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Abstract

We generalize the concept of Gabow and Tarjan’s microsets [3] to dynamic
microsets. The dynamic microsets allow the use of direct addressing in a RAM
for incremental problems that can be partitioned into subproblems which are
merged from time to time. A sequence of operations on dynamic microsets
can be performed in O(n+m.a(m,n)) time, where n is the size of the problem
and m is the number of queries.

1 Introduction

In [3], Gabow and Tarjan introduce the notion of microsets for obtaining a fast
(linear) algorithm for the Union-Find problem on a RAM (Random Access Machine)
for the special case that the structure of the problem (viz., the structure of the
sequence of Union operations) is known in advance. For subproblems on abstract
subuniverses of sufficiently small size (e.g., of 9(523%2—”) elements) and defined by the
structure of the problem, the needed information is precomputed and stored in tables
(where the RAM model is needed for fast access in the table). Then each “real”
occurring small set has references to corresponding abstract sets in the corresponding
subproblems, and operations can be performed by making use of this precomputed
information: the precomputed solutions for the generic subproblems on abstract
subuniverses are “translated” to the actual set. The latter means that a (fixed)
correspondence is implemented between the real elements and the abstract elements.
However, in case the (structure of the) sequence of Unions is not known in advance,
the above technique does not apply, since this correspondence can change arbitrarily.
This is sustained by the fact that the general Union-Find problem on a RAM has a
non-linear lower bound of Q(n+m.a(m,n)) [2]. For various other dynamic problems
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(especially graph problems), it seems that we really have to make use of direct
addressing in a RAM to obtain an a(m,n) bound (4, 9]. (For the nearest common
ancestor problem with linking, there exists a lower bound of Q(loglog n) for the
pointer machine model [5], but there is a solution that runs in O(n+m.a(m, n)) time
on a RAM [4].) This makes the problem of maintaining the above correspondence
information important, as we will further illustrate later on.

We therefore study the problem of maintaining disjoint sets of nodes that is given
as follows. Let U be a universe of n elements. Suppose U is partitioned into a
collection of (named) singleton sets, suppose that every node z has a so-called local
name, initially being the number 1, and suppose we want to be able to perform the
following operations:

e Merge(A,B): for two sets named A and B, rename the nodes in set B by
adding |A| (i.e., the size of set A) to their local names, and join the two sets
A and B into one new set, say S, and return the name of the result S.

e Find(z): return the name of the set in which element z is contained, and
return the local name of z.

e Search(A, k): return the element z that is contained in the set named A, and
that has local name k.

The occurring set names must satisfy the condition that, at every moment, the
names of the existing sets are distinct. Moreover, no occurring set ever has more
than b elements for some number b. We call this problem the dynamic microset
problem. Note that we have a query time of O(logb) for the operation Search, if we
solve the problem by means of balanced search trees.

We present a data structure for this problem that has an optimal time com-
plexity of O(n + m.a(m,n)) for n elements and m operations for any b with
b < min{< logn, lwordsize}, where wordsize is the size of a machine word in
the RAM model (which is usually taken as logn). Moreover, the ft* operation Find
or Search can be performed in O(a(f,n)) worst-case time. (a(m,n) is the inverse

Ackermann function [6, 12].)

The problem has applications in cases in which we want to use the specific property
of address calculation of a RAM. Applications occur in maintaining the 3-vertex-
connectivity relation for dynamic graphs [8] or the problem of incremental planarity
testing [9]. The use is as follows. We precompute answers for types of (abstract)
subproblems of small size (e.g. O(loglogn)) which are sufficiently few (each type is
represented by a number). The occurring (“real”) collection of small subproblems
usually corresponds to a partition of the elements into sets. Then, sufficiently small
sets (and, hence, subproblems) are treated as microsets, where the specific type
information related to these can just be stored with their names. Since the corre-
spondence between the local names inside the abstract microsets (the types) and the
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actual sets (consisting of the “real” elements) must be maintained, this corresponds
to the above problem: Viz., for actual elements, the name of a set must be ob-
tained, and when by this name, corresponding additional precomputed information
(stored in tables) is obtained in terms of local names of the abstract elements, the
corresponding “real” elements must be retrieved again. Since these microsets can
be arbitrarily joined from time to time, this dynamic relation between local names
and real elements must be maintained.

An example of the ideas occurring in an application of this data structure is e.g. of
the following type, which corresponds to [8]. (In [9], another kind of partition is used
too, which does not correspond to connected components themselves.) Initially, the
problems start from a situation where the nodes (elements) are completely separated
and thus can be seen as singleton sets. From time to time, such sets of nodes
are joined because of dynamic operations. The biggest occurring sets, say, of size
Q(logn) are partitioned into clusters of size 6(log n) (generally speaking), and then
clusters are contracted into new nodes that are subject to the further computations.
Then, joinings and other processing can be done by a simple algorithm that can
even spend time linear to the smallest set to be joined: this just gives an overall
time complexity of O(lo’;n.log logn) = O(n). Depending on the complexity of the
considered problem, this idea can recursively be applied for sets with size between
Q(loglogn) and O(logn), and so on (O(1) times), until sets of sufficiently small
size are obtained for which all the query and operation information can be encoded
in machine words and can be stored into tables of size O(n). For these sets, the
dynamic microset structure is used, and the problem can be solved for these small
sets by means of table lookup and the dynamic microset data structure like described
above. For further description of the ideas in this case, we refer to [8].

2 Preliminaries

The Ackermann function A as we use it is defined as follows. For ¢,z 2> 0 function
A is given by

A(0,z) = 2z forz >0
A(,0) = 1 fori >1 (1)
AG,z) = AG-1,AG,z~1)) fore>1, 22 1.

The row inverse a of the Ackermann function is defined by
a(s,n) = min{j > 0|A(i,j) = n} (2)

for i,n > 0.



The functional inverse a of the Ackermann function is defined by
a(m,n) = min{i > 1|A(i,4[m/n]) = n} (3)

for m > 0, n > 1. Here we take [0] =1 in contrast to its usual definition.

Note that a(0,n) = a(n,n). The last two definitions differ slightly from those
appearing in [10, 11, 12]. However, it is easily shown that the differences are bounded
by some additive constants (except for the functions a(0,n) and a(1,n)).

By means of the row inverse of the Ackermann function we can express the functional
inverse o as follows.

Lemma 2.1 a(m,n) = min{i > lja(i,n) < 4.[m/n]}.

For further treatment of the Ackermann function, we refer to 6, 7].

3 Dynamic Microsets

We describe the implementation of the Dynamic Microset structure. We have a
Union-Find structure UF to maintain the microsets.

We use the UF (i) structures as given in [6]. The reason for this is that this structure
allows us to perform Finds in O(4) time, where i can be chosen to be O(a(m,n)).
This is convenient for many applications of microsets, since these typically have a
big worst-case time for joining structures (within a fast amortized time), whereas
the queries, usually using the Finds, can be performed much faster. The reason for
the former is that together with microsets, a natural way to handle sets that are
bigger than the microset size is the “recompute the smallest one” strategy when
sets are merged in the structure. We refer to [8, 9] for examples, where queries take
O(a(m,n)) worst-case time.

For readers not familiar with the UF-structure given in [6], we give the outlines
of it that are relevant for our data structure. As usual, sets are represented by
rooted trees, where now the elements are stored in the leaves only. The trees are
layered, where a layer is a collection of all the nodes in a tree that have the same
distance to the root. All leaves are in one layer, and the layers (except for the root)
in a UF(7) structure are numbered consecutively from ¢ for the layer containing the
leaves down to some positive integer. The root of a tree is the set name. To each
layer j in each tree, a number lowindez(j) is associated (which is less than logn,
where n is the total number of elements), together with a pointer clus(j) to a node
in layer j — 1, called cluster node for layer j (if it exists). This information occurs in
5 list related to the corresponding set name. The Find operation follows root path
(hence, in O(i) time), whereas the Union operation joins two trees by putting all
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the nodes of some layer j of one of the trees below node clus(j) in layer j — 1 of
the other tree, or by putting all the nodes of layer j of both trees below the root (if
j = 1) or below a newly created node (if j > 1) in a new layer j —1 which is put
directly below the root. This is determined by the Ackermann values for parameters
7 and lowindez(j) (which need not to be computed for any practical situation). The
structure is recursive in the way that a UF(4) structure of which layer ¢ is deleted
satisfies the constraints of a UF(i — 1) structure (except for trees consisting of the
root only). For further details we refer to [6].

The UF(i) structures of [6] are used with the following modifications. We make
UF(4) trees ordered. Le., for each node z in a UF(i) tree, we relate a number to each
son of z, such that the sons of z (forming the list called sons(z)) are consecutively
numbered starting from 1 (and, hence, up to |sons(z)|). As usual, this gives an
order on all the nodes in a certain layer of a tree (viz., given by the lexicographical
order of the local names of the path from the root to a considered node z). The
order of the leaves of a tree, which are the elements of a set, is the order induced by
their local names in the set. Each set name s has a field tt(s) containing a number,
called the tree type. The tree type is a number that is uniquely related to a class
of ordered UF trees and contains all necessary information that is used in the UF
algorithms, on which we shall elaborate later. (It reflects the equivalence class of
all ordered U F-trees that are isomorphic with some U F-tree.) We further augment
the UF(q) trees as follows. Every internal node z in a UF(7) tree T has an array a.
of size size(ag) = 2M°8l*o™@M. (Hence, 3.size(as) < |sons(x)| < size(as).) Then
a,(k) contains a pointer to the son of node z with number k. (The array a, replaces
the list sons(z).) We shall further consider this representation with arrays later on.
Finally, we only deal with trees of at most g nodes, for some integer g that will be
chosen later.

When two microsets s and t are joined, this is done by performing UNION (s,1)
in the UF structure, followed by a call tt(s) := mergetrees(tt(s), tt(t)) to set the
tree type of the resulting tree tt(s). This is done as follows with respect to the UF
structure. For each layer j in a UF (%) tree with root s, instead of using one pointer
clus(s,j) to a cluster node for this layer (that, hence, is a node in layer j — 1),
we have two pointers clus;(s, j) and clus.(s,j) that point to the leftmost and the
rightmost node in layer j — 1. Then the Union algorithms are adapted as follows.
If (all the) nodes in a layer are generated or handled in some way, then this is done
in the order in which they occur(red) in the layer. When additional nodes are put
in the list sons(z) of node z, this is done for the array a, as follows. Nodes are
added in array a, until it is filled up. If az is full and a node must be added, then
it is replaced by a new array of double size, with the same contents on the “old”
positions as the old one. For each node y of an old UF-tree that is removed, the
corresponding array is given free. (In the full version of [6], this refers to Figure 7,
lines 9 and 16 of Figure 6, and Figure 4.)



Note that the Union operation is deterministic, so that the mergetrees operation
is determined by the tree types alone. We will give procedure mergetrees in the
sequel.

. We have the following “local” operation to deal with the Union operation:

o mergetrees(tty, tty): return the tree type of the resulting tree if two trees of
type tt; and tt, are concatenated (in this order).

For operation Search we introduce the following local operation:

e treepath(tt,k): given the tree type tt, output the sequence of the numbers
related to the nodes on the root path of the node with local name k in a tree
of type tt.

Then Search(A,k) is computed by obtaining the tree type tt(A), performing
treepath(tt(A), k), which returns the number sequence seq, and then traversing
the UF tree downwards from the root by repeatedly taking the son with number
specified by seq, until we reach a leaf. This leaf is the k** element in set A.

Finally, for the Find(x) operation, which also outputs the local name of z in its set,
we have the following local operation on tree types. We take that i < logg for the

UF(i) structure used (which is a straightforward property for the meaningful use of

e local(tt,seq): given the tree type ¢t and the sequence seq of the (at most
log g) numbers related to the nodes on the root path of a leaf z, return the
local name of z.

We implement the local operations. To do this, we have the tables
MERGETREES, TREEPATH, and LOCAL, by which the operations can easily
be performed, and that contain the answers for the corresponding operations given
above (with the same parameters). The above operations can then be performed by
simple table lookup.

The tables can be computed as follows. For tables, only trees with at most g
nodes are considered (g is a number satisfying some constraints to be given later).
Generate all possible ordered rooted trees with leaves at the same depth being at
most log g and with at most g nodes, where the sons of each node are numbered
consecutively starting from 1 (related to each son as its order number), and where
the layers (except for the root) are numbered consecutively with numbers between 1
and log g, and where a value “lowindex” is assigned to each layer (-1 < lowindex <
logg). To each such tree, relate a distinct number t¢ as tree type (consecutively,
starting from 0), and put tt together with the tree in a table, the type table. Also,



compute the appropriate Ackermann values A(i, z) [6] and store them in a table too.
Then do the following, as far as the trees and computations are meaningful with
respect to the Union-Find data structure (e.g., the types tt; and tt; for procedure
MERGETREES should correspond to the same UF(i)) and yield trees of at most
g nodes.

e MERGETREES: for all existing tree types tt; and tt;, compute the corre-
sponding resulting tree by simulating the UNION(3) algorithm for the appro-
priate i (given by tt, and tty), if possible, and find the tree type tt' of this tree
in the type table (if any).

e TREEPATH: for all existing values of ¢t and k, obtain the sequence of the
numbers related to the nodes on the root path of the node with local name k
(if any).

e LOCAL: for all existing values of tt and seq, obtain the local name k of the
leaf for which the numbers of the nodes on the root path correspond to the
sequence seq (if any).

Note that the number of the ordered trees (without the layer numbers and the
lowindex numbers) is at most O(2%), which can be seen by using the well-known
up-down coding of trees (a traversal on the tree starting at the root gives a binary
sequence of length 2g — 2, where a 0 is generated if an edge is traversed downwards
and a 1 is generated if an edge is traversed upwards). Thus, the total number of tree
types is O(2%.1log g.(log g + 1)%89) (taking into account the layer numbers and the
lowindez numbers), which is O(2%). Hence, writing F(g) = 229 log g.(log g +1)'89,
all these computations take O(F*(g).g.F(g)-9 + F(g)-9.9 + F(g).g'%89%.9) = O(279)
time, using that the Union operation can be simulated in O(g) time, that the tree
type list can be checked in O(F(g).g) time, and that local computations inside a
tree can be done in O(g) time. If g < Llogn, then O(27) = O(n), and the tables
also take O(n) space (the implementation of a tree in the type list takes O(g) space.)
Finally, the numbers representing the tree types (and the other numbers occurring
above) can be stored in one machine word if g < 1 .wordsize.

By means of these operations our original data structure can be implemented. Now,
the Merge and Find operations work in the same order of time as needed to perform
these operations in the UF' data structure. By means of operation treepath(tt, k),
the operation Search(A, k) works in time O(depth) as well, where depth is the depth
of the UF-tree for A.

For the “dynamic arrays” a., we do the following. We know that for n elements,
the space needed for all the occupied array positions is at most 2n, since there are
at most 2n nodes in the UF structure. Therefore, we have a total size of at most 4n
for all the needed storage together, and we use an array A[1..8n] to simulate these
arrays. To do this, for a node z, ind(z) is an index in [1..8n], and s(z) is the size
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of a;. The values a,(k) for 1 < k < s(z) are stored as A[ind(z) + k — 1], thus a,
occupies the part Afind(z)...ind(z) + s(z) — 1], and these parts of array A do not
overlap for different . Conversely, a separate field of A[ind(z)] contains a pointer
to node z (where these fields for those positions that are not equal to some ind(y)
just contain nil). Finally, we have an index free that indicates a position such that
A[free..8n] is not occupied by any a,. '

To claim a new a, of size s(z), we just make ind(z) := free and free := ind(z) +
s(z), where the old values of the old a, are copied to the appropriate positions. If
the new memory block doesn’t fit into A (free > 8n + 1), then the entire structure
is rebuilt such that all blocks occupy a consecutive beginning part of A.

The time complexity of this strategy is O(n) time plus O(1) amortized time per
newly occupied position in an array. This is seen as follows. Obviously, claiming a
new array takes O(s(z)) time, which corresponds to O(1) time per “added” position,
since each time a new array is claimed for a node z, the size s(z) is doubled. On
the other hand, rebuilding the entire structure takes O(n) time, which also can be
charged to each newly claimed array for O(s(x)) time (this is because after each
rebuilding at most the first half of array A is filled, and rebuilding is not started
until the second half of the array has been claimed completely). Hence, if this O(1)
time is charged to setting the contents of an array position, this does not increase
the order of time complexity of the algorithms (apart from O(n) time in total).

By applying UF (i) for some i, we thus obtain a dynamic microset structure called
DM(i). To be able to initialise structures DM(:) (UF(:)) (1 < 7 < logg) into
collections of given sets, the initial tree types for UF(¢) trees (1 < i < logg) are
stored in a separate table, with as parameters the number of elements (i.e., the
number of leaves) and the number ¢ with 1 < ¢ < logg. (This table has a size at
most g.logg.)

We have the following theorem. We take g = 2b and we replace ¢ by |logg] if
i > log g; this does not influence the analysis since a(i, h) < 4 for ¢ > |logg|, h < g.
The time complexity follows from [6] and the above observations for the microset
structure.

Theorem 3.1 A DM(i) structure and the algorithms that solve the dynamic mi-
croset problem with b < min{ﬁ log n, fwordsize} can be implemented such that the
following holds. The total time that is needed for all Merge operations for a universe
with n elements is O(n.a(i,n)) and the time needed for a Find or Search opera-
tion is O(i), whereas the initialisation can be performed in O(n) time and the entire

structure takes O(n) space (i > 1, n > 2).

By applying the optimal structure UF(a) as in [6] (Section 5), we obtain the struc-
ture called DM(a), and we get the following theorem.



Theorem 3.2 A DM(a) structure and the algorithms that solve the dynamic mi-
croset problem can be implemented with b < min{Z logn, fwordsize} such that the
following holds. The total time needed for all Merges and m Finds and Searchs s
O(n+m.a(m,n)), while the f** Find or Search takes O(a(f,n)) time, and where n
is the total number of elements (n > 2). The initialisation takes O(n) time and the
entire structure takes O(n) space.

In case we want to extend the collection of elements from time to time (insertion of
a new element in the universe), we do this for as for the Union-Find structure, where
each transformation (rebuilding) of the Union-Find structure yields a recomputation
of the appropriate tables. We now take g = 4.2.b (since the transformation occurs
at the latest when the number of elements becomes 4 times as large as the previous

transformation), and, hence, b < min{ logn, 5;wordsize}.

4 Applications

The dynamic microsets as developed in this paper can be applied in various problems
that deal with incremental computation. Examples of these are the following.

e Maintaining the triconnected components in a graph while new edges or nodes
are inserted one by one.. We refer to [§].

e Incremental planarity testing for general graphs, where again edges and nodes
may be inserted in the graph, as long as it stays planar, and where it can be
tested at any moment whether an edge may be inserted. We refer to [9]. This
improves the results in [1, 13].

e Maintaining the 4-edge-connected components in a graph while new edges or
nodes are inserted one by one [14].

All these algorithms run in time O(n + m.a(m,n)), where n, m define the problem
sizes (n is the number of nodes, and m is at most the total number of operations).
Also, an incremental structure for trees can be obtained [9], that supports generalized
nearest common ancestor queries, where e.g. two trees may be linked by a new edge
or by the identification of two times two nodes (with the deletion of an appropriate
edge), or where trees are partitioned into subtrees that may be joined and that are
treated as one for alternative nca-queries (returning appropriate “sons” of nca’s),
thus giving an extension of the operations supported in [4].



5 Conclusion

We remark that dynamic microsets can be applied as an abstract data structure,
and that it therefore can be used as a building block. It enables algorithms to make
use of the power of direct addressing in a RAM, especially incremental algorithms.
Finally, since the Union-Find problem is part of the dynamic microsets problem, it
is easily seen by [2] that the structure is optimal on a RAM.
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