Heapsort with

nlog(n+1)+n —2log(n+ 1) — 2 Key
Comparisons Using |n/2| Additional Bits

S. Haldar
RUU-CS-93-14

April 1993

s Utrecht University

o

e < Department of Computer Science
& 5
%5 4 Padualaan 14, P.O. Box 80.089,

M
477] 'ﬁ\ 3508 TB Utrecht, The Netherlands,
Tel. : ... + 31 - 30 - 531454

Heapsort with

nlog(n +1)+n —2log(n + 1) — 2 Key
Comparisons Using |n/2| Additional Bits

S. Haldar

Technical Report RUU-CS-93-14
April 1993

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 0924-3275

Heapsort with nlog(n + 1) + n — 2log(n + 1) — 2 Key
Comparisons Using |n/2| Additional Bits*

S. Haldar

Department of Computer Science
University of Utrecht, PO Box 80.089
3508 TB Utrecht, The Netherlands

Abstract

Heapsort is one of the most studied sorting algorithms. In the classical heapsort
of Floyd [3], 2nlogn key comparisons are needed in the worst case to sort n elements.
A variant of heapsort, called bottom-up-heapsort [9], uses 1.5nlogn key comparisons in
the worst case. McDiarmid and Reed [8] propose an interesting variant of bottom-up-
heapsort using 2|(n — 1)/2] additional bits. Later, Wegener [10] shows that with this
variation n elements can be sorted within nlogn + 1.1n key comparisons in the worst
case. Furthermore, it uses O(n logn) 2-bit variable comparisons. In this paper we propose
another variant of bottom-up-heapsort using |n/2] additional bits. This variant uses
nlog(n + 1) + n — 2log(n + 1) — 2 key comparisons in the worst case to sort n = 2F — 1
elements. No additional bit comparisons are needed.

Index Terms: Bottom-up-heapsort; heapsort; key comparison; sorting; worst case analysis.

1 Introduction

Sorting is a fundamental problem in computer science. A sorting algorithm describes how
an input sequence {a,,as,...,a,} of n elements can be transformed into an output sequence
{b1,bs,...,b,} such that each b is a distinct element in the input sequence and for 1 < i < n,

b; < biy1. The elements will also be referred to as keys in this paper.

There are many sorting algorithms available in the literature. We are interested in those

(sequential) algorithms in which key comparison is the only means to order any two elements.

*This research is partially supported by NWO through NFI Project ALADDIN under Contract Number
NF 62-376, and partially by ESPRIT through Project ALCOM II under Basic Research Action Number 7141.

The lower bound of key comparisons in the worst case, as well as in the average case, is
logn! = nlogn — 1.44n + ©(logn). With respect to this lower bound result, merge sort and
insertion sort are quite efficient. But, the merge sort uses n extra space to store keys, and

the insertion sort does ©(n?) key transports (see [7]).

Among the key comparison based sorting algorithms, quicksort [6] has been widely used
as a general purpose sorting algorithm. Quicksort uses (n? — n)/2 comparisons in the worst
case, and 1.386294n logn — 2.845569n + 1.3863 logn +1.154 in the average case [4]. There are
many variants of the original quicksort available in the literature. The best of them, called
clever quicksort, uses 1.188252n logn — 2.255385n + 1.18825 logn + 2.507 comparisons in the

average case.

Another widely studied sorting algorithm heapsort is originally proposed by William
[11]. (Heapsort is of particular interest in this paper.) A heap of size n is an array a[l..n]
containing n elements satisfying the following conditions: (1) each component of the array
stores exactly one element; (2) the array represents a binary tree, completely filled on all
levels except possibly at the lowest, which is filled from the left up to a point; (3) the root
of the tree is a[l]; (4) for a node ¢ in the binary tree, a[i] is its key, parent(i) = |i/2] is
its parent, and 2i and 2i + 1 are its children, if they exist; (5) the heap property is, for all
2 < i < n, a[parent(i)] > ali]. Thus, the largest element in a heap is always at the root of
the heap.

There are two phases in any heapsort algorithm. First, the input array is transformed
into a heap. Secondly, the element at the root is exchanged with the last element of the heap,
and the heap is rearranged to build a new heap with one fewer element. This is the most

important phase, and repeated (n — 2 times) until the input array is entirely sorted.

The algorithm of William [11] uses nlogn + O(n) comparisons in the worst case (and
about 1.7645n for sufficiently large n in the average case [1]) to build a heap on n elements,
and more than 2nlogn comparisons in the worst case to sort the elements. Later in the
same year 1964, Floyd [3] improves William’s algorithm. (The Floyd algorithm is shown in
Figure 1.) His algorithm uses 2n comparisons in the worst case (1.88n in the average case
[7]) to build a heap. The sorting phase requires at most 2n logn comparisons. (To sort
n = 2% — 1 elements, it uses a total of 2nlog(n + 1) — 2n + 2log(n + 1) + O(1) comparisons.)
The average case is hardly better than the worst case. Because of such high comparisons, the
use of heapsort has been of less practical interest in comparison to quicksort, and restricted

to implementing mainly priority queues.

In this paper we will study some variants of heapsort, which have been developed in recent

years. These variants are as good as, in fact better than, quicksort. Lately, the heap creation

2

time is improved by Gonnet and Munro [5] and McDiarmid and Reed [8]. The algorithm of
Gonnet and Munro uses 1.625n comparisons in the worst case (1.5803n in the average case)
to build a heap, and the one of McDiarmid and Reed uses 2n comparisons in the worst case

(1.5203n in the average case). The latter algorithm uses 2|{(n — 1)/2] additional bits.

It is clear that a heap can be built by O(n) comparisons. So the critical part of any
heapsort is the sorting phase. A variant of classical heapsort is presented by Carlson [2] to
reduce the number of key comparisons in the sorting phase. In the heap creation phase,
the algorithm of Carlson uses 1.82n — O(logn) comparisons in the worst case. It uses (n +
1)(log(n + 1) + loglog(n + 1)) comparison in the sorting phase, thereby requiring a total
of (n + 1)(log(n + 1) + loglog(n + 1) + 1.82) + O(logn) comparisons to sort n elements.
It has been pointed out in [9] that this algorithm is better than the clever quicksort on
average if n > 10!, and hence, is less practical. Another variant of classical heapsort, called
bottom-up-heapsort (BUH, in short), is proposed by Wegener [9]. This algorithm uses on the
average 1.649302n + ©(logn) comparison to create a heap, and to sort n elements it uses
1.5nlogn — 0.4n comparisons in the worst case and nlogn + nf(n), f(n) € [0.355,0.39],
in the average case. It is better than the quicksort if n > 400, and the clever quicksort
if n > 1600. In [8], McDiarmid and Reed propose a variant of BUH, and conjecture that
n elements can be sorted using nlogn + O(n) comparisons for this variant. (We call this
variant MDR-heapsort.) Later, Wegener [10] proposes an algorithm for this variant that uses
(n+1)logn+1.086072n comparison in the worst case. (If n = 2% —1, it uses (n+1)logn+n
comparison in the worst case.) This algorithm uses 2|(n — 1)/2] additional bits, two bits
per internal node, and does O(nlogn) 2-bit variable comparisons. For n > 1000, the worst
case number of comparisons is smaller than the average case number of comparisons in the

quicksort.

In this paper we present a better algorithm for the heapsort variant suggested by Mc-
Diarmid and Reed. Our algorithm uses |(n — 1)/2] additional bits. It uses at the most 2n
comparisons in the heap creation phase. It uses a total of nlog(n+1)+n —2log(n+1) — 2
key comparisons in the worst case to sort n = 2* — 1 elements, and does not do any additional

2-bit variable comparisons. This algorithm is better than the clever quicksort.

The rest of the paper is organized as follows. The bottom-up-heapsort and its variant
suggest by McDiarmid and Reed are presented in Section 2. The proposed algorithm is
presented in Section 3, and its worst case analysis in Section 4. Section 5 concludes the

paper.

2 Bottom-up-heapsort and its variant

Bottom-up-heapsort (BUH, in short) [9] works like a heapsort, but it rearranges the remaining
heap in a different way. The algorithm is shown in Figure 2. Every time bottom-up-rearrange
procedure is called, it always looks for the leaf that it can reach by starting at the root and
going always to the child containing greater element. Let us call this leaf the special leaf
and the corresponding path the special path. Then, it starts climbing up the special path
starting from the special leaf. The climbing process continues until it finds an element in
the special path, which is greater than root element. Let the position found be j. Then all
elements root = ali],...,a[j] in the special path are cyclically left shifted. As the bottom-up-
rearrange constructs the same heap as the rearrange (Cf. Figure 1), the correctness of BUH
follows from the correctness of the classical heapsort. It has been shown in [9] that BUH uses

1.5nlogn + O(n) key comparisons in the worst case to sort n elements.

To reduce the number of comparisons, a new variant of BUH is proposed by McDiarmid
and Reed [8]. They have only presented the algorithm for the heap creation phase. The
complete algorithm is found in [10] (Cf. Figure 3). This algorithm uses 2|(n—1)/2| additional
bits, 2 bits per internal node for storing three values: u (unknown), ! (left) and r (right). For
each internal node j, a 2-bit variable info[j] is used for this purpose. Initially all info is u. If
info[j] = u, nothing is known about the greater child. If info[j] = (or r) then the left child
contains greater key than the right one (or vice versa). During the leaf search, for node j, if
info[j] # u, then it takes the appropriate branch (greater child) indicated by the info[j] value,
that is, there is no need of a key comparison (for its children). If info[j] = u, then, obviously,
it does need to do a key comparison (as done in BUH) for its children. In the interchange
procedure, during the cyclic shift, the corresponding info variables are set to u. It has been
shown that the algorithm uses (n + 1)logn + 1.086072n key comparisons in the worst case.

In addition to the key comparisons, it also does O(nlogn) 2-bit info comparisons.

3 The proposed algorithm

In this section we present an efficient technique of implementing the algorithm presented in
the above section. Our algorithm uses fewer additional bits for internal nodes, one bit per
node, that is, a total of |n/2] additional bits. Here, the info variables are 1-bit variables, and
store 0 or 1. In the leaf search phase, it does not do any comparisons, neither key nor info.
The info values are cleverly used in selecting greater child, either left or right child. For a node
J, info[j] = 0 if a[25] > a[2j +1], and 1 otherwise. We define a function left(j) = 25 + info[j].
That is, left(j) always indicates the greater child of j, if it exists. The function left(j) can

4

be efficiently implemented by a real computer as follows: 2j is computed by left shifting j by
one bit; and then set the least significant bit of 25 to info[j]. Thus, the algorithm does not
need to do any key or info comparisons during the leaf search. During the cyclic shift, when
the elements are moved up the tree, they are compared with their respective right sibling,
and the comparison results are stored in the info variables of their respective parents. Thus,
the algorithm is able to get rid of the undesirable undefined values for info variables as used

in MDR-heapsort. The complete algorithm is presented in Figure 4.

The correctness of the proposed algorithm is obvious, since rearrange, bottom-up-rearrange,
mdr-rearrange and rebuild all construct the same heap. In addition, the proposed algorithm
is quite efficient and easy to implement. The worst case analysis is presented in the next

section.

4 Worst case analysis

For the sake of simplicity we would assume that there are n = 2¥ — 1 elements in the input
array. Let us define level of the root of a heap to be 1. The level of the children of each
node ¢ is level(i) + 1. The height h of a heap is the maximum of all levels of the nodes in
the heap. The height(i) of a node ¢ in the heap is h — level(z) + 1. That is, all the leaf nodes
are at height 1. As n = 2* — 1, the initial height of the heap is k.

Heap building phase

Let H(k) be the maximum number of key comparisons required to create a complete
heap of height k. It is clear from the proposed algorithm that a heap of height k is build
from two heaps of height £ — 1 and one element. In each invocation of build-heap, one key
comparison is done in that procedure. No key comparisons are done in leaf-search procedure.
The number of key comparisons done in bottom-up-search and interchange procedures is at
least k — 1 and at most k. Thus, the algorithm uses k + 1 comparison in the worst case to

build a heap of height k£ from two heaps of height £k — 1. Then, we have the following.

2H(k -1
H(k) = H{ Y+ (k+1), fork>1
0 for k =1.

That is,

H(k) = LiZ(k+1—14)2
=(k+1)T0 2 - LI i
=(k+1)(21 -1) = 2((k - 2)2¥ ! — (k —1)2%2 4 1)
=2kl _ k3,

Selection phase

Let T'(k) be the maximum number of key comparisons required in the sorting phase for
a complete heap of height k. There are 2*~! elements at height 1, 22 elements at height
2, and so on. For an element, if the leaf-search stops at level I, then to insert the element
at appropriate position we need exactly ! comparisons (see rebuild procedure). When an
element of level [is selected, the corresponding leaf-search terminates at level / or [— 1. For
the worst case, we assume that it terminates at level . Note that for the last element of
level | the leaf-search always terminates at level ! — 1. If the leaf-search for the penultimate
element of level | terminates at level {, we need not do any key comparison with the last
element of level I. Hence, for the last two elements of each level [, the algorithms does at the
most [— 1 comparisons. Finally, it does not require to do any key comparisons for level 1

and 2. Then, we have the following.

T(k)= {k(2* 1 =2)+ 2k = 1)} + {(k - 1)(2* 2 - 2) + 2(k — 2)} + - + {3(2* 1 = 2) + 2(3 — 1)}
= Tia (2 = 2) + 2(i — 1))
=3r (1271 — 21 + 2i — 2))
=Yg i27 - Th,2
=3r 21 —221—1-%F 2
=k2’°+1—(k+1)2’°+1—5—2(k—2)
= k2k — 2% — 2k.

Hence, the total number of key comparisons required in the worst case to sort n = 2¥ — 1

elements is

H(k) + T(k)= 251 — k — 3+ k2% — 2% — 2k
=k2k4+2* -3k -3
=(n+1)log(n+1)+n—3log(n+1) —2
=nlog(n+1)+n—2log(n+1) - 2.

5 Conclusion

An efficient algorithm for a variant of heapsort has been presented. The algorithm uses only
|n/2) additional bits, and it could be considered as almost internal sorting algorithm. This
algorithm is better than quicksort. It is to be noted that in a heap the first two elements,

the root and its left child, are greatest elements in the heap. So, they can be output in one

6

pass. Then, instead of taking one leaf element at a time in the selection phase, we could
take two leaf elements (of known order) to rebuilt a new heap with two fewer elements. This
might further reduce the number of key comparisons. Finally, we would conjecture that n
elements could be sorted using some variant of (almost internal) heapsort within nlogn key

comparisons.

References

[1] B. Bollobas and I. Simon, ‘Repeated random insertion into a priority queue’, J. of Al-
gorithms, Vol.6(4), 1985, 466-477.

[2] S. Carlson, ‘A variant of heapsort with almost optimal number of comparisons’, Infor-
mation Processing Letters, Vol.24(4), 1987, 247-250.

[3] R. Floyd, ‘Algorithm 245: Treesort’, Communications of the ACM, Vol.7(12), 1964, 701.

[4] G. Gonnet, ‘Handbook of algorithms and data structures’, Addison-Wesley, Reading,
MA, 1984.

[5] G. Gonnet and J. Munro, ‘Heap on heaps’, SIAM J. of Computing, Vol.15(4), 1986,
964-971. (Also in Proc. of 9th ICALP, 1982, 282-291.)

[6] C. Hoare, ‘Quicksort’, Computer Journal, Vol.5, 1962, 10-15.

[7] D. Knuth, ‘The art of computer programming, Vol.II, sorting and searching’, Addison-
Wesley, Reading, MA, 1973.

[8] C. McDiarmid and B. Reed, ‘Building heaps fast’, J. of Algorithms, Vol.10(3), 1989,
352-365.

9] L Wegener, ‘Bottom-up-heap sort, a new variant of heap sort beating on average quick
sort (if n is not very small)’, Proc. of Mathematical Foundation of Computer Science,
1990, LNCS 452, 516-522.

[10] I. Wegener, ‘The worst case complexity of McDiarmid and Reed’s variant of bottom-
up-heap sort in less than nlogn + 1.1n’, Proc. of the Symp. on Theoretical Aspects of
Computer Science, 1991, LNCS 480, 137-147.

[11] J. Williams, ‘Algorithm 232: Heapsort’, Communications of the ACM, Vol.7, 1964, 347—
348.

Procedure rearrange(i, m);
if i > |m/2] then return;
if i = |m/2| then min := min{a[], a[2i]};
if i < |[m/2] then min := min{a[i], a[2i], a[27 + 1]};
if min = ali] then return {already in heap form}
elseif min = a[2i] then
exchange a[i] and a[2i];
rearrange(2¢,m)
else
exchange a[i] and a[2i + 1];
rearrange(2i + 1, m)
end-of-rearrange;

Procedure heapsort(a[l..n]);
for i := |n/2,...,1 do rearrange(i,n); {heap creation phase}
for m :=n,...,2 do {sorting phase}
exchange a[l] and a[m];
if m # 2 then rearrange(1, m — 1);
end-of-heapsort;

Figure 1: The classical Floyd heapsort.

Procedure leaf-search(m, i, j); {search for the special leaf}
J=1
while 25 < m do
if a[25] > a[2j + 1] then j := 2j else j = 25 + 1; {take greater child}
if 2§ = m then j :=m;
end-of-leaf-search; {j is a special leaf}

Procedure bottom-up-search(z, j);
while ¢ < j and alt] > a[j] do j := |j/2];
end-of-bottom-up-search;

Procedure interchange(s, j); {can be efficiently implemented as done in [9]}
if i = 7 then return;
temp := a[j]; a[j] := ali];
while 7 > 7 do
exchange temp and a[|j/2]]
j = Li/2);

end-of-interchange;

Procedure bottom-up-rearrange(i, m);
leaf-search(m, 1, 7);
bottom-up-search(i, j);
interchange(s, 7);

end-of-rearrange;

Procedure bottom-up-heapsort(a[l..n]);
for i := [n/2],...,1 do bottom-up-rearrange(i, n); {heap creation phase}
for m :=n,...,2 do {sorting phase}
exchange a[1] and a[m];
if m # 2 then bottom-up-rearrange(1, m — 1);
end-of-heapsort;

Figure 2: Bottom-up-heapsort.

var
info : array [1..2|(n — 1)/2]] of (I,r,u);

Function parent(z) := |i/2];

Procedure leaf-search(m, t, j);
Ji=1
while 2 < m do
if info[j] =l then j := 2j
elseif info[j] = r then j :=2j+1
elseif a[25] > a[2j + 1] then info[j] :=1; j := 25
else infolj] :=r; j:=2j+1
if 25 = m then j := m;
end-of-leaf-search; {j is a special leaf}

Procedure bottom-up-search(z, j);
while i < j and a[i] > a[j] do j := |j/2];
end-of-bottom-up—search;

Procedure interchange(i, j); {can be efficiently implemented as done in [9]}
if ¢ = j then return;
temp := alj); a[j] := ali];
while 7 > i do
infolparent(j)] := u
exchange temp and a[parent(j));
J = parent(j);
end-of-interchange;

Procedure mdr-rearrange(:,m); -
leaf-search(m,,j);
bottom-up-search(s, j);
interchange(i, 7);

end-of-rearrange;

Procedure mdr-heapsort(a[l..n));
for i := |(n —1)/2],...,1 do infoli] := u;
for i := |n/2],...,1 do mdr-rearrange(i, n); {heap creation phase}
for m:=n,...,2 do {sorting phase}
exchange a[1] and a[m];
if m # 2 then mdr-rearrange(1,m — 1);
end-of-heapsort;

Figure 3: MDR-heapsort.

10

var
info : array [1..|n/2}] of 0..1;

Function left(z) := 2i + infoli];
Function parent(:) := |/2];

Procedure leaf-search(m, i, j);

J=1

while 25 < m do j := left(j);
end-of-leaf-search; {j is a special leaf}

Procedure bottom-up-search(z, j);
while i < j and a[i] > a[j] do j := parent(j);
end-of-bottom-up-search;

Procedure interchange(s, j); {can be efficiently implemented as done in [9]}
if i = j then return;
temp := alj]; alj] := ali;
while j > ¢ do
info[parent(j)] := if a[2 * parent(j)] > a[2 * parent(j) + 1] then 0 else 1;
{if 2 x parent(j) + 1 > m then info[parent(j)] := 0};
exchange temp and a[parent(j));
Jj = parent(j);
end-of-interchange;

Procedure rebuild(z, m);
leaf-search(m, 1, j);
bottom-up-search(z, 5);
interchange(s, 7);

end-of-rebuild;

Procedure build-heap(z, m);
if 2¢ = m then info[i] := 0;
if 2¢ < m then info[i] := if a[27] > a[2i + 1] then O else 1;
leaf-search(m, 1, j);
bottom-up-search(z, 7);
interchange(t,);
end-of-build-heap;

Procedure proposed-heapsort(a[l..n]);
for i := |n/2],...,1 do build-heap(i,n); {heap creation phase}
for m:=mn,...,2 do {sorting phase}
exchange a[1] and a[m];
info[|m/2]] := 0;
if m # 2 then rebuild(1,m — 1);
end-of-heapsort;
11

Figure 4: Proposed algorithm.

Heapsort with
nlog(n +1)+n —2log(n+1) — 2 Key
Comparisons Using |n/2| Additional Bits

S. Haldar

RUU-CS-93-14

April 1993
s Utrecht University
o}
& < Department of Computer Science
& =
%5 Y Padualaan 14, P.O. Box 80.089,

4771 ,a\§° 3508 TB Utrecht, The Netherlands,
Tel. : ... + 31 -30- 531454

Heapsort with

nlog(n +1)+n —2log(n +1) — 2 Key
Comparisons Using |n/2]| Additional Bits

S. Haldar

Technical Report RUU-CS-93-14
April 1993

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 09243275

Heapsort with nlog(n + 1) + n — 2log(n + 1) — 2 Key
Comparisons Using |n/2| Additional Bits*

S. Haldar

Department of Computer Science
University of Utrecht, PO Box 80.089
3508 TB Utrecht, The Netherlands

Abstract

Heapsort is one of the most studied sorting algorithms. In the classical heapsort
of Floyd [3], 2nlogn key comparisons are needed in the worst case to sort n elements.
A variant of heapsort, called bottom-up-heapsort [9], uses 1.5nlogn key comparisons in
the worst case. McDiarmid and Reed [8] propose an interesting variant of bottom-up-
heapsort using 2|(n — 1)/2| additional bits. Later, Wegener [10] shows that with this
variation n elements can be sorted within nlogn + 1.1n key comparisons in the worst
case. Furthermore, it uses O(n logn) 2-bit variable comparisons. In this paper we propose
another variant of bottom-up-heapsort using |n/2} additional bits. This variant uses
nlog(n + 1) + n — 2log(n + 1) — 2 key comparisons in the worst case to sort n = 2 — 1
elements. No additional bit comparisons are needed.

Index Terms: Bottom-up-heapsort; heapsort; key comparison; sorting; worst case analysis.

1 Introduction

Sorting is a fundamental problem in computer science. A sorting algorithm describes how
an input sequence {a;,az,...,a,} of n elements can be transformed into an output sequence
{b1,bg,...,b,} such that each b is a distinct element in the input sequence and for 1 < i < n,

b; < b;y1. The elements will also be referred to as keys in this paper.

There are many sorting algorithms available in the literature. We are interested in those

(sequential) algorithms in which key comparison is the only means to order any two elements.

*This research is partially supported by NWO through NFI Project ALADDIN under Contract Number
NF 62-376, and partially by ESPRIT through Project ALCOM II under Basic Research Action Number 7141.

The lower bound of key comparisons in the worst case, as well as in the average case, is
logn! = nlogn — 1.44n + ©(logn). With respect to this lower bound result, merge sort and
insertion sort are quite efficient. But, the merge sort uses n extra space to store keys, and

the insertion sort does ©(n?) key transports (see [7]).

Among the key comparison based sorting algorithms, quicksort [6] has been widely used
as a general purpose sorting algorithm. Quicksort uses (n? — n)/2 comparisons in the worst
case, and 1.386294n logn — 2.845569n + 1.3863logn + 1.154 in the average case [4]. There are
many variants of the original quicksort available in the literature. The best of them, called
clever quicksort, uses 1.188252n logn — 2.255385n + 1.18825 logn + 2.507 comparisons in the

average case.

Another widely studied sorting algorithm heapsort is originally proposed by William
[11}. (Heapsort is of particular interest in this paper.) A heap of size n is an array a[l..n]
containing n elements satisfying the following conditions: (1) each component of the array
stores exactly one element; (2) the array represents a binary tree, completely filled on all
levels except possibly at the lowest, which is filled from the left up to a point; (3) the root
of the tree is a[l]; (4) for a node ¢ in the binary tree, ali] is its key, parent(i) = |i/2] is
its parent, and 2¢ and 2¢ + 1 are its children, if they exist; (5) the heap property is, for all
2 <t < n, alparent(i)] > a[i]. Thus, the largest element in a heap is always at the root of
the heap.

There are two phases in any heapsort algorithm. First, the input array is transformed
into a heap. Secondly, the element at the root is exchanged with the last element of the heap,
and the heap is rearranged to build a new heap with one fewer element. This is the most

important phase, and repeated (n — 2 times) until the input array is entirely sorted.

The algorithm of William [11] uses nlogn + O(n) comparisons in the worst case (and
about 1.7645n for sufficiently large n in the average case [1]) to build a heap on n elements,
and more than 2nlogn comparisons in the worst case to sort the elements. Later in the
same year 1964, Floyd [3] improves William’s algorithm. (The Floyd algorithm is shown in
Figure 1.) His algorithm uses 2n comparisons in the worst case (1.88n in the average case
(7]) to build a heap. The sorting phase requires at most 2nlogn comparisons. (To sort
n = 2% — 1 elements, it uses a total of 2nlog(n + 1) — 2n + 2log(n + 1) + O(1) comparisons.)
The average case is hardly better than the worst case. Because of such high comparisons, the
use of heapsort has been of less practical interest in comparison to quicksort, and restricted

to implementing mainly priority queues.

In this paper we will study some variants of heapsort, which have been developed in recent

years. These variants are as good as, in fact better than, quicksort. Lately, the heap creation

time is improved by Gonnet and Munro [5] and McDiarmid and Reed [8]. The algorithm of
Gonnet and Munro uses 1.625n comparisons in the worst case (1.5803n in the average case)
to build a heap, and the one of McDiarmid and Reed uses 2n comparisons in the worst case
(1.5203n in the average case). The latter algorithm uses 2|(n — 1)/2] additional bits.

It is clear that a heap can be built by O(n) comparisons. So the critical part of any
heapsort is the sorting phase. A variant of classical heapsort is presented by Carlson [2] to
reduce the number of key comparisons in the sorting phase. In the heap creation phase,
the algorithm of Carlson uses 1.82n — O(logn) comparisons in the worst case. It uses (n +
1)(log(n + 1) + loglog(n + 1)) comparison in the sorting phase, thereby requiring a total
of (n + 1)(log(n + 1) + loglog(n + 1) + 1.82) + O(logn) comparisons to sort n elements.
It has been pointed out in [9] that this algorithm is better than the clever quicksort on
average if n > 10, and hence, is less practical. Another variant of classical heapsort, called
bottom-up-heapsort (BUH, in short), is proposed by Wegener [9]. This algorithm uses on the
average 1.649302n + ©(logn) comparison to create a heap, and to sort n elements it uses
1.5nlogn — 0.4n comparisons in the worst case and nlogn + nf(n), f(n) € [0.355,0.39],
in the average case. It is better than the quicksort if n > 400, and the clever quicksort
if n > 1600. In [8], McDiarmid and Reed propose a variant of BUH, and conjecture that
n elements can be sorted using nlogn + O(n) comparisons for this variant. (We call this
variant MDR-heapsort.) Later, Wegener [10] proposes an algorithm for this variant that uses
(n+1)logn+1.086072n comparison in the worst case. (If n = 2¥—1, it uses (n+1)logn+n
comparison in the worst case.) This algorithm uses 2|(n — 1)/2] additional bits, two bits
per internal node, and does O(nlogn) 2-bit variable comparisons. For n > 1000, the worst
case number of comparisons is smaller than the average case number of comparisons in the

quicksort.

In this paper we present a better algorithm for the heapsort variant suggested by Mc-
Diarmid and Reed. Our algorithm uses |(n — 1)/2| additional bits. It uses at the most 2n
comparisons in the heap creation phase. It uses a total of nlog(n + 1) +n — 2log(n + 1) — 2
key comparisons in the worst case to sort n = 2¥ —1 elements, and does not do any additional

2-bit variable comparisons. This algorithm is better than the clever quicksort.

The rest of the paper is organized as follows. The bottom-up-heapsort and its variant
suggest by McDiarmid and Reed are presented in Section 2. The proposed algorithm is
presented in Section 3, and its worst case analysis in Section 4. Section 5 concludes the

paper.

2 Bottom-up-heapsort and its variant

Bottom-up-heapsort (BUH, in short) [9] works like a heapsort, but it rearranges the remaining
heap in a different way. The algorithm is shown in Figure 2. Every time bottom-up-rearrange
procedure is called, it always looks for the leaf that it can reach by starting at the root and
going always to the child containing greater element. Let us call this leaf the special leaf
and the corresponding path the special path. Then, it starts climbing up the special path
starting from the special leaf. The climbing process continues until it finds an element in
the special path, which is greater than root element. Let the position found be j. Then all
elements root = ali],...,a[j] in the special path are cyclically left shifted. As the bottom-up-
rearrange constructs the same heap as the rearrange (Cf. Figure 1), the correctness of BUH
follows from the correctness of the classical heapsort. It has been shown in [9] that BUH uses

1.5nlogn + O(n) key comparisons in the worst case to sort n elements.

To reduce the number of comparisons, a new variant of BUH is proposed by McDiarmid
and Reed [8]. They have only presented the algorithm for the heap creation phase. The
complete algorithm is found in [10] (Cf. Figure 3). This algorithm uses 2|(n—1)/2] additional
bits, 2 bits per internal node for storing three values: u (unknown), [(left) and r (right). For
each internal node j, a 2-bit variable info[j] is used for this purpose. Initially all info is u. If
info[j] = u, nothing is known about the greater child. If info[j] = (or r) then the left child
contains greater key than the right one (or vice versa). During the leaf search, for node j, if
info[j] # u, then it takes the appropriate branch (greater child) indicated by the info[;] value,
that is, there is no need of a key comparison (for its children). If info[j] = u, then, obviously,
it does need to do a key comparison (as done in BUH) for its children. In the interchange
procedure, during the cyclic shift, the corresponding info variables are set to u. It has been
shown that the algorithm uses (n + 1)logn + 1.086072n key comparisons in the worst case.

In addition to the key comparisons, it also does O(nlogn) 2-bit info comparisons.

3 The proposed algorithm

In this section we present an efficient technique of implementing the algorithm presented in
the above section. Our algorithm uses fewer additional bits for internal nodes, one bit per
node, that is, a total of |n/2| additional bits. Here, the info variables are 1-bit variables, and
store 0 or 1. In the leaf search phase, it does not do any comparisons, neither key nor info.
The info values are cleverly used in selecting greater child, either left or right child. For a node
J, infolj] = 0 if a[25] > a[2j + 1], and 1 otherwise. We define a function left(j) = 2j + info[j].
That is, left(j) always indicates the greater child of j, if it exists. The function left(j) can

4

be efficiently implemented by a real computer as follows: 25 is computed by left shifting j by
one bit; and then set the least significant bit of 25 to info[j]. Thus, the algorithm does not
need to do any key or info comparisons during the leaf search. During the cyclic shift, when
the elements are moved up the tree, they are compared with their respective right sibling,
and the comparison results are stored in the info variables of their respective parents. Thus,
the algorithm is able to get rid of the undesirable undefined values for info variables as used

in MDR-heapsort. The complete algorithm is presented in Figure 4.

The correctness of the proposed algorithm is obvious, since rearrange, bottom-up-rearrange,
mdr-rearrange and rebuild all construct the same heap. In addition, the proposed algorithm
is quite efficient and easy to implement. The worst case analysis is presented in the next

section.

4 Worst case analysis

For the sake of simplicity we would assume that there are n = 2* — 1 elements in the input
array. Let us define level of the root of a heap to be 1. The level of the children of each
node 7 is level(i) + 1. The height h of a heap is the maximum of all levels of the nodes in
the heap. The height(i) of a node ¢ in the heap is h — level(i) + 1. That is, all the leaf nodes
are at height 1. As n = 2% — 1, the initial height of the heap is k.

Heap building phase

Let H(k) be the maximum number of key comparisons required to create a complete
heap of height k. It is clear from the proposed algorithm that a heap of height & is build
from two heaps of height ¥ — 1 and one element. In each invocation of build-heap, one key
comparison is done in that procedure. No key comparisons are done in leaf-search procedure.
The number of key comparisons done in bottom-up-search and interchange procedures is at
least k¥ — 1 and at most k. Thus, the algorithm uses k£ + 1 comparison in the worst case to

build a heap of height k from two heaps of height £k — 1. Then, we have the following.

H(k) =

2Hk-1)+(k+1), fork>1
0 for k =1.

That is,

H(k) = 5 (k+1 -2
= (k+1) T3 2 - iy a2
= (k+1)(251 = 1) — 2((k — 2)251 — (k — 1)2¥2 + 1)
=2kt _ k3.

Selection phase

Let T(k) be the maximum number of key comparisons required in the sorting phase for
a complete heap of height k. There are 2*~! elements at height 1, 2°=2 elements at height
2, and so on. For an element, if the leaf-search stops at level I, then to insert the element
at appropriate position we need exactly ! comparisons (see rebuild procedure). When an
element of level ! is selected, the corresponding leaf-search terminates at level / or [— 1. For
the worst case, we assume that it terminates at level I. Note that for the last element of
level | the leaf-search always terminates at level [— 1. If the leaf-search for the penultimate
element of level | terminates at level I, we need not do any key comparison with the last
element of level [. Hence, for the last two elements of each level [, the algorithms does at the
most | — 1 comparisons. Finally, it does not require to do any key comparisons for level 1

and 2. Then, we have the following.

T(k)= {k(2*1 = 2) + 2(k - D} + {(k = 1)(2*2 = 2) + 2(k — 2)} +--- + {3(2** — 2) + 2(3 — 1)}
= ia(i(27 = 2) +2(i - 1))
=k (627 — 20+ 2i - 2))
= Z?:s 027" — Zf:s 2
=3k 2t —220 1Y% .2
= k2" — (k+1)28 +1 -5 —2(k — 2)
= k2k — 2% — 2k.

Hence, the total number of key comparisons required in the worst case to sort n = 2k —1

elements is

H(k)+ T (k)= 2**' — k — 3+ k2% — 2% — 2k
=k2* +2*-3k—-3
=(n+1)log(n+1)+n—3log(n+1) — 2
=nlog(n+1)+n—2log(n +1) — 2.

5 Conclusion

An efficient algorithm for a variant of heapsort has been presented. The algorithm uses only
|n/2| additional bits, and it could be considered as almost internal sorting algorithm. This
algorithm is better than quicksort. It is to be noted that in a heap the first two elements,

the root and its left child, are greatest elements in the heap. So, they can be output in one

pass. Then, instead of taking one leaf element at a time in the selection phase, we could
take two leaf elements (of known order) to rebuilt a new heap with two fewer elements. This
might further reduce the number of key comparisons. Finally, we would conjecture that n
elements could be sorted using some variant of (almost internal) heapsort within nlogn key

comparisons.

References
[1] B. Bollobas and I. Simon, ‘Repeated random insertion into a priority queue’, J. of Al-

gorithms, Vol.6(4), 1985, 466-477.

[2] S. Carlson, ‘A variant of heapsort with almost optimal number of comparisons’, Infor-
mation Processing Letters, Vol.24(4), 1987, 247-250.

[3] R. Floyd, ‘Algorithm 245: Treesort’, Communications of the ACM, Vol.7(12), 1964, 701.

[4] G. Gonnet, ‘Handbook of algorithms and data structures’, Addison-Wesley, Reading,
MA, 1984.

[5] G. Gonnet and J. Munro, ‘Heap on heaps’, SIAM J. of Computing, Vol.15(4), 1986,
964-971. (Also in Proc. of 9th ICALP, 1982, 282-291.)

[6] C. Hoare, ‘Quicksort’, Computer Journal, Vol.5, 1962, 10-15.

[7] D. Knuth, ‘The art of coinputer programming, VoL.III, sorting and searching’, Addison-
Wesley, Reading, MA, 1973.

[8] C. McDiarmid and B. Reed, ‘Building heaps fast’, J. of Algorithms, Vol.10(3), 1989,
352-365.

(9] 1. Wegener, ‘Bottom-up-heap sort, a new variant of heap sort beating on average quick
sort (if n is not very small)’, Proc. of Mathematical Foundation of Computer Science,
1990, LNCS 452, 516-522.

[10] I. Wegener, ‘The worst case complexity of McDiarmid and Reed’s variant of bottom-
up-heap sort in less than nlogn + 1.1n’, Proc. of the Symp. on Theoretical Aspects of
Computer Science, 1991, LNCS 480, 137-147.

[11] J. Williams, ‘Algorithm 232: Heapsort’, Communications of the ACM, Vol.7, 1964, 347—
348.

Procedure rearrange(i, m);
if { > |m/2] then return;
if i = |m/2) then min := min{ali], a[2i]};
if i < |m/2] then min = min{a[i], a[2i],a[2i + 1]};
if min = ai] then return {already in heap form}
elseif min = a[2i] then
exchange a[i] and a[2i];
rearrange(2i,m)
else
exchange afi] and a[2i + 1];
rearrange(2i + 1,m)
end-of-rearrange;

Procedure heapsort(a[l..n]);
for 4 := |n/2],..., 1 do rearrange(i, n); {heap creation phase}
for m :=n,...,2 do {sorting phase}
exchange a[1] and a[m]; '
if m # 2 then rearrange(1,m — 1);
end-of-heapsort;

Figure 1: The classical Floyd heapsort.

Procedure leaf-search(m, i,); {search for the special leaf}
j=1
while 25 < m do
if a[27] > a[2j + 1] then j 1= 2j else j = 2j + 1; {take greater child}
if 2§ = m then j :=m;
end-of-leaf-search; {j is a special leaf}

Procedure bottom-up-search(, j);
while i < j and a[i] > alj] do j := Lj/2};
end-of-bottom-up—search;

Procedure interchange(i, j); {can be efficiently implemented as done in [9]}
if ¢ = j then return;
temp := alj]; alj] == a[il;
while j > ¢ do
exchange temp and a[|j/2]]
j=1i/2];

end-of-interchange;

Procedure bottom-up-rearrange(t, m);
leaf-search(m, 1, j);
bottom-up-search(s, j);
interchange(i, j);

end-of-rearrange;

Procedure bottom-up-heapsort(a(1..n]);
for i := |n/2},...,1 do bottom-up-rearrange(i,n); {heap creation phase}
for m :=mn,...,2 do {sorting phase}
exchange a[l] and a[m];
if m # 2 then bottom-up-rearrange(l,m — 1);
end-of-heapsort;

Figure 2: Bottom-up-heapsort.

var
info : array [1..2|(n - 1)/2]] of (1,7, u);

Function parent(i) := [4/2];

Procedure leaf-search(m, 1,3);
j=1
while 2j < m do
if info[j] = then j :=2j
elseif info[j] = r then j :=2j +1
elseif a[25] > a[2j + 1] then infoljl =147 :=2j
else infolj] :==r;j =27 +1
if 2j = m then j :=m;
end-of-leaf-search; {j is a special leaf}

Procedure bottom-up-search(s, j);
while i < j and afi] > alj] do 5 = Li/2};
end-of-bottom-up—search;

Procedure interchange(i, j); {can be efficiently implemented as done in (9]}
if ¢ = j then return;
temp := alj]; alj] := ali];
while j > i do
infolparent(j)] := u
exchange temp and alparent(j)];
j = parent(j);
end-of-interchange;

Procedure mdr-rearrange(s, m);
leaf-search(m, 1, j);
bottom-up-search(s, 5);
interchange(i, j);

end-of-rearrange;

Procedure mdr-heapsort(a[l..n]);
for i := |(n — 1)/2},..,1 do infoli] := u;
for i := |n/2],...,1do mdr-rearrange(i,n); {heap creation phase}
for m :=n,...,2 do {sorting phase}
exchange a[l] and a[m];
if m # 2 then mdr-rearrange(1,m — 1);
end-of-heapsort;

Figure 3: MDR-heapsort.

10

var
info : array [1..|n/2]] of 0..1;

Function left(s) := 2i + infoli];
Function parent() := |i/2];

Procedure leaf-search(m, ¢, 7);

j=14

while 27 < m do j := left(j);
end-of-leaf-search; {j is a special leaf}

Procedure bottom-up-search(i, j);
while i < j and a[i] > alj] do j := parent(j);
end-of-bottom-up—search;

Procedure interchange(i, j); {can be efficiently implemented as done in (9]}
if i = j then return;
temp = aljl; alj] := alil;
while j > i do
info[parent(j)] := if a[2 * parent(j)] > a[2 x parent(j) + 1] then 0 else 1;
{if 2 * parent(j) + 1 > m then info[parent(j)] := 0};
exchange temp and a[parent(j)];
j = parent(j);
end-of-interchange;

Procedure rebuild(z, m);
leaf-search(m, 1, j);
bottom-up-search(z, j);
interchange(i, j);

end-of-rebuild;

Procedure build-heap(i, m);
if 2 = m then info[i] := 0;
if 2i < m then info[i] := if a[24] > a[2i + 1] then O else 1;
leaf-search(m, 1, j);
bottom-up-search(z, j);
interchange(t, j);
end-of-build-heap;

Procedure proposed-heapsort(a[l..n]);
for i := |n/2),...,1 do build-heap(i, n); {heap creation phase}
for m :=mn,...,2 do {sorting phase}
exchange a[l] and a[m];
info[|m/2]] := 0;
if m # 2 then rebuild(1,m — 1);
end-of-heapsort;
11

Figure 4: Proposed algorithm.

