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Abstract

Traceable use is a helpful abstraction to recycling values in bounded wait-free sys-
tems. Several researchers have demonstrated the power of the traceable use abstraction in
constructing concurrent timestamping systems, snapshot variables, bounded round num-
bers. In this paper, we present an efficient implementation technique of the traceable use
abstraction, which is finally used in developing a new construction of concurrent times-
tamping systems. This new construction is much simpler, in fact better, than the other
traceable use abstraction based construction in the literature. The new implementation

exhibits that sometimes writer’s guessing is better than reader’s explicit telling.

Index Terms: Concurrent reading while writing; label; operation — read and write, labeling
and scan; operation execution; shared variable — safe, regular and atomic; timestamping

system, traceable use, wait-freedom.

1 Introduction

Consider an asynchronous multiprocessing system consisting of a set of objects that are read

and written by a set of processes. The system has no global clock or synchronization primitives.

"This research is partially supported by the Netherlands Organization for Scientific Research (NWO) under
Contract Number NF 62-376 (NFI project ALADDIN: Algorithmic Aspects of Parallel and Distributed Systems).



Each object is associated with a process (called owner) which writes it and the other processes
read it. One of the requirements of the system is to determine the temporal order of the
objects in which they are written. For this purpose, each object is given a label (also refer to
as timestamp) which indicates the latest (relative) time when it has been written by its owner
process. The crucial role of the timestamps is to maintain the ordering of various writings of
the objects. The processes label their respective objects in such a way that the object-labels
reflect the real-time order in which they are written. Such system is known as timestamping
system [14]. This system must support two operations, namely labeling and scan. A labeling
operation execution (Labeling, in short) assigns a new label to an object, and a scan operation
execution (Scan, in short) enables a process to determine the ordering in which all the objects
are written, that is, it returns a set of labeled-objects ordered temporarily. To construct a

timestamping system, one needs additional shared space apart from the space for the objects.

In this paper, we are concerned with those systems where operations can be executed
concurrently, i.e., in an overlapped fashion. Moreover, operation executions must be wait-
free, that is, each operation execution will take at most a fixed amount of time (the number of
accesses to shared space), irrespective of the presence of other operation executions and their
relative speeds. We require the labeling operation executions whose intervals are disjoint to
keep the right temporal order. On the other hand, we allow any ordering of labeling operation

executions with overlapping intervals.

Constructing concurrent timestamping systems has been of much interest recently. It is
a powerful tool for many concurrency control problems such as fefs-mutual exclusion [5, 17,
multiwriter multireader shared variables [26], probabilistic consensus [4, 1], fcfs l-exclusion
[10], etc. We are interested in constructing concurrent timestamping systems using shared
Read/Write variables (variables, in short) [18].

It is a trivial task to construct a timestamping system if the shared space is unbounded
(i.e., there is no limit on the size of some shared variables). Here, we are particularly interested
in bounded (shared space) systems. A bounded timestamping system is a timestamping system
with a finite set of labels. Such system should reflect the temporal order among all existing
objects, thereby the number of objects which may exist concurrently is bounded too. In the
rest of the paper, unless specified otherwise, by a timestamping system we mean a wait-free

bounded concurrent timestamping system.

The concept of bounded timestamps is introduced by Israeli and Li [14]. They also present
a system in which operation executions are sequential. A construction of bounded concurrent

timestamping system is first presented by Dolev and Shavit [6]. Their construction uses



shared variables of size O(n), where n is the number of processes in the system. Each labeling
operation execution requires O(n) steps, and each Scan O(n?logn) steps. (A step is a read
or write of a shared variable). Following Dolev and Shavit, several researchers have come out
with different varieties of constructions. The construction of Israeli and Pinhasov [15] uses
shared variables of size O(n?); labeling and scan operation executions require O(n) steps. The
construction of Dwork and Waarts [7] uses shared variables of size O(nlogn); labeling and
scan operation executions require O(n) steps. The construction of Dwork, Herlihy, Plotkin
and Waarts [8] uses shared variables of size O(n); labeling and scan operation executions
access O(n) shared variables. The construction of Gawlik, Lynch and Shavit [11] uses shared

variables of size O(n?); labeling and scan operation executions access O(n?) shared variables.

Among the constructions mentioned above, the one of Dwork and Waarts [7] is relatively
simple and efficient too. In their paper, they have introduced a powerful concept called
traceable use abstraction to recycling values of shared variables. Several researchers have
demonstrated the usefulness of the traceable use abstraction by constructing timestamping

systems [7, 8], atomic snapshot objects [2], bounded round numbers [9].

In this paper, we are interested in the constructions of concurrent timestamping systems
from the view point of the traceable use abstraction. Dwork and Waarts in 7] have presented
a technique to implement the traceable use abstraction, and have shown how it could be used
in constructing timestamping systems. There, each label is a vector of n private values, one for
each of n processes. The labels are read by executing a traceable-read function, and written by
executing a traceable-write procedure. When the traceable-read function is executed to read a
label, the executing process explicitly informs the other processes which of their private values
it is going to use. To determine which of its private values are currently in use, a process
executes a garbage collection routine. This routine helps processes to safely recycle their
respective private values. Each process maintains a separate pool of (at least) 13n? private
values. As mentioned earlier, both labeling and scan operation execution access O(n) shared
variables. Truly speaking, the actual complexity of labeling operation executions is O(n?),
because of the use of a complicated garbage collection routine that requires O(n?) steps. But,
the amortized complexity is O(n).

In this paper, we present an efficient implementation of the traceable use abstraction of
Dwork and Waarts, which is oriented towards a new construction of concurrent timestamping
systems. This construction is similar to that of Dwork and Waarts, but there are a lot
of differences. We have used a separate implementation technique for traceable-read and

traceable-write routines; we do not need a garbage collection routine. When a process executes
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the traceable-read function, it does not explicitly inform the other processes which of their
private values it is going to use. On the other hand, the executers of the traceable-write
procedure guess which private values of which processes are in use in the system. In the
proposed construction, each local pool of private values contains fewer than 2n? values. Above
all, the proposed construction is much simpler than that of Dwork and Waarts, and a little

efficient too. It also exhibits that sometimes writer’s guessing is better than reader’s telling.

The rest of this paper is organized as follows. Section 2 discusses a system model and
presents the problem statement precisely. A new construction of concurrent timestamping
systems is presented in Section 3, and its correctness proof in Section 4. Section 5 concludes

the paper.

2 Model, problem definition, and some notations

A concurrent system consists of a collection of asynchronous processes that communicate
through a set of initialized data objects. A concurrent timestamping system is an abstract
object V shared by a set of n asynchronous processes, P;, P,,...,P,. The object V has n
components, V[1..n]. Component V[p] is written by process P, and read by all other processes.
The system supports two activities, namely, writing new values in V, and determining the
temporal order between any two components of V. For this purpose, a field (other than data
value) called label or timestamp is associated with each component of V. When process P,
writes a new value from a well defined domain in V[p], it also assigns a new label to V[p|.
(From now onward, we will not consider the data values of the components of V.) The system
supports two types of operations, namely, labeling and scan. A labeling operation execution
by process P, determines and assigns a new label to V[p]. It may use all existing labels
of V[L..n], but it is not allowed to change the labels of other components than V[p]. A scan
operation execution returns a pair (I, <), where [ is a set of current labels, one for each process,
and < is a total order on I. Ordering among the subsets of labels returned by any Scan is
in fact the same as the total ordering on all the labeling operation executions no matter how
many labeling operation executions occurred while the labels were being scanned. Operation
executions of each process are sequential. However, operation executions of different processes
need not be sequential. Furthermore, we need operation executions to be wait-free, that is,
each operation execution will take at most a fixed amount of time, irrespective of the presence

of other operation executions and their relative speeds.



We denote the & th operation execution (Labeling or Scan) of a process P, by O][D"], kE>1.
If it is a Scan (alternatively, a Labeling), we denote it explicitly by SI[,"] (alternatively, LL’“]).

The label written by a labeling operation execution Lgk] is denoted by ZL'“].

We say an operation execution A precedes another operation execution B, denoted A —
B, if A finishes before B starts; A and B overlap if neither A precedes B nor B precedes A.
For operation executions A and B on a shared variable, A --~ B means that the execution of
A starts before that of B finishes. That is, if A --~ B, then either A — B or A overlaps B;
in other words, B /— A. We also assume that if B 4~ A, then A --~ B. That is, we assume
global time model [18].

A concurrent timestamping system must ensure the following properties [6, 7, 11].

P1. Ordering: There exists an irreflexive total order => on the set of all labeling operation

executions, such that the following two hold.

e Precedence: For any pair of labeling operation executions LI¥ and LI¥l, if LI¥ —
L¥1 then LI = LK1,

e Consistency: For any Scan SP returning (I, <), for any two labels I and il¥1 in 1,
1 < 1) i LI = LIF

P2. Regularity: For any label Il in 7 returned by a Scan SV, LI¥ begins before SH! ter-
minates, i.e., LI --~ SP! and there is no labeling operation execution LI¥1 such that
L — LTy gbl,

P3. Monotonicity: Let Sz[j] and SL[,J The a pair of Scans returning sets ! and 7/, respectively,

which contain labels Il and I*], respectively. If SU1 s S then k < K.

i

P4. Extended Regularity: For any label Il returned by a Scan syl i sbl LI*1 for any

k3

labeling operation execution LI¥1, then LI = L,

Intuitive meaning of the above four properties are as follows. The ordering property says
that all the labeling operation executions can be totally ordered which is an extension of their
real-time precedence order “—”. Moreover, if two different Scans return labels ! and I, then
both Scans will have the same order on the labels. The regularity property says that labels
returned by a Scan are not obsolete. The monotonicity property says that for any two Scans
ordered by “—", it is not the case that the preceding Scan returns a new label of a process
P, and the succeeding Scan an old label of P,. The monotonicity property does not imply that

labeling and Scan operation executions of all processes are linearizable [13]. It does imply the



linearizability of the Scans of all processes and labeling operation executions of one process [6].
The extended regularity property says that if a Scan precedes a labeling operation execution
L, then all labels returned by the Scan were assigned by labeling operation executions that

precede L in =.

In this paper we are interested in constructing concurrent timestamping systems from
Read/Write shared variables (variables, in short). Each such shared variable is written by
one process and read by one or more processes. In this paper, ‘Write’ and ‘Read’ are used as
nouns, referring, respectively, to a write operation execution and a read operation execution,
and ‘write’ and ‘read’ as verbs. Lamport [18] classifies shared variables in the following three

categories.

1. A safe variable is one in which a Read not overlapping any Write returns the most
recently written value. A Read that overlaps a Write may return any value from the

domain of the variable.

2. A regular variable is a safe variable in which a Read that overlaps one or more Writes
returns either the value of the most recent Write preceding the Read or of one of the

overlapping Writes.

3. An atomic variable is a safe variable in which the Reads and Writes behave as if they

occur in some total order which is an extension of the precedence relation.

A shared variable is boolean or multivalued depending upon whether it can hold only boolean or
any number of desired values. With these classifications we can define a hierarchy on shared
variables, with 1-writer 1-reader boolean safe variable in the lowest level and multiwriter
multireader multivalued atomic variable in the highest level. Several researchers [3, 12, 16,
18, 19, 20, 21, 22, 23, 24, 25| have shown how higher level variables can be constructed from

the lower level ones.

In the construction of concurrent timestamping systems presented in this paper we use
1-writer multireader atomic, 1-writer 1-reader atomic, 1-writer 1-reader regular, 1-writer mul-

tireader safe, and 1-writer 1-reader safe variables.

3 The construction

For the sake of convenience and better understanding, we first present an intuitive informal

description of a construction that uses unbounded shared space [7]. Each process maintains



a separate local pool of private values. The pools are of infinite size. The private values are
totally ordered and are known to all the processes. We would consider values are integer, and
the total order is the natural order. The private values of different processes are considered

different even if they have the same value.

A label is a vector of n values; its pth component represents a private value of process
P,. The current label of V[p] is denoted by I,[1..n] or simply I,. The current private value of
process P, is L,[p]. Initially, [,[p] = 1 and l,[g] = 0, for all ¢ # p. To determine a new label for
V[p], process P, reads all current private values of other processes P, namely [,[g], increments
its own private value [,[p] to obtain a new private value. The new label vector contains these
n values, and it is written atomically in V[p]. Since the same private value is not used twice
in labeling operation executions, no two labels in the system are the same. The ordering of
two label vectors is done by using the standard lexicographic order. A Scan simply reads all
the current labels and orders them using the lexicographic order. For any two labels, I, # [,,
the least significant indez in which they differ is the lowest k such that [,[k] # [,[k]. Then,
l, < 1, iff 1,[k] < l,[k]. This unbounded construction satisfies all the properties required for a

concurrent timestamping system. (For correctness arguments, please refer to [7].)

In the unbounded construction discussed above, every time a process P, executes a new
labeling operation, it uses a new (so far unused) private value greater than the previously used
ones. In a bounded construction, each process has a bounded number of private values, and
hence, it needs to use the same private value at different times, that is, it needs to recycle its
own private values. The following observation by Dwork and Waarts helps doing the recycling.

We quote them verbatim:

... for a system to be a concurrent timestamping system, every time a new pri-
vate value chosen by process P, need not be the one that was never used by P
beforehand; roughly speaking, instead of increasing its private value, it is enough
for P, to take as its new private value any value v of its private values that does
not appear in any labels, with one proviso: P, must inform the other processes

that v is to be considered larger than all its other private values currently in use.

We say for any two different private values v and v’ of process P currently in use in the system,
v < v’ iff v is issued before v’ by P;. Thus, in the bounded construction, the ordering among
the private values changes in time. For any two labels, [, # I, obtained by a Scan, if k is
the least significant index such that I,[k] # {,[k], then I, < I, iff [,[k] <& {;[k]. Now, we are

envisaged with two things in a bounded construction. First, at any given time there should
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not exist in the system two private values of process P, with the same value that were issued
by P, at different labeling operation executions. Hence, P, can recycle a private value only if
no processes are using it or will be using it shortly. Second, for any two private values v and
v' of P, currently in use, if v <, v’ then all other processes should know this ordering. Thus,
every time P, changes the ordering of two different private values, it should inform all the
other processes in advance. Roughly speaking, the traceable use abstraction of Dwork and
Waarts helps in achieving the above mentioned two objectives. Then, for all labels read by a
Scan, the labels are ordered lexicographically, based on the orderings <, for all processes 3.
The correctness of the bounded system directly follows from that of the unbounded system

mentioned above.

Here we present an efficient implementation technique to achieving the above mentioned
two objectives using traceable use abstraction. The new construction of concurrent times-

tamping systems is given in Figure 1.

We now introduce some terminology. The description of the construction has five parts:
shared variables declaration, TRACEABLE-WRITE procedure, TRACEABLE-READ func-
tion, LABELING procedure and SCAN function. The procedures and the functions are writ-
ten in a Pascal-type language. To avoid too many ‘begin’s and ‘end’s, some blocks are shown
just by indentation. A process P, executes the LABELING procedure to obtain and assign a
new label to V[p], and executes the SCAN function to report the temporal ordering of the la-
bels of V[1..n]. A shared variable z is read (respectively, written) by executing an instruction
‘read local-variable from z’ (respectively, ‘write local-variable in x’), where the local-variable
is local to the function or the procedure. The read-instruction assigns the value of x to the
local-variable, and the write-instruction writes the value of the local-variable in z. The writer
(owner) of a shared variable can retain the value of the variable in its local storage and refer
to it later on if needed, that is, it need not read the shared variable to determine the current
value of the variable. Nevertheless, for the sake of convenience and to avoid using many lo-
cal variables, we let the writer also read the shared variable. It also uses some private (non

shared) variables for each process. We assume that the private variables are persistent.

Let us consider operation executions of a process P,. In a labeling operation execution,
it selects a presently unused private value from its local pool of values, collects the current
private values of all other process, and then write these n values in V(p] as its new label.
The selection of a new private value is done in such a way that there is no trace of this
value in the system. The collection of the current private values of other processes is done
by executing the TRACEABLE-READ function, and the writing of the new label is done by

8



executing the TRACEABLE-WRITE procedure. An execution of the TRACEABLE-READ
function (TRACEABLE-WRITE procedure) is called a traceable Read (traceable Write). In
a scan operation execution, process P, first reads the current labels of all the objects, and then
determines their temporal ordering using some ordering shared variables. (Incidentally, the
structures of the TRACEABLE-WRITE procedure and the TRACEABLE-READ function
are quite similar to the WRITE procedure and the READ function, respectively, of the 1-
writer multireader shared variable construction of Vidyasankar [25).) The traceable Writes of
P, use two n-reader safe main label variables, label[p, 0] and label[p, 1], and a 1-reader safe copy
label variable for each process, copylabel[p, 1..n]. The main label variables are used alternately
for writing successive new label values. Immediately after writing a new label value in a main
label variable, the process records that variable index in a multireader boolean atomic variable
c[p]. Then the process checks for each i whether a new traceable Read of process F; started
since the last traceable Write (of P,). This is done by using a pair of boolean 1-writer 1-reader
atomic variables RC[i,p] and WC|p,1]. Process P, sets these values different, by assigning the
complement of WClp,i] to RC[i,p], at the beginning of each traceable Read, and process P,
makes sure that they are the same, at the end of each traceable Write. Hence if the two values
are different when the process P, checks them, then a new traceable Read of P; must have
started. In that case, P, writes the new label value in copylabel[p, i] also, and then sets the
above values the same, by assigning the RC[i, p] value to WC [p,i]. For each such P;, P, takes
a note of which of the possible private values of processes P; could be used by P.. Finally, it
informs all the processes P; which of their private values could be in use (all that P, knows
of) through 1-writer 1-reader regular variables LEN Dlp, 7l

Each traceable Read of process P,, from a process P, after reading WCi, p| and writing
its complement in RC|p, i] as mentioned above, finds out from c[i] the main label variable that
has been written by P; most recently, and reads from that variable. Then it reads WCI[, p]
again and compares with RC|[p,3]. If the two values continue to be different, it returns the
value just read from the main label variable; otherwise, it reads copylabel[i, p] and returns that
value. Note that in the latter case, a traceable Write by P, must have finished (with respect
to P,, that is, P; must have done loop iteration p in the first for-loop) after the traceable Read
started, and that Write would have written in copylabelli, p|.

In selecting a new (currently unused) private value, process P, does not use all the values
referred to in LEN D[j, p], for all j. After selecting the new private value, say v, P, informs all
processes P; that v is the most recent private value through 1-writer 1-reader regular variables
order[p,i] which are used by the Scans of P;.



4 Correctness proof

Proposition 1 [18] For operation ezecutions B and C on a shared variable, and any opera-

tion executions A and D, if A— B --» C — D, then A — D.

Proof: The implication follows by the transitivity of (i) A finishes before B starts, (ii) B starts
before C finishes and (iii) C finishes before I starts. i

Definition. For operation executions A and B executed on the same atomic variable x, we
say A=, Bif A precedes B in the total ordering imposed on the operation executions by

the atomic variable. The subscript z is omitted when it is clear from the context. U

Proposition 2 For operation ezecutions B and C on an atomic variable x, and any operation

ezecutions A and D, if A— B=,C — D, then A— D.

Proof: The relation B =>4 C implies B precedes or overlaps C (since the total order imposed
on the operation executions by the atomic variable is an extension of the precedence relation),

that is, B --= C. Then the implication follows by Proposition 1. O

The following notations are used in the presentation of the correctness proofs.

N1. The kth operation execution of a process P, is denoted, as stated in Section 2, by
OL"] (V), k > 1;ifitis a Scan (alternatively, a Labeling), we denote it explicitly by
S},’“](V) (alternatively, L;’“] (V)). The ‘(V)' part in the notation is omitted when it is
clear from the context. All the operation executions of P, are totally ordered. That is,
for k> 1, OL’““” — OLk]. (To avoid ambiguities, we assume the existence of a fictitious
operation execution Og’] = Lg?l that writes the initial label. The operation execution
LE’] took place before non fictitious executions start. The operation executions Lg’l for

all p are concurrent.)

N2. For a shared variable z, the Read (respectively, Write) of by OL’“] is denoted by Rg,k] (x)
(respectively, W;Ek] (x)). If z is referred more than once, then the superscript [k, 7] is

used for the jth access.

N3. Each operation execution Of! (LI or SI¥) of process P, executes the TRACEABLE-
READ function for every other process Pi; the whole function execution is denoted by
a traceable Read TRL'f]i.

N4. Each labeling operation execution LL’“] of process P, executes the TRACEABLE-WRITE

procedure; the whole procedure execution is denoted by a traceable Write TW,Ek]-
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N5. For the sake of convenience, the variables RC|p,i] and WClp,i] are abbreviated to 7,

and w, ;, respectively.

Definition. For any shared variable z, we define a reading mapping m, for Reads of x as
follows: if a Read R returns the value written by a Write W, then (R) is W; otherwise

7,(R) is undefined. We omit the subscript £ when it is clear from the context. O

Lemma 1 No two consecutive labeling operation executions of any process have the same
private value. And hence, no two consecutive traceable Writes of any process have the same

private value. O

Lemma 2 Each time the value written in Wy is the complement of the previous value of wp ;-
O

Lemma 3 Any traceable Write TWH (actually, L) that writes wp,; S€ts Wpi = Tip and
if Rgl’ll(wp,i) = W;[,k](wp,i) = Ry’m(wp,i) for some traceable Read TRE{],, (actually, 05” ) of
process P;, then the equality continues to hold until the ezecution of TRE{II, is complete, in fact

until the nert traceable Read RE{:” writes i p.

Proof: Initially, wy; = 7ip, since both of them are initialized to 0. Among the traceable
Writes of the process P, some will write wp;, and some will not. Let TW[Hl, j > 1,k; > 1,
be the j th traceable Write that writes wp,:.

Consider TW;Ek‘]- Tt writes 1 in w,,;. This implies that it read 1 from r;,. Since the
initial value of 7;, is 0, some traceable Read of P, must have written 1 in 7;,. Let TREI,;,]
be the first such traceable Read. Then whil(r,,) = RL’“](ri,p). Note that TRE;,] reads 0
from w,; and hence writes 1 in 7;,. Also each subsequent traceable Read TREIE, if any, such
that Ryl”l] (w,:) = Wik (w,,;), would read 0 from w,,;, and hence will write 1 in 7;p. Hence
irrespective of whether whil(r,,) = Rkl(r;,) or Rlkl(r; ) = wil(r,,), on Wil (w,),
Wpi = Tip, and if Ry’l](w,,,i) = W},’“](wp,,') = Ry’ﬂ (w,;) for some traceable Read TREI,]?,
then the equality continues to hold until TREZ,]p is complete, in fact until the next traceable
Read TR!?" writes 7, since wy,; will not be changed by any traceable Write TWI, for

ki > ki, that may occur before TREI,];, is complete.

Assuming as induction hypothesis that the assertion holds for TWIE’W], for some j, we can

show in a similar fashion that the assertion holds for TW},’“H‘]. O
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Lemma 3 implies the following property.

Lemma 4 Let TREl}p be a traceable Read. There can be at most one traceable Write, say

TWH, such that R (w, ) = Wi (w,,:) = R (w,;). The traceable Read TR, on

REI’Z] (wp;) will find 7ip = Wy, if there is such a traceable Write, and 1, # Wy, otherwise. U

In the following we use a typical kind of notation for labeling operation executions.

N6. The labeling operation executions of process P, are sometimes denoted by LE,’“J'], where
L is some alphabet and j is a natural number, j > 1, k; 2 1. Thus, for j > 1, LIF-1] and
L1 are two consecutive labeling operation executions of P, such that Llki-1l — Likl,

They need not be two consecutive operation executions, that is, k; > kj_1 + 1.

In the following two lemmas, we would show that traceable Reads return valid label values.
We also define their reading mapping function .
Lemma 5 Let TREI,],, be a traceable Read that finds i, # Wpi ON R (w,;). Suppose
m(RY(clp))) is W¥l(clp]) (of the traceable Write TWI*! of L&), and labellp, o] is the main

label variable from which TRE{],, returns the label value.

(a) If j' is the least index such that R (w,,;) = W,[,k"'](w,,,i), then j' equals j or j+1.
(b) m(TRY) is TWFL.

(c) The traceable Read TREl’]p reading label[p, x| does not conflict with any traceable Write

writing that label variable.

Proof:

(a) Let j" be the greatest index such that j” < j’ and Tka""] writes w,;. Then by (i) the
choice of j', (ii) the assumption that TREI,]}, finds 7, 7 Wy, and (iii) Lemma 4, it follows
that WY (w,;) = RV"(w,;). That is, Wi (w, ) = REw,:) — R (wp) =
w(w, ;). The traceable Write TW") sets w,,; equal to 4, TRY) sets r;, not equal to

w4, and hence TW") is the first traceable Write, after 7w} that finds rip # Wp,i-
From W) —» RU(elpl) = Wiwl(clp) — RE1(r,), we have Willrsp) —
Rlks+l(r; ;). That is, the traceable Write TWlk+l will find rip # Wi, the inequality set by
TREL}Z,, unless an earlier traceable Write has found the inequality and set w;; equal to 7ip. We
claim that such an earlier traceable Write, if one exists, can only be TWI[,’“J']. Suppose, on the
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contrary, that it is Tkaj"'], for j < j. Then, by the choice of j" and Lemma 4, we have
Wi () = B, — RO(Clpl) — R (wpe) = W () — Welp).

This implies RV (c[p]) — W1(c[p]), contradicting the assumption that w(RL (c[p])) is Wl¥1(clp])-

The assertion follows.
(b and c) Let label[p, z'] be the variable in which TW[¥] writes.

For j' described in part (a), we have RV (label[p, z]) — RM(w, ;) => W,[,kj'](w,,,,-) —
Wiki+2l, That is, TR finishes reading label[p, z] before the traceable Write TW[ki+?] starts
its execution. From (i) the assumption that W(REI] (c[p))) is Wikl(c[p)), (ii) the property that
TWZ[,’W“] does mnot write in the same main label variable that TW[) writes, and
(i) WL (labellp, z']) — Wikl(clp]) = RY(c[p]) — RV (labellp, z)), it follows that = =2,
and TW[*! finishes writing label [p, x] before TR, starts reading it. The assertions follow. O

Lemma 6 Let TRE],, be a traceable Read that finds vip = Wy, OT RE”2] (wp,i), and let TW,E’“J']
be the traceable Write such that R (w,, ;) = W,E"J'](wp,,-) = Ry’zl(wp,,-).

(a) The traceable Read TRY reading copylabel[p,i] does not conflict with any traceable

1!p
Write writing 4t.

[ .
(b) m(TRY) = TWkl.

Proof: (a and b) By Lemma 4, TW}[,’“"] is the only traceable Write such that RE”II (wp,i) =
Wkl (wp,s) = BV (wy,). Tt is clear from the TRACEABLE-WRITE procedure that TW}*]
writes the value in copylabel[p,i] before setting the w,,; and r;, values equal. The traceable
Write TW},’“H‘] and subsequent traceable Writes of Pp, if they find r;, = wp,, would not
write the copy label variable. From ngi](copylabel[p, i]) — W,E"J'](wp,i) — R (w,;) —
Ry](copylabel [p,i]), we have ngi](copylabel[p, i) — R (copylabel[p,i]). The assertions fol-
low. O

Now we would like to show that private values are traceable. If a process P; in its current
label uses a private value v of another process P,, P; informs this using of v by setting
LENDIi,p][1][s] to v at the end of the corresponding traceable Write. Thus, all the private
values in the existing labels are traceable. The following lemma shows that the private values

used by Scans are also traceable.

Lemma 7 Let a Scan S,[l] of a process P; use a private value v of a process P, that has written

the value v at a traceable Write TW},’“J‘]. Then, P, does not recycle v until S,m is complete.
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Proof: We need to consider the following two cases.
Case 1: SEI] got v directly from P,.

If the traceable Read TREI,],, returns the value v from copylabel[p, i], then, by Lemma 6 and
4, the traceable Write TW;[,’“J'] has executed the ifstatement for process P,. There it has set
lend(p, p][1][i] to v. The successive traceable Writes of P, that occur before S is complete

will neither change lend|[p, p)[1][i] nor reissue v as a new private value.

If the traceable Read TREl,]p returns the value v from a main label variable, then by
Lemma 5(a), traceable Write TW;[,"J'] or TWIE’“J'“] executes the if-statement for process F,.
In the case of TWL1, lendlp, p)[1][i] is set to v, and in the case of TW[5+11, lend[p, p][0] [4] is
set to v. (Note that TW},’CJ’“] uses a private value different from v.) So, by the argument given

in the above paragraph, v will not be reissued as a new private value until Sl[-l] is complete.
Case 2: SZ[-I] got v from another process P,.

It is clear from the TRACEABLE-WRITE procedure that P, must have got v directly
from P,. Let LEI"‘"] be the corresponding labeling operation execution. Then W(TRE;:;"]) is
TW/kil and W(TREI,]Q) is TW{ml. As argued in Case 1, either TW[&! or TW,&’“J‘H] stores v in
lend|p, p}[0..1][g]. This will not be changed until L{™! is complete, in fact until P, starts its
next operation execution OEI’"““]. Let Tkaj'], j' > j 41, be the first traceable Write that
changes lend[p, p][0..1][q] different from v. Then, it must have found LL""’] is complete and the
next operation execution of Py, namely Olmo+1], has started. From wm(LEND[q,p]) —
Olmet (V) - LY (V) — L+ we have Wim)(LENDlg,p]) — Ll Thatis, Ly *"
would not reissue v if v is already present in LEN D[q,p]. Note that TW}mel will write v in
LEND|g,p[1][q] at the end of its execution, and the traceable Write TW,[,kj'] does not issue v.
Now, from 7r(TR£l,]q) is TW}"‘"] it follows, by Lemmas 5 and 6, that either TW}’”"] or TW,}""’“]
would execute the if-statement for P;, and write v in LEND|q,p)[0..1][i], and this will not be
changed until SI[-” is complete. Hence Lij'+‘] and successive labeling operation executions of

P, that may occur before SE-” is complete do not reissue v. U

The following lemma shows that Scans can determine the correct order of the private

values of all processes.

Lemma 8 Let Sy] be a Scan that uses private values v and v' of a process P,. Then, Sl[-l] can

determine the correct order between the values v and v'.

Proof: Assume Scan S,U] uses the two different private values v and v’ of process P, that has

written them in traceable Writes TWI[,’“J‘] and Tka"], respectively, where j < j', and hence,
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v <, v' (as defined in Section 3). By Lemma 7, P, does not recycle v and v’ until SM is com-
plete. To guarantee the correctness of the timestamping system, we need to make sure that S,[l]
finds v <, v' in case the values are used in ordering some of the scanned labels. From the con-
struction we have Wi\ (order[p,i]) — Twi\(vVip]) --- TRE,(VIp]) — R (order(p, 1)),
that is, Wi (order[p,i]) — R\ (order(p, ).

Now the question is which private values P, should store in order|p,i]. Note that P, does
not know precisely which of its private values P; is going to use. So, it guesses a subset of
its private values, which contains the values being used by P;. In the following we consider a
particular value v being used by P,. Now, there are two cases to be considered. If P, obtains v
directly from P,, either TW! or TW[ki+1] will reserve v for P; by setting LENDIp, p][0..1][4]
to v. Assume P, obtains v indirectly through another process P,. From the construction we
know that Pi got v directly from P,. Let the corresponding labeling operation execution be
L™ Either TW*1 or TW}ks+! will set LEN D{p, p][0-1] [k] to v. Now, we need to consider
the following three case depending on the overlapping of L§;”°1 and Sz[-l]. (1) If LE:""] — Sy],
then P, inform P, that some future Scans (Sy] could be one of them) could use v by setting
LENDIk,pj[1][k] to v. (2) Py has already informed P, that P; could be using v by setting
LEN DIk, p|[0..1][d] to v. (3) P; has not yet started writing LEN DIk, p]. But, P, (TW[*! or
TW/ki+11) knows that Py could be using v through LEND[p, p][0..1][k], and v could also be
used by other processes P; indirectly through P.

With the above three observations, we can say that P, needs to store private values referred
to in LEN D[k, p][0..1]i], LEN D[k, p][1][k] and LENDIp,p|[0..1][k] for all k, that is, it needs
to reserve at most 5n values for p;. Now, we force the labeling operation executions of P,, for
v <, v', to store v in order[p, ¥][z] and v" in order|p, *|[y] only if z < y. Hence on reading
order[p, i), P; will search the order(p, | [1..5n] array starting from index 1 until it finds v and

v', and will correctly determine that v <, v'. O

Lemma 9 Let TREI,],, and TREI,]I, be two traceable Reads such that TRE]I, — TRE’,]Z, and
#(TRY) be TWiki. Then,

(a) Wikl(clp]) = RYL(clp]),

(b) w(TRYLY is TWHS, where j' > j, ky 2 k;.
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Proof: We have the following two cases.
Case 1: TREI,]I, finds r; , # w,,; o0 RM(w,,).

Lemma 5(b) implies that W(REI](C[})])) is Wlkil(c[p]). Then, we have Wikt (wpe) —
Wikl (clp)) = RY(clp]) — B (wp) — RE(clpl)-

Case 2: TREl,]p finds r; , = Wwp,; On Ryﬂ] (W)

By Lemma 6(b), we have Wiki-1(w, ) — WLkl(c[p]) — Wl (w,,:) = RV (w, ;) —
v, v
RYY(w,) — RYL(clp]).
For both the cases we have Wlk!(c[p]) = RY (c[p]); part (a) follows, and if TRY) finds
T p 7 Wy, ON RY"*(w, ») then part (b) follows by Lemma 5. Assume TRE,]}, finds 7y p = Wy,
on Rg ’2](wp,,-:) . From the above two cases, we have W,E’“J’—I](w,,,i:) — Rgl’ll(wp,,v). The

part (b) follows by Lemmas 4 and 6. O

Theorem 1 The construction of Figure 1 is a correct implementation of wait-free concurrent

timestamping systems.

Proof: We will show that the construction satisfies all the four properties P1-P4 described in

Section 2.

Ordering: Consider two labeling operation executions LI and LL’“'] with labels I{¥ and lgk'].
Let m be the least significant index such that Ill[m] # [¥)[m]. Assume these private values
[9[m] and I¥[m] are written by Py, at labeling operation executions Lz and L], respec-
tively. If L) —» Ll~), then we define LI = LI¥1,

o Precedence: Without loss of generality we assume LY — LI¥1. By Lemma 5 and 6,
we have (TR, ) is TWiel and n(TR¥)) is TWil. Then, from TR, — TR
and Lemma 9(b), we have s, > s,. As [M[m] # Il)[m], we have so' # o, and hence,

s, > s,. That is, Ll — Lls/). The precedence property follows.

e Consistency: For any two labels lL"] and lL’“'] such that m is the least significant index
for which I[F{m] # 1¥]1[m]. We define I < F1 A M [m) <m 1¥[m] iff Liel — Llso1,

The consistency property follows by Lemma 8.

Regularity: Consider a Scan SV that returns a label ™) that is written by a labeling
operation execution LL"‘"], that is, w(TRE{l) is TW,E’”"]. By Lemmas 5 and 6, we can say
TWimel --» TRY!, and hence, Limel --» SY). The second part of the regularity property fol-
lows from: (i) if TRY) finds r;, # wy,; on RV (w, ), then, by Lemma 5, n(TRY) is TW[™,
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where m(RY(c[p])) is WIml(clp]), and so, TW[m=+ 7= TRY), and hence L™+l #— skl

(i1) if TRE}, finds r;, = wp,; ON Ryﬂl(wp,,-), then, by Lemma 6, W(TRE’?L) is TW;’""], where

RV (w, ;) == Wiml(w,;) = RV (w, ), and so, TW]me+l £— TRY), and hence L™+t /=
s,

Monotonicity: Consider two Scans s{ﬂ — Sllf']. Let S,[j] return label lL’""] from a process P;.
By Lemmas 5 and 6, we have w(TRE{,]D) is TW,E"‘*’]. From Sll-j] — SE?I], we have TRE{}, —
TRE?:},. The monotonicity property follows by Lemma 9.

Extended reqularity: Consider a Scan S,[j] that returns a label lL’"*’] that is written by a labeling
operation execution Li™l, that is, w(TR,LfI]D) is TWIml. For any labeling operation execution
LL’"'], if SV — LEI""], then TRE,]D — TRL"';,']. Then, by Lemma 9(a), we have W;[,"“’] (c[p]) =
RI™1(clp]) and hence, x(TRL™Y) is TWL™! or its successor. Also by Lemma 5 and 6 and the
LABELING procedure, we have TR{™l —s TW{mel --~ TRY, — TR{7! for all s # p, that

is, TRl — TRI™). The extended regularity property follows by Lemma 9(b). O

5 Concluding remarks

We have presented an efficient implementation of the traceable use abstraction of Dwork
and Waarts [7], which is oriented towards a new construction of concurrent timestamping
systems. Both our and their constructions are similar, but there are a lot of differences. Both
the constructions use O(nlogn) size shared variables (order and LEND variables), where n
is the number of processes. Scan and labeling operation executions require O(n) steps. Our
construction uses less shared space than that of Dwork and Waarts, and is more efficient. In
their construction, they have defined three routines, namely, traceable-read, traceable-write
and garbage collection. When the traceable-read function is executed to read a label, the
executing process explicitly informs the other processes which of their private values it is
going to use. The traceable-write procedure is executed to write a new label. To determine
which of its private values are currently in use, a process executes the garbage collection
routine. This routine helps processes to safely recycle their respective private values. Truly
speaking, in their construction some labeling operation executions require O(n?) steps, as
the execution of the garbage collection routine requires O(n?) steps. In our construction, we
have used a separate implementation technique for the traceable-read and the traceable-write
routines. We do not need a garbage collection routine. When a process executes the traceable-
read function, it does not explicitly inform the other processes which of their private values

it is going to use. On the other hand, the executers of the traceable-write procedure guess
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which private values of which processes are in use. Each process needs a separate pool of
private values, whose size is fewer than 2n?. In their construction, the pool size is 13n2. All

the ordering shared variables used in our construction are of 1-writer 1-reader type, whereas

‘they are l-writer n-reader in their construction. In our construction, a Scan reads at most

n — 1 ordering shared variables, whereas in their construction it is 2n — 2.
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Declarations

Constants:

n = number of processes;

Type:
label-type: array [1..n] of integer;

Shared variables:

WC : array [1..n, 1..n] of boolean atomic; {all initially 0}
{process p writes WC|[p, *| and process i reads WC[*, ]}

RC : array [1..n, 1..n] of boolean atomic; {all initially 0}
{process p writes RC|[p, *] and process i reads RC[x,i]}

c : array [1..n] of boolean atomic; {initially 0}
{process p writes c[p], and the others read}

label : array [1..n, 0..1] of label-type safe; {all initially 0, except label[p,0][p] = 1 for all p}
{process p writes label[p, *] and the others read}

copylabel : array [1..n, 1..n] of label-type safe;
{process p writes copylabel[p, *] and process i reads copylabel[*,1]}

LEND: array [1..n, 1..n] of regular array [0..1] of label-type; {all initially 0}
{process p writes LEND|p, ¥] and process i reads LEN DIx,1]}

order: array [1..n, 1..n] of regular array [1..5n] of integer; {initially order[,*|[1] =0 and order([x, ¥][2] = 1}

{process p writes order[p, *| and process i reads order(*, ]}

Private variables for process P, p=1,2,...,n:

cl[p): 0..1; {Initially 0}
lend: array [p,1..n] of array [0..1] of label-type; {all initially 0}

old-label: label-type; {all Initially 0, except old-label[p] = 1}

Figure 1: Shared variables.
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Procedure TRACEABLE-WRITE(p: 1..n; new-label: label-type );
var
i,j: 1..n; {loop index}

Ir: boolean;
begin
clfp) := —cl[p];

write new-label in label[p, cl[pl];
write cl[p] in c[p];
fori:=1tondo
begin {could be done in parallel}
read Ir from RCI[i,pl;
if Ir # WCl|p, i| then
write new-label in copylabelp,il;
for j := 1 to n do lend|p, 41[0..1][§] = (old-labellj], new-label[j]);
write Ir in WC|p,i]; {WClp,i) = RC[i,p]}
endif;
endfor;
for j := 1 to n do lend]p, F1)p] = new-label[j];
for j := 1 to n do write lendp, j] in LENDIp, j]
old-label := new-label;
end; {of procudure}

Function TRACEABLE-READ(p: 1.1, i: 1..n): label-type;
var
lw: 0..1;
le: 0..1;
savelabel: label-type;
begin
read lw from WCIi,pl;
write ~lw in RC[p,i]; {RCIp,i] # WCIi,pl}
read lc from c[i];
read savelabel from label[i, Ic];
read lw from WCli,pl;
if (RC[p, 1] # lw) then return(savelabel)
else {RClp,i] = WCl[i,pl}
read and return(copylabelli, p])
endif;
end; {of function}

Figure 1: Construction for process p. (Cont’d.)

22



Procedure LABELING(p: 1..n);
var
J, k: 1.n;
temp: array [1..n] of array [0..1] of label-type;
lab: array [1..n] of label-type;
private-value: integer;
begin
for j:=1tondo
read templj] from LEND[j,p]; {we do not need temp[7][0)[51}
select a new private-value not in temp and the current private value;
for j :=1ton do
order the elements of temp(1..n}[0..1](],
temyp[k][1]{k] and
templp][0..1][k] for all k,
and the new private-value
and write them in order(p, j};
for j := 1 to n, j # p, do lab[j] :=TRACEABLE-READ(p, j);
TRACEABLE-WRITE(lab[1][1], lab[2](2], . . ., lab[p][p] := private-value, . .., lab[n][n]);
end;

Procedure SCAN(p: 1..n):(1, <);
var
1,5,k 1.m;
lab: array [1..n] of label-type;
begin
for j := 1 to n do labfj] :=TRACEABLE-READ(p, 7);
fori:=1tondo
for j:=1tondo
let k be the least significant index in which lab[i] differs from lab[j];
if order|k, p] is not read yet then read it;
determine the order between labfi] and lab[j];
end;

Figure 1: Construction for process p. (Cont’d.)
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