;. This
consequently means that simplices t; and t; belong to triangulation T5. Thus the flipping
transformation converts t; to Ty. But by definition of the upper and lower hulls we have
that
Vz € CH(D)np"(z) < mp™(z). Then using Theorem 4.1 we get that the L,
norm decreases.
a

Corollary 4.5 The optimum L, triangulation of n points in R% can be computed in
polynomial time.

Proof: Since it reduces to the computation of a Delaunay triangulation any algorithm
which computes higher dimensional Delaunay triangulations or higher dimensional con-
vex hulls can be used. (see [29],[30], {1], (3], 8], [4]). O

Corollary 4.6 The optimality result described in this paper holds for the L error.

Proof: Can be derived from lemma 4.2. |

5 (Conclusions and Future research

We presented a method for computing L, optimal piecewise linear approximation of
quadratic functions in Re. Tt would be interesting and of significant practical importance
to extend the above results to other classes of functions.
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