An ‘All Pairs Shortest Paths’ Distributed
Algorithm Using 2n’ Messages

S. Haldar

RUU-CS-93-19
May 1993

Utrecht University
Department of Computer Science

Wigx

b} 5

% X/ Padualaan 14, P.O. Box 80.089,
) W

3508 TB Utrecht, The Netherlands,
Tel. : ... 4+ 31 - 30 - 531454

3 4 .
E oy 1 £ z . H :
w5 V% it b ¥ 4 i :
Sl - ES [B N
3 3

Abstract

In an expention of » disteihated pmgram pg £

hy exchanging messags:

faster peevsnge dedi

8y
thetr resps \gamh%h oTge
recent your: sl paurs shortes

The best ks

prters in the ueis huted alg LS

problem w*m, FHEAS

siftngent fronn o

1 Introduction

el mework s

as nodes. I ench compuier

ISSN: 0924-3275

among the nodes. An application program, also called distributed program, accesses re-
sources from many nodes. To execute such a program, the network systém assigns many
processes, for the program, at different nodes. We define a distributed algorithm for a
collection of processes to be a collection of local algorithms, one for each process. Each
process executes its local algorithm and cooperates with the other processes to achieve the
objective of the distributed program. To communicate among themselves, the processes
exchange information through messages. An underlying message passing system (MPS, in

short) handles the exchanging of messages between processes.

In wide area networks the nodes are connected by point-to-point communication links
(also referred to as edges) for exchanging messages between two nodes, called neighbors.
Providing edges between all pairs of nodes is not cost effective. Consequently, communica-
tion between some pairs is done through intermediate node(s), that is, some messages need
to travel through many edges. We assume that both nodes and edges are reliable, that
is, the nodes do not fail or show malicious behavior, and the edges do not garble or loose
messages and deliver them within some finite delay. Transmitting a message through an

edge incurs some cost, that is, each edge has some weight assigned to it.

Delivering messages between all pairs of nodes is a primary activity in any computer
network. An underlying MPS shoulders this responsibility. Naturally, it is desirable that
the MPS routes messages through shortest paths. (A shortest path between a pair of nodes
is any path between them with the minimum weight.) Hence, the MPS should know all
pairs shortest paths in advance. It uses a routing table that stores the all pairs shortest

paths information in some coded form.

In this paper we investigate how to build a routing table for an arbitrary network
efficiently. There are two broad approaches to building a routing table, namely, centralized
and distributed. In the centralized approach, inputs from all nodes are collected in a single
node, a sequential algorithm is executed on the inputs, and finally, outputs are dispersed
to all the nodes. There are two lucrative strategies in developing sequential algorithms,
namely the greedy method [5] and the dynamic programming [2]. The single node all
shortest paths algorithm of Dijkstra [4] uses a greedy method, and requires O(n?) time
units, where n is the number of nodes in the network. This algorithm can be executed
separately for each node to obtain all pairs shortest paths in O(n®) time units. The all

pairs shortest paths algorithm of Floyd and Warshall [6, 10] uses a dynamic programming

2

strategy, taking O(n®) time units. Although a centralized approach is simple, its message
complexity is ©(mn), where m is the number of edges in the network. (There are various
complexity measures for a distributed algorithm: message complexity, bit complexity, time
complexity, space complexity. We restrict our attention to message complexity, namely the

number of messages exchanged in the algorithm in the worst case.)

In the distributed approach, each node builds its part of the routing table, and helps
other nodes in building their parts. One such algorithm is presented by Toueg [9], based on
the Floyd-Warshall sequential algorithm. It assumes edge weights to be positive, and each
node knows identities of all the nodes, identities of its neighbors and weights of its incident
edges. This algorithm exchanges O(n) messages per edge, O(mn) in total. Recently, Afek
and Ricklin [1] have proposed a transformation scheme for distributed algorithms. It takes
a distributed algorithm whose message complexity is O(f - m), where f is an arbitrary
function of m and n, and produces a new semi-distributed algorithm for the same problem
with O(f - nlogn +mlogn) message complexity. Applying this scheme (for example, to the
Segall algorithm [7]) an all pairs shortest paths algorithm with upper bound of O(n?logn)

message complexity can be obtained.

In this paper we present a new fully distributed algorithm that uses 2n? messages in
the worst case. It is based on the single node all shortest paths sequential algorithm of
Dijkstra. We first modify his algorithm and make it more efficient by a constant factor,
and then transform the modified algorithm into a distributed algorithm. In this distributed
algorithm we allow communication only between neighbors, and this leads to lower message
complexity. This algorithm uses a quite different strategy than those used by others for
the same problem. In this algorithm, a node might finish building its part of the routing
table much earlier than the others do; if the former node sends messages to any nodes,
the messages are guaranteed to be delivered to their destinations through their respective
shortest paths. This delivery is assured even if the routing table is partially built.

In Section 2 we define a model of the system under investigation. This section states
some definitions and makes some assumptions. Dijkstra’s sequential algorithm is presented
in Section 3. His algorithm is modified in Section 4. We transform the modified algorithm

into a distributed algorithm in Section 5. Section 6 concludes the paper.

3

2 Model, Definitions and Assumptions

We represent a computer network, where computers are connected by point-to-point com-
munication links, by an undirected weighted graph G = (V, E, W), where V is a set of nodes,
one for each computer; E is a set of edges, one for each link; and W is a weight function from
E to non-zero positive real numbers. The number of nodes is denoted n, and the number
of edges m. An edge in E is denoted by an unordered pair of nodes from V. If u,v € V are
connected by an edge, we denote that edge as uv (and vu). An edge e = uv € E is called
an incident edge of u (and of v), and u and v are neighbors, and the weight of e is Wiu,v].
The weight of uv is equal to the weight of vu. A path between two nodes u and v is a
sequence p = (u = vy, vy, Vg, -+, Ux = v) of nodes such that for each 0 <i<k,vv4, €E,
and the weight of the path is w(p) = > o<ick Wi, viy1]. The notation u -5 v denotes that
v is reachable from u through the path p. In this paper we assume that G is connected,
that is, there exists a path between each pair of nodes. The shortest path weight, also called
distance, between any pair of nodes u and v, denoted dist(u,v), is the minimum weight of
all possible paths between them, that is, dist(u,v) = min{w(p) : u % v}. A shortest path
from a node u to another node v is defined as any path p with w(p) = dist(u,v). We also
like to determine the neighbor of « in p, denoted via(u,v), through which messages for v

will be routed.

We assume, as in [9], that each node u knows: (1) the graph size n, (2) identities of all
nodes, 1,2, - -, n, (3) identities of its neighbors in neighbor(v) and (4) weights of its incident
edges, Wu,v], wv € E. It is assumed that the weights of the edges do not change with
time. Messages are delivered to their respective destinations within a finite delay, but they
might be delivered out-of-order, that is, the edges are non FIFQ. The distributed algorithm
presented in this paper allows communication only between neighbors. We assume an
asynchronous message passing system, that is, a sender of a message does not (in fact, must
not) wait for the receiver to be ready to receive the message. Messages are stored in the

edges until they are delivered.

The proposed algorithm uses a table called routing table (RT, in short) to store the
final output of all pairs shortest paths and intermediate results of the computation in some
coded form. The algorithm uses two types of messages (see later), thereby requiring one
additional bit to distinguish them.

The following two properties hold for any graph G = (V, E, w).
Property 1 ([3], Lemma 25.1) Subpaths of shortest paths are shortest paths. O

Property 2 ([3], Corollary 25.2) Let s and v be two nodes in V. Suppose a shortest
path p from s to v can be decomposed into s X u =2 o for some node u € neighbor(v) and
path p’. Then, the weight of a shortest path from s to v is dist(s,v) = dist(s,v) + Wu,v].
(]

3 Dijkstra’s Single Node All Shortest Paths Algorithm

Shortest path algorithms typically exploit the property that a shortest path between two
nodes contains other shortest paths within it (Property 1). This optimal substructure
property invites the use of the dynamic programming [2] or the greedy approach [5]. The
idea of a greedy approach is to make each choice in a locally optimal manner. However, it
is not always easy to tell whether a greedy approach will be effective. In the case of the
shortest paths problem, a greedy approach has been effective.

The Dijkstra algorithm for a graph G = (V, E,W) is given in Figure 1. For a pivotal
node s € V, it calculates the distance dist(s,v) for all v € V. For each node v, it maintains
a distance estimate variable d[v], initialized to oo, which is an upper bound on the weight
of a shortest path from s to v. The invariant dy] > dist(s,v) is maintained throughout
the execution of the algorithm. The technique used by the Dijkstra algorithm is relaxation,
a method that repeatedly decreases (relaxes) the upper bound until it becomes equal to
the actual shortest weight. It maintains a set S of nodes whose distances from the pivotal
node s have already been determined. That is, for all v € S, we have d[v] = dist(s,v). At
the beginning, d[s] = 0 = dist(s,s). It maintains a priority queue Q to contain all nodes
in V — S. It repeatedly selects the node u € Q@ with the minimum distance estimate d[u};
inserts u in S; and relaxes the distance estimates for all the neighbors of u. That is, for each
uv € E, the distance estimate d[v] is relaxed with respect to d[u]+ W u,v]. In his algorithm
each edge is considered exactly twice to relax some distance estimates, that is, a total of
2m relaxations. The relaxations cause the distance estimates to decrease monotonically

until the estimates become equal to the actual distances. In the Dijkstra algorithm, it is

5

guaranteed that when a node u is visited!, at that time dlu] = dist(s,u).

For correctness proof, please refer to [3](Theorem 25.10). The Dijkstra algorithm takes
O(n?) time unit if Q is a linear array, O(mlogn) time units if Q is a binary heap, and

O(nlogn + m) time units if Q is a Fibonacci heap.

4 Modified Algorithm

In the Dijkstra algorithm, when a node is removed from Q and put in S, distance estimates
of all the neighbors of u are relaxed. Let uv be an edge. If the node v is already in 3, there
is no need to relax dfv] with respect to d[u] + W[u,v], for the optimal distance dist(s,v)
has already been found. To avoid this relaxation, we attach a boolean tag status[v] with
each node v, initialized to tentative, and made permanent on reaching the shortest weight
for v. At the time of visiting u, the edge uv will be considered only if v is tentative. The
modified algorithm is given in Figure 2. In the modified algorithm Q represents a set of
frontier nodes during the execution of the algorithm. All nodes in Q are tentative. At the
beginning all incident edges of the pivotal node s are put in Q. For node v in Q, d[v] is the
tentative distance from s to v. The algorithm repeatedly selects the node u € Q with the
minimum distance estimate d[u]; makes u permanent (i.e., visits u); and relaxes distance
estimates of some neighbors of «. In the modified algorithm there are m relaxations and 2m
boolean tests, whereas in the Dijkstra algorithm there are 2m relaxations. So, the modified
algorithm speeds up the computation by a constant factor if the cost of boolean test is less
than half the cost of addition and real comparison. Each node v is inserted in Q exactly
once, that is, a total of n insertions in Q. In each iteration of the while loop, exactly one
node u is removed from Q, and u is made permanent. (At that moment d[u] is the shortest
weight dist(s,u).) So the loop terminates after n iterations. The variable via[v] indicates
the neighbor of s through which messages for v should be routed. The correctness proof of

this algorithm is very similar to that of Dijkstra’s, and omitted from the paper.

By visiting u, we mean that the algorithm is inserting v in S and considering all its incident edges for
some distant estimate relaxations.

5 Distributed ‘All Pairs Shortest Paths’ Algorithm

We first consider a sequential all pairs shortest paths algorithm. The modified algorithm
given in Figure 2 could be executed for all nodes of G to obtain the all pairs shortest paths.
But, we can do better using the following observation. Property 1 states that a shortest
path contains other shortest paths within it. Let a shortest path p, between two nodes u
and v, run through a node v' € neighbor(u). Then dist(u,v) = Wlu,v'] + dist(v',v) (by
looking Property 2 from different angle), and we state this as Property 2'.

Property 2/ Suppose a shortest path p from a node u to another node v can be decomposed
into u %5 o' L v for some node v' € neighbor(u) in p and path p'. Then, the weight of a
shortest path from w to v is dist(u,v) = Wu,v'] + dist(v' ,v). O

Now, instead of calculating both dist(u,v) and dist(v',v) separately and independently, we
calculate dist(v',v) first, and then dist(u,v) by one addition operation. But, the question
is, how does u know that p runs through v'? We answer this question in the following
subsection. We present a sequential restricted version of the modified algorithm, for all
pairs shortest paths in Section 5.1 first, and then, transform the Restricted algorithm into a
distributed algorithm in Section 5.2. (We call the sequential algorithm ‘Restricted’ because

in the algorithm each node accesses the table entries of only its neighbors.)

5.1 Restricted algorithm

Assume RT is the routing table to be built for a given graph G = (V,E,W). Each compo-
nent of the table, RT[u,v], for u,v € V, has four fields: (1) weight, (2) status, (3) via and
(4) via-status. Here, weight is distance estimate between u and v; status indicates whether
u has visited (directly or indirectly) v; via is the neighbor of u in the path used to determine
the weight; and via-status indicates u’s knowledge of v’s status in via. The algorithm is
given in Figure 3. (In the text, a subcomponent of the routing table, RT [u, v].field is denoted
as field[u,v].) The RT table is initialized as follows for all nodes w: (1) weight[u,u] := 0,
status[u,u] := permanent, via[u,u] := u and via-status[u,u] := permanent; (2) for all
neighbors v of u, weight[u,v] = W{u,], statuslu,v] := tentative, vialu,v] := v and
via-status|u, v] := tentative; and (3) for non adjacent nodes, weights are oo, and status
and via-status values are tentative. After the initialization, a repeat-until loop is executed.

In each iteration of the loop the following steps are performed for all nodes u (one can

7

imagine that n processors, one for each u, are executing the algorithm synchronously).

Step 1:

Step 2:

Step 3:

Step 4:

The node u selects a node v, with minimum distance estimate weight[u,v,] from
RT[u, +] such that status[u,v,] = tentative. If no tentative v, is available, u has
finished building up its part RT[u, *] of the routing table, and hence, it does not do
any effective thing. Otherwise, u executes Step 2.

Let the node v, be reached through a neighbor node via, = via[u, v,]. If via-status|u, v,]
is permanent — that is, the node via, has already visited the node v, and calcu-
lated dist(via,,v,), and this visit is also captured in RT[u, #], then weight[u,v,] =
dist(u,v,) (by Property 2') — then u makes status(u, v,] permanent, and loops back
to Step 1. Otherwise, it executes Step 3.

It checks the table entry RT[via,,v,). If status(via,,v,] is not permanent, — the
node via, has not yet visited the node v, — then « does nothing and loops back to
Step 1. Otherwise, it copies the table entries RT[via,, *].(weight, status) in a local

variable temp, first, and then executes Step 4.

The first thing u does is that it makes status[u,v,] and via-status[u, v,] permanent.
(The node u indirectly visits v, through the visit of v, by via,.) Finally, u updates
its other table entries whose status are not permanent. Consider a node v,, such that
status[u,v,] = tentative. If u finds weight[u,v] > Wu, via,] + temp,[v.]. weight
(note that temp,[v]].weight is the distance estimate between the nodes via, and v)),
then the weight[u,v,] is set to W{u, via,] + temp,[v’|.weight, vialu, v.] to via,, and

via-status[u, v,] to temp,[v,].status. Loops back to Step 1.

It is to be noted that we can use the same algorithm without vie-status fields and Step 2.

However, they are included to speed up the computation. Note that, in Step 2, when via-

status[u, v,] is permanent, it indicates that the node via, has visited the node v,, and the

effects of this visit is already captured in RT[u, *]. So, if u finds via-status[u, v,] permanent,

it need not access the table entries in RT[via,,] to update its table entries RT[u,], and

hence executing the Step 2 would speed up the computation. The repeat-until loop is

executed until no change in RT is observed in an iteration, that is, all nodes have built up

their respective parts of RT. On termination the via fields indicate how messages should

be routed in the graph G. The correctness proof is given in the next subsection.

8

5.1.1 Correctness proof

We need to show that the Restricted algorithm satisfies two basic properties, namely,
(1) liveness, that is, the algorithm terminates eventually, and (2) safety, that is, on ter-
mination of the algorithm, all pairs shortest paths are determined. To show the liveness
property, we first show that the algorithm does not lead to any deadlocks, and then, the

termination of the algorithm. The safety property is proved at last in Theorem 8.
Lemma 3 There is no deadlock.

Proof: On the contrary, let us assume that there is a deadlock when the algorithm is
executed for a graph G = (V, E, W). Note that for all uv € E, Wu,v] > 0.

Let up,uy,- -+, ur, = up be a sequence of nodes involved in a deadlock. As the algorithm
allows each node u to access table components for its neighbors only, then for 0 < i < &,
u;U;g1 € E, where @ is modulo k addition operator. Let u; be trying to make statusfu;, v;]
permanent for some v; € V, and be waiting for status[u;g, v;] to become permanent. That
is, the node u; finds shortest path for v; through u;u;g:. (See the following picture. Note

that © is modulo k subtraction operator.)

T

Up——s U] — U+ ... Uj——s Uiy oo —e Up—3
Vk—1 Vo " V2 Vi Vi Ve—2

As u; is trying to make status(u;, v;| permanent (and u; has not made Vo1 permanent
yet in this deadlock situation), we have weight[u;, vig1] > weight[u;,v;]. Note that wu; got
the information of v; through u,q;. Hence, weight(u;, v;] = Wlu;, uig] + weight[u;g , v;i].
Thus we get, weight[ug,vy_y] > weightug, v] = Wlug,uy] + weight[u;,vy). That is,
weight(ug, vi_1] > Wlug,uy] + wetght[us,v;], and hence, weightug, vi—1] > Wlug, us] +
Wlui,us] + weight[uz,v,]; and so on. Finally, we have weight(ug, vi—1] > Wlug,us] +
Wilug, ug) + -+ + Wlug_q,uo) + weight[ug, ve_,1]. As W’s are non-zero positive, we have
weight[ug, vi_1] > some-positive-number + weight[ug, vi—1]. But, a number cannot be
greater than itself, and hence, the sequence ug,u,,- - yUp = Up cannot be in a deadlock.
This proves the lemma. O

Corollary 4 In each iteration of the repeat-until loop, at least one entry in the routing

table RT is made permanent. O
Lemma 5 All table entries become permanent within n? — n iterations.

Proof: At the beginning there are n? — n tentative entries in RT. By Corollary 4, at least
one entry becomes permanent in each iteration. Hence, all entries become permanent within

n? — n iterations. O
Corollary 6 The algorithm terminates within n? — n iterations. O

Now, before showing the safety property we prove an important lemma. If the algorithm
selects p as a shortest path between two nodes u and v, then it also selects for all v’ in p
the subpath of p between u and v' as shortest path between « and v’, and the subpath of P

between v’ and v as shortest path between v’ and v.

Lemma 7 Suppose a node u makes status[u,v] permanent for a node v through a path p.

Then, for all the nodes v' in p,

(a) u has made status[u,v'] permanent through a subpath of p between u and v', and

(b) v’ has made status[v',v] permanent through a subpath of p between v' and v.

Proof:

(a) Suppose not. Let v’ be a node in p such that status[u,v’] is not permanent. As v'
lies in p, we have weight[u,v'] < weight[u,v]. Since, both statusfu,v] and status[u,v'] are

tentative, u considers v’ before v to make status|u,v'] permanent. The assertion follows.

(b) Let p be the sequence (v = ug, uy, Uy, - -, u;, = v) of nodes. The node u makes status|u, v]
permanent only if it finds status[u;,v] = permanent; u, makes status|u,,v] permanent
only if it finds status[us, v] = permanent; and so on. Ultimately, uj_, makes status|ug—_1,v]
permanent only if it finds status[v, v] = permanent. At the beginning, in the initialization

phase, the node v makes its status[v,v] permanent. The assertion follows. O

Theorem 8 When the algorithm terminates for a graph G = (V,E,W), for allu,v € V,
wetght{u, v] = dist(u,v).

10

Proof: Suppose not. Consider any two nodes u,v € V, for which, on termination, weight[u, v] #
dist(u,v). It is clear from the Restricted algorithm that for any two nodes u,v € V,
the weight[u,v] is not changed after the entry status(u,v] is made permanent. Then,

weight[u, v] # dist(u,v) at that time u makes status[u, v] permanent.

Without loss of generality, we assume v is the first node whose status[u,v] is made
permanent by u when weight[u,v] # dist(u,v). Let p be the path chosen by u to reach v.

Let p be the sequence (u = ug, u1, Uz, -+, U = v) of nodes.

As weight[u,.v] # dist(u,v) at that time u makes status{u,v] permanent, the path p
is not a shortest path. Let p' = (u = uj,uf,u), --,u} = v) be a shorter path from u
to v. We have w(p') < w(p). Then, Wlu,u;] = weightu,u]] < weight[u,v], and hence,
u must make status|u,u}] permanent before making status[u,v] permanent. When u
makes status(u,] permanent, it relaxes the distance estimate weight[u, uy] with respect
to Wlu, u)]+Wu}, us]. Thus, u becomes aware of the fact that weight[u, uy] < weight[u, v],
and hence, v must make statusfu,u)] permanent before making status[u,v] permanent;
and so on. Eventually, v makes status|u,u},_,] permanent before making status|u,v]
permanent. By virtue of the choice of v to be the first node whose status[u,v] is made
permanent when weight[u,v] # dist(u,v), we have weight{u,u}, _,] = dist(u,u},_,). Let
p’ = (u = ul,ul,ul, -, uly = ul_,) be the shortest path chosen by u to reach uj, _;.
Then, by Lemma 7, for all u} in p”, status[u,u]] and status[u],u;,_,| are permanent.
The node u can make status[u,u},_,| permanent only if status[uf,u;,_,] is permanent.
The node «/ can make statusfu’,u},_,] permanent only if status[uy, u;,_,] is permanent;
and so on. At the beginning, in the initialization phase, status[uj,_;,u}_,] is made
permanent. When u,_; makes status[ul,_;,u} _;] permanent, it relaxes the distance
estimate weight[u}, _,,v] with respect to W{u{n_y, uj_,] + Wujs _;,v]. When u.,_, makes
status[ull, _,, wh_,] permanent, it relaxes the distance estimate weight[ug._,,v] with re-
spect to Wul,_y,ulu_,] + weightluj,_,,v], that is, with respect to W uy,_,,upn_] +
Wup 1ty + Wk _q,v]; and so on. When u makes make status[u, uj,_,] permanent,
it relaxes the distance estimate weight[u,v] with respect to Wiu,u{] + Wluf,uj] +--- +
Wl _q,uk_y] + Wl _;,v]. So, u becomes aware of a shorter path than p to reach v.
Hence u would not consider the path p, contradicting the assumption that it has chosen p,

and hence weight[u,v] = dist(u,v). The theorem follows. O

11

It has been a mirage for the author to determine the time complexity of the Restricted
algorithm. However, doing that does not provide much insight about how to transform this

algorithm into a distributed algorithm, and hence is omitted.

5.2 The distributed algorithm

It is to observe that in the Restricted algorithm a node u accesses the RT table entries of

its neighbors, and not of any other node in the graph.

In the distributed algorithm, the routing table part RT|u,#] is stored at node u, and
the same Restricted algorithm is executed at each node u. The distributed algorithm is
given in Figure 4. Here, one point is of particular interest. In the Restricted algorithm of
Section 5.1, in Step 3 if a node u finds status[via,, v,) is tentative, it does nothing; and
in the very next iteration it checks the same status again. The node u does the checking
until the status becomes permanent, and then, u takes a normal course of actions. In the
distributed algorithm, to get the status information for v, from the neighbor node via., u
sends a message (give-me your table-entries for v,) to the node via,. Instead of sending
a reply containing the RT[via,, *].(weight, status) immediately back to u, the node via,
defers replying until status|via,, v,] becomes permanent. Since the algorithm does not
lead to a deadlock situation, as proved in Section 5.1.1, the node via, eventually returns
the reply message to u. On receiving the reply message from via,, u makes status{u, vy,)
and via-status[u, v,] permanent, and updates the other tentative entries in RT'[u, *]. Thus,
to make one table entry status permanent, there is an exchange of at most two messages
between two neighbors. At the beginning, the entire routing table has (n? — n) tentative
entries. Hence, the algorithm exchanges at most 2(n? — n) messages. On termination of
the algorithm the via fields indicate how messages should be routed in the graph. The
correctness proof of the distributed algorithm is very much similar to that of the Restricted

algorithm, and hence omitted.

6 Conclusion

A fully distributed algorithm to find all pairs shortest paths for an arbitrary connected net-
work has been presented. The algorithm produces the desired output within 2n? messages,

where n is the number of nodes in the network. Another achievement in the algorithm

12

g T i T AT AT T T T R s R T T

is that the message complexity is insensitive to the number of edges in the network. The
algorithm allows the communication only between neighbors, and uses two types of mes-
sages. The algorithm works with each edge’s storage capacity of only two messages for each

direction.

In an execution of the algorithm some node u could finish building up its part of the
routing table much before the other nodes could do their parts, but they have partially
built up their parts. Note that the shortest paths from u to other nodes form a spanning
tree rooted at u. When u finishes its execution, the spanning tree for u is clearly identified
through the via fields of the internal nodes in the spanning tree. It is guaranteed that the
internal nodes will not change the respective via fields through which the messages from u
will be transmitted. Hence, it is guaranteed that if u starts sending messages to any nodes,
the messages will be delivered to their destinations through their respective shortest paths.

This can be done even if some nodes have not finished executing the algorithm completely.

For the sake of simplicity of the presentation, a number of assumptions have been made
in Section 2. Some of the assumptions could be relaxed, and the following properties can
be obtained by modifying the algorithm a little. If the network size is known to the nodes,
a node does not need to exchange messages with its neighbor when it is left with only one
node to make permanent, leading to a total savings of 2n messé,ges. The algorithm works
even if the edge weights are different for different directions. The algorithm could easily be
modified to correctly build up the routing table in case the network size is unknown to the

nodes. The algorithm works even if the network is not connected.

Finally, it is conjectured that the message complexity is a tight bound, i.e., ©(n?), for

the model considered in this paper.

A cknowledgment

I wish to thank Prof. Jan van Leeuwen who introduced me to the area of routing algorithms.
Dr. Gerard Tel has been very cooperative during this work, and provided some useful
comments on an earlier draft. His book [8] and the one in [3] have been very helpful in
preparing this manuscript. I especially thank Prof. K. Vidyasankar who provided some
useful comments and many suggestions to simplify the proof of the safety property of the

Restricted algorithm.

13

References

[1] Y. Afek and M. Ricklin, ‘Sparser: A paradigm for running distributed algorithms’,
Workshop on Distributed Algorithms, LNCS 647, 1992, 1-10. (Also in J. of Algorithms,
Vol.14(2), 1993, 316-328.)

[2] R. Bellman, ‘Dynamic programming’, Princeton University Press, 1957.

[3] T.H. Cormen, C.E. Leiserson and R.L. Rivest, ‘Introduction to algorithms’, MIT Press,
Second printing 1990 (Original 1989).

[4] E.W. Dijkstra, ‘A note on two problems in connection with graphs’, Numerische math-
ematik, Vol.1, 1959, 269-271.

[5] J. Edmonds, ‘Matroids and the greedy algorithm’, Mathematical Programming, Vol.1,
1971, 126-136.

[6] R.W. Floyd, ‘Algorithm 97 (Shortest path)’, Communications of the ACM, Vol.5(6),
1962, 345.

[7] A. Segall, ‘Distributed network protocols’, IEEE trans. on Information Theory,
Vol.29(1), 1983, 23-35.

[8] G. Tel, ‘Introduction to distributed algorithms’, INF /DOC-92-05, Department of Com-
puter Science, University of Utrecht, The Netherlands, 1992.

[9] S. Toueg, ‘An all-pairs shortest-paths distributed algorithm’, Tech Rep RC 8327, IBM
T.J. Watson Research Center, Yorktown Heights, NY 10598, USA, 1980.

[10] S. Warshall, ‘A theorem on boolean matrices’, Journal of the ACM, Vol.9(1), 1962,
11-12.

14

Procedure Dijkstra(G = (V, E, W), s);
begin
for all v € V do d[v] := o0;
d[s] := 0;
S :={s};
Q:=V;
while Q # {} do
remove u from Q with dfu] minimum;
S:=SuU{u};
for all » € neighbor(u) do
if d[v] > d[u] + W{u,v] then
d[v] := d[u] + Wlu, v};
endwhile;
end; {of procedure}

Figure 1: Dijkstra algorithm.

Procedure Modified-Dijkstra-Algorithm(G = (V, E, W), s);
begin
forallv € V do
d[v] := oo;
status[v] := tentative;

d[s] :=0;
status[s] := permanent;
via[s] := s;

Q:={}

for all v € neighbor(s) do
dfv] := Wis,v);
viafv] := v;
insert v in Q;

{Q contains frontier tentative nodes to be visited}
while Q # {} do
remove u from Q with d{u] minimum;
status[u] := permanent;
for all v € neighbor(u), such that statusfv] = tentative do
if d[v] > d[u] + W(u,v] then
d[v] := dlu] + Wlu,v];
via[v] := via[u];
if v € Q then insert v in Q;
endif;
endfor;
endwhile;
end; {of procedure}

Figure 2: Modified algorithm.

15

{initialize}

{Extract-min from Q}

{relax distance estimates dfv]}

{Initilize}

{visit s}

{insert all incident edges of s in Q}

{Extract-min from Q}

{visit u; now d[u] = dist(s,u)}
{expand frontier nodes}
{relax the edge uv}

