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Abstract

In this paper we present a linear time and space algorithm for constructing
a visibility representation of a planar graph on an (|2n] — 3) x (n — 1) grid,
thereby improving the previous bound of (2n - 5) x (n — 1). To this end we
build in linear time the 4-block tree of a triangulated planar graph.

1 Introduction

The problem of “nicely” drawing a graph in the plane has received increasing at-
tention due to the large number of applications [3]. Examples include VLSI layout,
algorithm animation, visual languages and CASE tools. Several criteria to obtain
a high aesthetic quality have been established. Typically, vertices are represented
by distinct points in a line or plane, and are sometimes restricted to be grid points.
(Alternatively, vertices are sometimes represented by line segments.) Edges are of-
ten constrained to be drawn as straight lines or as a contiguous set of line segments
(e.g., when bends are allowed). The objective is to find a layout for a graph that
optimizes some cost function, such as area, minimum angle, number of bends, or
satisfies some other constraint (see [3] for an up to date overview).

One of the most beautiful ways for drawing G is by using a visibility representa-
tion. In a visibility representation every vertex is mapped to a horizontal segment,
and every edge is mapped to a vertical line, only touching the two vertex segments
of its endpoints. It is clear that this leads to a nice and readable picture, and it

*This work was supported by ESPRIT Basic Research Action No. 7141 (project ALCOM II:
Algorithms and Complezity). Part of this work was done while visiting the Graph Theory workshop
at the Bellairs Research Institute of McGill University (Montreal), Feb. 12-19, 1993.
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Figure 1: Example of a visibility representation.

therefore gains a lot of interest. It has been applied in several industrial applications,
for representing electrical diagrams and schemas (Rosenstiehl, personal communi-
cation). See Figure 1 for an example. Otten & Van Wijk showed that every planar
graph admits such a representation, and a linear time algorithm for constructing it
is given by Rosenstiehl & Tarjan [16] (independently, Tamassia & Tollis [17] came
up with the same algorithm). The size of the required grid is (2n — 5) x (n - 1),
with n the number of vertices. The algorithm is based on a so called st-numbering:
a numbering vi,..., v, of the vertices such that (v;,v,) € G and every vertex v;
(1 <i<n)has neighbors v; and vy, with j < i < k. The height of the drawing is
the longest path from v; to Un, Which has length at most » — 1. The width of the
drawing is the longest path in the dual graph, which is f—1, where f is the number
of faces in G (by Euler’s formula: m S3n-6and f=m—n+ 2).

The algorithm is used in several drawing algorithms. We mention here the al-
gorithm of Tamassia & Tollis [18] for constructing an orthogonal drawing, and the
work of Di Battista, Tamassia & Tollis [5] for computing constrained visibility rep-
resentations. Rosenstiehl & Tarjan also discuss the open problems concerning the
grid size of visibility representations [16]. The requirement of using a small area
seems to become a core area in the research field of graph drawing, due to the im-
portant applications in VLSI-design and chip layout (e.g., see the titles and contents
of [1, 4, 10]).

In this paper we show that every planar graph can be represented by a visibility
representation on a grid of size at most (I3n] = 3) x (n - 1). This improves all
previous bounds considerably. An outline of the algorithm to achieve this is as
follows. Assume the input graph G is triangulated (otherwise a simple linear time
algorithm can be applied to make it so [12, 14]). Then we split G into its 4-connected
components, and construct the 4-block tree of G. We show that we can do this in



linear time for triangulated planar graphs, thereby improving the O(n-a(m, n)+m)
time algorithm of Kanevsky et al. [9] for this special case. To each 4-connected
component the algorithm of Kant & He is applied, who showed that if the planar
graph is 4-connected, then a visibility representation of it can be constructed with
grid size at most (n — 1) x (n — 1) [18]. The representations of the 4-connected
components are combined into one entire drawing, leading to the desired width.

The paper is organized as follows. In Section 2 we deliver the necessary defi-
nitions, theorems and the algorithm for constructing a visibility representation. In
Section 3 we give our framework for computing a more compact visibility representa-
tion. In Section 4 we show that constructing a 4-block tree of a triangulated planar
graph can be constructed in linear time. Section 5 contains some final remarks and
open questions.

2 Definition and Backgrounds

Let G = (V, E) be a planar graph with n vertices and m edges. A graph is called
planar if it can be drawn without any pair of crossing edges. A planar embedding
is a representation of a planar graph in which at every vertex all edges are sorted
in clockwise order when visiting them around the vertex with respect to the planar
drawing. The embedding divides the plane into a number of faces. The unbounded
face is the erterior face or outerface. A cycle of length 3 is a triangle. A planar
graph is triangulated if every face is a triangle. A triangulated planar graph has
3n — 6 edges and adding any edge to it destroys the planarity. A cycle C of G
divides the plane into its interior and exterior region. If C contains at least one
vertex in its interior and its exterior, then C is called a separating cycle. A graph
G is called k-connected, if deleting of any k — 1 vertices does not disconnect G. In
our algorithms we need the following theorem of Kant & He.

Theorem 2.1 ([13]) There ezists a labeling of the vertices v, = U,V = V,13,...,
Un = w of a triangulated 4-connected planar graph G with outerface u,v, w, meeting
the following requirements for every 4 < k < n:

1. The subgraph Gix_, of G induced by v1,v2,...,vk_1 is 2-connected and the
boundary of its exterior face is q cycle Cy—y containing the edge (u,v).

2. v is in the exterior face of Gx_1, and its neighbors in Gy_, form a (at least
2-element) subinterval of the path Cy_; —{(u,v)}. Ifk < n—2, vx has at least
2 neighbors in G — Gr_;.

We will call this ordering the canonical 4-ordering. It is shown in [13] that a
canonical 4-ordering can be constructed in linear time for a 4-connected triangular
planar graph G. Moreover, the ordering can be made such that Un—1 is a neighbor
of both v; and wv,,. Every canonical 4-ordering of G is also an st-numbering of G.
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Let all edges (v;,v;) be directed v; — v; if 7 > 4. Then all incoming edges of any
vertex v in G appear consecutively around v, as do all outgoing edges, in any planar
embedding of G. in(v) and out(v) denote the number of incoming and outgoing edges
of v, respectively. Let v be a vertex with incoming edges from vertices u,,... s Uin(v)
(from left to right) and outgoing edges to vertices wy, ..., Wout(v). We call u; the
leftverter of v and win(y) the rightvertez of v. wy is called the leftup of v and wouyy)
is called the rightup of v (see Figure 2). The following lemma is useful:

leftup rightup
left(v) v right(v)
rightvertex
leftvertex

Figure 2: Properties of planar st-graphs.

Lemma 2.2 Let vy, vs,...,v, be a canonical 4-ordering of a 4-connected triangular
planar graph G, such that v,_; is a neighbor of both v, and v,. Then the numbering
Ui = Up—iq1 (With 1 < i< n)is also a correct canonical 4-ordering u,,...,u, of G.

Proof: By 4-connectivity of G, V1,Vn-1 and v, form one face in G, hence the
vertices u;, u; and u, are forming one face. Every vertex u; (2<i<n-— 1) has at
least 2 incoming and 2 outgoing edges, since vertex v,_;;; has at least 2 outgoing
and 2 incoming edges. From this observation also the 2-connectivity of G, the in-
duced subgraph on uy, ..., u;, follows, which completes the proof. O

The boundary of every face consists of exactly two directed paths in G [16, 17).
We define left(e) (right(e)) to be the face to the left (right) of e. The face separating
the incoming from the outgoing edges in the clockwise direction is called left(v) and
the other separating face is called right(v).

Vertex v; has no incoming edges (source) and v, has no outgoing edges (sink).
Let d(v) denote the length of the longest path from vy to v. Let D = d(v,). G*
denotes the dual graph of G: every face of G is directed by a vertex in G*, and there
is an edge between two vertices in G*, if the corresponding faces in G share an edge.
We direct the edges of G* as follows: if F; and F, are the left and the right face of
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Figure 3: The canonical 4-ordering and corresponding visibility representation.

some edge (v,w) of G, direct the dual edge from F} to F. if (v, w) # (v1,v,) and
from F, to F if (v,w) = (vy,v,). G* is also a planar st-graph. For each node F of
G*, let d*(F) denote the number of nodes on the longest path from the source node
of G* to F. Let D* denote the maximum of d*(F). The algorithm for constructing
the visibility representation of Rosenstiehl & Tarjan [16] and Tamassia & Tollis [17]
can now be described as follows:

VISIBILITY(G);
compute an st-numbering for G;
construct the planar st-graph G and its dual G*;
compute d(v) for all vertices in G and d*(F) for all vertices in G*;
for each vertex v # s,t do
draw a horizontal line between (d*(left(v)), d(v)) and (d*(right(v)) — 1,d(v));
rof;
for vertex s, draw a horizontal line between (0,0) and (D* -1,0);
for vertex t, draw a horizontal line between (0, D) and (D* —- 1, D);
for each edge (u,v) # (s,t) do
draw a line between (d*(left(u,v)), d(u)) and (d*(left(u,v)), d(v));
rof;
for edge (s,t), draw a line between (0,0) and (0, D);
END VISIBILITY(G);

In the remaining part of this paper, I'(G) denotes the drawing, obtained by
applying VISIBILITY(G). y(v) denotes the y-coordinate of the segment of vertex v,
and z(u,v) denotes the z-coordinate of edge (u,v) in I'(G). Notice that z(v1,vn) <
z(v1,v2) < z(v2,v,) in T(G). The size of the drawing is the size of the smallest
rectangle with sides parallel to the z- and y-axis that covers the drawing. See
Figure 3 for a 4-connected triangular planar graph G with a canonical 4-ordering,
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and the corresponding visibility representation I'(G). (The small squares in the
figure represent the vertices of G* and the integers in the squares represent their d*
values.)

Theorem 2.3 ([18]) If G is a 4-connected triangular planar graph and we take
the canonical 4-ordering as st-ordering, then the algorithm VISIBILITY constructs a
usibility representation of G on a grid of size at most (n—1) x (n — 1) in linear
time and space.

3 A General Compact Visibility Representation

In this section we show how we can construct a visibility representation of a planar
graph G on a grid, yielding a width smaller than 2n — 5. We assume that G
is triangulated (otherwise apply an arbitrary linear time and space triangulation
algorithm [12]). To apply the result of Theorem 2.3 we split G into its 4-connected
components. Since G is triangulated, a 4-connected component of G is a 4-connected
triangulated planar subgraph of G. From this we construct the 4-block tree T of G:
every 4-connected component G, of G is represented by a node b in T. There is
an edge between two nodes b and ¥ in T, if the separating triplet belongs to both
G, and Gy. By planarity every triplet of three vertices is a separating triangle
and belongs to precisely two 4-connected components. The separating triplet is an
interior face in G} and the exterior face of Gy. We show in Section 4 that T can be
computed in linear time and space for triangulated planar graphs. See Figure 4 for
the 4-block tree of the graph in Figure 1.

We root T at an arbitrary node b. We compute a canonical ordering for G,,
as defined in Theorem 2.1, and direct the edges accordingly. In the algorithm, we
traverse T' top-down and visit the corresponding 4-connected components. Let ¥
be a child of b in T, and let V(Gy) denote the set of vertices of Gy. Let u,v, w be
the separating triplet (triangle) of Gy. Assume the edges are directed u — v and
v = w in G,. We define ¢(Gy) = v. Using Lemma 2.2, we have two possibilities for
computing a canonical ordering in Gy (let n’ = |V(Gy)|):

NORMAL(Gy) We set u = v;,v = v; and w = v, and compute a canonical ordering
V1, V2,...,Un for Gbl,

REVERSE(Gy) We set u = uy,v = uy and w = u;, and compute the canonical
ordering u;,us,...,un to Gy. Then the ordering is reversed: we set v; :=
Un/ i1, for all 7 with 1 <1 < n'.

In NORMAL(GW ), v has number v,, in REVERSE(Gy), v has number v,/_;. In both
orderings, 4 = v; and w = v,. See also Figure 5.

Both numberings will be applied in the algorithm to achieve a more compact
visibility representation. We introduce a label I(v) for each vertex v, which can have



Figure 4: The 4-block tree of the graph in Figure 1.

the value up, down or unmarked. If l(v) = unmarked, then v is called unmarked,
otherwise v is called marked. Assume we visit node ¥ in T, and we have to compute
a canonical ordering for Gy. Let v = ¢(Gy). The value of I(v) implies whether we
use NORMAL(Gy) or REVERSE(Gy): if [(v) = up, we apply NORMAL(Gy), if I(v) =
down, we apply REVERSE(Gy ), otherwise we can do both. We will show later that
using these marks, the increase of the width when drawing Gy “inside” G, is at
most n’ — 3 instead of n' — 2, when I(v) = up or down (b the parent-node of ¥’ in T).

This method is applied to all 4-connected components of G. After directing the
edges, this yields a directed acyclic graph, and applying a topological ordering yields
an st-numbering of the vertices. Applying the algorithm VISIBILITY(G) now gives



the entire drawing. The complete algorithm can now be described more precisely as
follows:

COMPACTVISIBILITY (input: a planar graph G)
triangulate G;
construct the 4-block tree T of G, and root T at arbitrary node b;
compute the canonical 4-ordering for G, and direct the edges of G;
let n' = |V(Gy)l; l(v2) = down, l(vy_;) := up;
{(v;) := unmarked for all v; € Gy, i # 2,1 # n' — 1;
for every child b’ of b do DRAWCOMPONENT(GYy ) rof;
compute an st-numbering in the directed graph G;
apply VISIBILITY to G;
END COMPACTVISIBILITY

procedure DRAWCOMPONENT(G');
begin
Case I(c¢(G")) of
unmarked : NORMAL(G'); l(c(G")) := down; l(vjv(ey-1) := up;
up : NORMAL(G'); U(c(G")) := unmarked; l(vjy(cr)-1) = up;
down : REVERSE(G'); l(c(G")) := unmarked; I(vy) := down;
for every v; € G’ with 2 < i < |V(G")| — 1 do set {(v;) := unmarked rof;
direct the edges of G’ v; — v; iff j > 3;
for every child 4" of current node ¥’ in T do DRAWCOMPONENT(Gy) rof;
end;

Since G is triangulated, the following lemma can easily be verified:

Lemma 3.1 Let G be a triangular planar graph, and let u = rightvertez(v) and w =
rightup(v). Setting z(u,v) := z(v, w) := max{z(u,v), z(v,w)} does not increase the
width of I'(G).

Let now ¥’ be a (non-root) node in T" with parent b in T. Let G’ be the subgraph
of G, consisting of all visited 4-connected components in COMPACTVISIBILITY. Let
u,v,w be the outerface of Gy, with ¥ — v and v —» w in G,. The following lemma
follows (n’' = |V(Gy)|) :

Lemma 3.2 If z(u,w) < z(u,v) < z(v,w) in T(G'), then applying NORMAL(Gy)
has the result that the width of I'(G' U Gy) is at most the width of I'(G') + n' — 3.

Proof: In I'(Gy), z(u,v) — z(u,w) < n' — 2 and z(v,w) — z(u,w) <n' —1 by
Theorem 2.3. In I'(G'), z(u,v) — z(u,w) > 1 and z(v, w) — z(u, w) > 2. Hence the
width of I'(G' U Gy) is at most the width of I'(G') + (n' — 1) — 2. a



Shape when mark(v) Shape when mark(v) = up

= unmarl
Shape of the outerface Shape of the outerface
when applying Visibility when applying Visibility
Normal Representation Reverse Representation

Figure 5: The shape of the faces with respect to I(v), NORMAL(Gy) and
REVERSE(Gy).

The same can be proved for z(v,w) < z(u,v) < z(u, w) and applying NORMAL,
or when z(u,w) < z(v,w) < z(u,v) or z(u,v) < z(v,w) < z(u,w) and applying
REVERSE. See Figure 5 for an illustration of this. Assume now that G’, b and V'

are defined as in the previous lemma. The following lemma can now be proved. Let
v = C(Gbl).

Lemma 3.3 If v is marked, then after applying NORMAL(Gy) if l(v) = up and
REVERSE(Gy) if I(v) = down, the width of T'(G' U Gy) is at most the width of
I'(G") +n' -3,

Proof: Let u,v,w be the separating triplet of Gy, with « — v and v — w in
Gy, thus v = ¢(Gy). If out(v) = 1 in G, then I(v) = up. Hence either z(v,w) <
z(u,v) < z(u,w) in ['(G’) or we can change I'(G') without increasing the width (by
Lemma 3.1) such that z(u,w) < z(u,v) < z(v,w) in [(G'). Applying Lemma 3.2
yields the desired result. The same follows when in(v) = 1 in G}, thus when I(v) =
down.

The remaining case is when v was ¢(Gy) for some 4" # ¥, and at the moment
of visiting b", I(v) = unmarked. Let the separating triplet of Gy be v, v, w’, with
v’ = v and v — w'. Let G” be the subgraph of G, consisting of the visited
4-connected components at the moment of visiting Gy». By Lemma 3.1 we may
assume that z(v',v) = z(v, w') in [(G").

Consider the case z(u', w') < z(/,v) (the case z(v/,v) < z(u/, w') goes similar).
In COMPACTVISBILITY NORMAL(Gy) is applied. Since in(v) = 1 in Gy, we can
set 2(v', v) to z(v,w') in [(Gy) without increasing the width (see Lemma 3.1). This
has the result that z(v,leftup(v)) < z(v',v) in I'(G"). If w = leftup(v) then the proof



is completed by observing that z(u,w) < z(v,w) < z(u,v) in I'(G') and applying
Lemma 3.2.

If w # leftup(v), then w = rightup(v) and u = rightvertezr(v). By Lemma 3.1 we
may assume that both z(u',v) = z(v, w') and z(rightvertez(v),v) = z(v,rightup(v))
holds in I'(G"). But since z(v',v) < z(v,w’) holds in ['(Gy) it directly follows that
z(rightvertez(v), v) < z(v,rightup(v)) in I'(G" U Gy»). Again the proof is completed
by observing that z(u,v) < z(v, w) < z(u,w) in I'(G’) and applying Lemma 3.2. O

See Figure 6 for an illustration of the proof of Lemma 3.3.

(a) The face and the 4-connected (b) The 2 different possibilities for drawing
component. inside the face.

Figure 6: Illustration of Lemma 3.3.

Lemma 3.4 The width of the visibility representation of G is at most |3n| — 3.

Proof: Let b,...,b, be the nodes of T in visiting order. Let K; be the number
of marked vertices after visiting b; (1 < i < p). Let K; be the initial number of
marked vertices. Ky = 2, since initially only v, and v, —; are marked. When we
visit Gy, then vertex v, or v,y_; is added to the current graph and is unmarkded. If
l(c(Gy;)) # unmarked, then the increase in width is at most |V (Gs,)|—3 and I(c(Gy,))
becomes unmarked, i.e., K; = K;_;. If l(c(Gs,)) = unmarked, then the increase in
width is at most |V (Gy,)| — 2 and I(c(Gy)) becomes down, i.e, K; = K;_,+2. Hence
in both cases when visiting Gj,, the width of the drawing increases by at most
V(Gs,)| -3+ %{'-‘—1 |[V(Gy| — 3 is also precisely the number of added vertices of
Gy.

Since the width of I'(Gy, ) is at most [V(Gy, )| — 1 and K, is even and K, < n—2
(the source and the sink of G never get marked), it follows that the total width of
I'(G)isatmost n— 1+ |Begfe|=n 14 |2=2=2) <3| 3, 0

Regarding the time complexity we show in Section 4 that the 4-block tree can be
computed in linear time. Computing a canonical 4-ordering also requires linear time
[13]. We maintain the direction of the edges of the visited 4-connected components,
and from this ¢(Gy) can be determined directly in O(1) time. Finally VISIBILITY(G)
is applied, which requires linear time [16, 17]. This completes the following theorem.
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Theorem 3.5 There is a linear time and space algorithm for computing a visibility
representation of a planar graph G on a grid of size at most (|2n] — 3) x (n —1).

Consider the graph of Figure 1. In Figure 4 the 4-block tree is given. The
visibility representation of the root-block is given in Figure 3. Drawing the other
4-connected components inside and applying VISIBILITY leads to the drawing as
given in Figure 1. Notice that I(D),!(G) and I(I) are down, I(F),I(J) and I(K) are
up, all the other vertices of the graph are unmarked. Hence 6 vertices are marked,
and the total width is at most n — 1+ g = 15. (The width in the drawing in Figure
1is 12.)

4 Constructing the 4-block tree

In this section we show a method for constructing the 4-block tree of a triangulated
planar graph. Since this class of graphs has some special properties, there is no need
to use the complicated algorithm of Kanevsky et al., which builds a 4-block tree of
~ a general graph in O(n - (m, n) +m) time [9]. In our case a separating triplet is a
separating triangle, which forms the basis for the algorithm.

For determining the separating triangles, we use the algorithm of Chiba &
Nishizeki [2] for determining triangles in a graph. (In [15], Richards describes an-
other linear time algorithm.) Chiba & Nishizeki first sort the vertices in vy,...,v,
in such a way that deg(v;) > deg(vq) > ... > deg(v,). Observing that each triangle
containing vertex v; corresponds to an edge joining two neighbors of v;, they first
mark all vertices u adjacent to v; (for the current index ). For each marked u and
each vertex w adjacent to u they test whether w is marked. If so, a triangle v;, u, w
is listed. After this test is completed for each marked vertex u, they delete v; from
G and repeat the procedure with v;;;. Starting with v;, this algorithm lists all
triangles without duplication in n — 2 steps.

In our case, we are looking for separating triangles. If a triangle is not separat-
ing, then it is a face in the triangulated planar graph. To test this, we store the
embedding of the original graph also in adjacency lists, say in adjacency lists Adj(v)
for all v € G. If a triangle u,v, w is not separating, (i.e., a face), then u and w
appear consecutively in Adj(v), which can be tested in O(1) time by maintaining
crosspointers. To compute the time complexity of this algorithm, Chiba & Nishizeki
use the arboricity of G, defined as the minimum number of edge-disjoint forests into
which G can be decomposed, and denoted by a(G) [7].

Lemma 4.1 ([2]) X(, .)er min{deg(u),deg(v)} < 2-a(G) - m.

Using this lemma Chiba & Nishizeki show that the time complexity of the algo-
rithm is O(a(G) - m). If G is planar then a(G) < 3 ([7]), so the algorithm runs in
O(n) time in case G is planar.
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triangle-list L

Figure 7: The data structure for constructing the 4-block tree.

To obtain the 4-block tree we introduce now the following data structure: Let
L be the list of separating triangles. L(u, v, w) denotes the record in L, containing
separating triangle u,v,w. L(u,v,w) contains the edges (u,v),(v,w) and (w,u),
and there are crosspointers between L and the edges and vertices in G.

We now want to “sort” the separating triangles, containing edge (u,v). Hereto

we do the following: Let Adj(v) = wy,wy, ..., w4—1 (in clockwise order around v with
respect to a planar embedding). We sort the separating triangles v, w;, w; stored at
v in order with respect to wy,...,wq—;. If there are separating triangles v, w;, w;

and v, w;, w; then we set a pointer from edge (v, w;) in L(v, w;, w;) to edge (v, w;)
in L(v,w;, wy), if k¥ > j (addition modulo d). We do this for every vertex v € G.
Of course, when visiting vertex w; and considering separating triangles v, w;, w; and
v, W;, Wk, there is no need to place another directed edge between L(v,w;, w;) and
L (’U, w;, wk) .

Observe now that when edge (u,v) in L(u,v,w) has no outgoing edge, then
this means that when we split G at (u,v), (v,w), (w,u) into two subgraphs, say
G, and Gy, then all other separating triangles, containing (u,v), belong to either
G, or G5. We start at an arbitrary separating triangle in L, say u,v,w, where
each edge in L(u,v,w) has either an incoming or an outgoing edge. We split the
graph at (u,v), (v,w) and (w, ) into two subgraphs, say G and G,. Let Adj(v) =
wo, ..., Wq—1 and let u = wp and w = w;, 0 < i < d. To obtain G; and Gy,
we split Adj(v) into two adjacency lists, say Adji(v) and Adjp(v) with Adji(v) =
Wo, ..., w; and Adja(v) = wi,...,we—1,wo (similar for Adj(u) and Adj(w)). Let
Adj1(v) correspond to G;. If all other separating triangles, containing (u,v), belong
to G4, then we introduce wy in Adj>(v). This yields that all other separating triangles
in L, containing (u,v), still point to the right edge in the data structure, viz. in the
adjacency list of G;. Testing whether the other separating triangles, containing
(u,v), belong to Gy or G; can be tested by checking whether (u,v) in L(u, v, w) has
an incoming or an outgoing edge. we introduce wg in Adj;(v). Similar is done for
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the edges (v, w) and (w,u) with respect to Adj(w) and Adj(u). We mark L(u,v,w)
as visited and delete the incoming and outgoing edges of L(u,v,w), and we continue
until all separating triangles in L are visited.

To construct the 4-block tree, we apply a simple traversal through the datas-
tructure for determining the connected components. The connections via the face
vertices give the connections in the 4-block tree. For every 4-connected component
we add pointers to its three vertices on the outerface. The complete algorithm can
now be described as follows: '

CONSTRUCT 4-BLOCK TREE
enumerate all separating triangles and store them in L;
sort the separating triangles and add directed edges in L;
while not every triangle in L is visited do
Let L(u,v,w) be a record in L such that each edge (u,v), (v, w) and (w,u)
in L(u,v,w) has either an incoming or outgoing edge;
split the graph at edges (u,v), (v, w), (v, w);
set a pointer between the two corresponding faces;
od;
determine the connected components and construct the 4-block tree;
END CONSTRUCT 4-BLOCK TREE

Theorem 4.2 The 4-block tree of a triangulated planar graph can be constructed in
linear time and space.

Proof: Determining and storing the separating cycles requires O(n) time,
because every planar graph has at most n — 4 separating triangles. Sorting the
separating triangles at vertex v can be done in O(deg(v)) time by using (double)
bucket-sort, since vertex v belongs to at most deg(v) —2 separating triangles. Hence
the total sorting time is O(n). By maintaining a sublist of L where we store all sep-
arating triangles, which can be visited next, we can find the next separating triangle
in O(1) time. Since there are crosspointers between the edges and vertices in G and
the corresponding entry in L, we can split the graph at the separating triangle in
O(1) time. Determining the connected components and building up the 4-block tree
is achieved by a simple traversal through the graph, which completes the proof. O

5 Final Remarks

In this paper a new and rather simple method for constructing a visibility represen-
tation is given, based on the canonical ordering for 4-connected triangular planar
graphs, the 4-block tree, and the general algorithm for constructing a visibility rep-
resentation, introduced by Rosenstiehl & Tarjan [16] and Tamassia & Tollis [17].
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Figure 8: A graph requiring an ([3n] — 3) x (n — 1) grid by COMPACTVISIBILITY.

We decreased the width from 2n—5 to I_%nj —3. This bound is tight, since there ex-
ist planar graphs, for which the algorithm COMPACTVISIBILITY indeed requires an
(12n]—3)x (n—1) grid (see Figure 8). For 4-connected planar graphs, it was already
known that a visibility representation can be constructed on an (n —1) x (n — 1)
grid [13].

The important open question is whether the bound of I_%nj — 3 for the width is
also a lower bound, or in other words: do there exist planar graphs with n vertices,
for which any visibility representation requires a grid with width at least %n+ 0(1)?
This is a hard problem, and it is even difficult to construct a class of planar graphs
with 7 vertices, for which any drawing requires a width of size ¢ - n with ¢ > 1.

Another (difficult) technique for optimization is the following: From the algo-
rithm it directly follows that for every face u,v,w in the visibility representation
of the visited components so far, not drawn as a rectangle, we can set l(v) = up
or down (according to the shape of the face), when v — v and v — w. By the
algorithm VISIBILITY it follows that  is the rightvertex of v and w is the rightup of
v. The problem which arises now is: how can we dynamically maintain the longest
paths in the dual graph of G, while inserting the 4-connected components?

We also presented an algorithm for the construction of the 4-block tree. A linear
time implementation in the case of triangulated planar graphs is presented. When
the planar graph is not triangulated, then the complexity of constructing a 4-block
tree is still O(n - a(m,n) + m), by applying the general algorithm [9]. The open
question is whether determining the 4-connected components of a planar graph can
be computed in O(n) time. From this it would not be too difficult to compute the
4-block tree in linear time. The problem is already linear time solvable in case of
2- and 3-connected components (see e.g., Hopcroft & Tarjan (8]), hence solving this
open problem yields a nice generalization.

As a last subject we consider the method of triangulating planar graphs. It
would be interesting to triangulate G such that it is 4-connected. Indeed, G may
have separating triangles, in which case it is not possible. Suppose now G has no
separating triangles. (This can be tested in linear time.) Can we triangulate G such
that the triangulation is 4-connected? Or in general, can we triangulate G such
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that no new separating triangles are introduced? Can we construct a very compact
visibility representation of G without triangulating G? These problems have prac-
tical applications for our algorithm for constructing visibility representations, but
also for constructing the rectangular duals in [13]. We leave these questions for the
interested reader.
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