Unravelling Noendeterminism: On Having
the Ability to Choose

W. van der Hoek, B. van Linder and J.-J. Ch. Meyer

RUU-CS-93-30
September 1993

Utrecht University

Department of Computer Science

Padualaan 14, P.O. Box 80.089,
3508 TB Utrecht, The Netherlands,
Tel. : ... + 31-30- 531454

Unravelling Nondeterminism: On Having
the Ability to Choose

W. van der Hoek, B. van Linder and J.-J. Ch. Meyer

Technical Report RUU-CS-93-30
September 1993

Department of Computer Science
Utrecht University
P.0.Box 80.089
3508 TB Utrecht
The Netherlands

A

Unravelling Nondeterminism:
On Having the Ability to Choose®

W. van der Hoek
B. van Linder
J.-J. Ch. Meyer!

Utrecht University
Department of Computer Science
P.O. Box 80.089, 3508 TB Utrecht
The Netherlands
Email: bernd@cs.ruu.nl

Abstract

We demonstrate ways to incorporate nondeterminism in a system designed to formal-
ize the reasoning of agents concerning their abilities and the results of the actions that
they may perform. We distinguish between two kinds of nondeterministic choice op-
erators: one that expresses an internal choice, in which the agent decides what action
to take, and one that expresses an external choice, which cannot be influenced by the
agent. The presence of abilities in our system is the reason why the usual approaches
towards nondeterminism cannot be used here. The semantics that we define for non-
deterministic actions is based on the idea that composite actions are unravelled in
the strings of atomic actions and tests that constitute them. The main notions used
in defining this semantics are finite computation sequences and finite computation
runs of actions. The results that we obtain meet our intuitions regarding events and
abilities in the presence of nondeterminism.

1. Introduction

To investigate the reasoning of rational agents regarding correctness and feasibility of their
plans we defined in [HLM93] a formal system, designed to deal with both the knowledge
and abilities of agents, and the effects of the actions performed by the agent. Based on the
concepts given in [Moo80] and [Moo84], the system of [HLM93] is firmly rooted in both
epistemic logic (see [MH]) and dynamic logic (see [Har79], [Har84], [KT90], and [Gol92]).
The actions that we considered in [HLM93] are deterministic: the event that consists of
some agent performing some action has a unique outcome. In this paper we will consider a
natural extension of the system of [HLM93], given by the introduction of nondeterministic

*This research is partially supported by ESPRIT III BRA project No.6156 ‘DRUMS II’ and the Vrije
Universiteit Amsterdam.

tThis author is partially supported by the Katholicke Universiteit Nijmegen.

action constructors. These constructors combine two actions into a new one: the non-
deterministic choice between the two actions. Although we introduce nondeterminism of
composite actions, we will assume throughout this paper that the atomic actions still have
a unique outcome. Rationale behind this assumption is our conviction that determinism
is, together with unspecifiedness, one of the main characterizations of atomicity.

In this first attempt to formalize the different sorts of nondeterministic operators, we have
chosen to deal with them differently and in separate ways. Nevertheless combining these
operators certainly needs further consideration.

The contents of the rest of this paper is as follows. In section 2 we introduce some of
our ideas concerning events and abilities that underlay the formal system of [HLM93].
Furthermore the syntax and semantics of the system of [HLM93], which will be used as a
basis to build nondeterminism upon, are (re)introduced. In section 3 the intuition behind
our approach towards nondeterminism is explained. Furthermore we compare our ideas
with those of two other systems. In section 4 it is shown on the basis of two examples why
the usual approaches towards nondeterminism are not suitable for our goals. In section 5
we will show how to incorporate internal nondeterminism into the system given in section 2.
Section 6 contains the definitions used to incorporate external nondeterminism. Section 7
ends this paper with some conclusions and a guideline for further research.

2. Knowledge, events, and abilities: the basic definitions

In [HLM93] a formal system is given in which, in contrast with the usual approaches
in dynamic logic, the abilities of agents are considered in their own rights. The usual
approach in dynamic logic when abilities are considered is to identify the ability of an
agent ¢ for an action a with truth of the formula <do;(a)> tt (cf. for instance [Tho93));
the latter formula intuitively captures the idea that the action « is possible for agent i.
In our opinion this approach does no justice to the intuitive meaning of abilities.

2.1. ExaAMPLE (The shampoo example). Consider an agent planning to wash her hair.
Since there is shampoo available, <do;(wash hair)> hair_clean holds, which in the usual
approaches towards abilities would suffice to conclude that the agent is capable of washing
her hair. The moment the last drip of shampoo leaves the bottle, < do;(wash_hair) >
hair_clean no longer holds, and hence the agent is no longer capable of washing her hair.
But this is intuitively strange: the ability of the agent seems to be something that is a
property of the agent rather than a context dependent notion that depends on the presence
of shampoo.

In our opinion abilities are to be considered as an additional concept, defined independently
from the diamond formulae <do;(a)> ¢ . We use the formula <do;(a)> ¢ to indicate
that all mundane, action specific, prerequisites of o are satisfied and that as a result of
executing o, ¢ holds. In terms of example 2.1, if there is shampoo available, washing your
hair leads to your hair being clean. The formula A;o denotes the fact that the action a is
an element of the abilities of the agent : the physical (mental, moral) condition of agent
i is such that s/he is capable of a. In terms of the example 2.1, the agent is capable of

washing his/her hair (s/he has learned how to do it, s/he is not handicapped), regardless
of whether there is shampoo available. As such the combination of <do;(a)>¢ and A;a
can be used to capture the idea of a being a correct (<do;(@)> ¢) and a feasible (A;c)
plan for agent i to achieve ¢ (see also sections 5.2 and 6.2).

Next the definitions of the system defined in [HLM93] are given. Although this determin-
istic system serves as a basis to build our treatment of nondeterminism upon, the way in
which we treat nondeterminism is dependent only on the class of actions under consider-

ation: the approach as we give it can be applied to any dynamic logic like system (as can
be found in [Har84], [HR83], [KT90], and [Gol92]).

2.2. DEFINITION. The language £ is based on a given set II of propositional symbols, a
finite set At of atomic actions and a finite set 4 = {1,...,n} of agents. The language £
is defined by the following BNF, where ¢ is a typical element of the set of formulae in £,
p is a typical element of the set of propositional symbols II, « is a typical element of the
set of actions Ac, a is a typical element of the set of atomic actions At, and 1 is a typical
element of the set of agents A.

pu=ple|leiVer | Kip| <doi(a)>¢| Ao

where the class Ac of actions is given by:

an=a | atomic actions
confirm ¢ | confirmations
Qag; | sequential composition
if ¢ then o else oy fi | conditional composition
while ¢ do a; od repelitive composition

The constructs A, —, and ¢ are defined in the usual way. Other additional constructs
are introduced by definitional abbreviation:

tt is pVv-p

i g is -tt

[do;(a)]e is - <doj(a)>-p
skip is confirm tt
fail is confirm ff

a’ is skip

antl is oa;a®

2.3. REMARK. To provide for optimal flexibility no demand whatsoever is made upon the
use of parentheses in £: whenever one thinks that using parentheses provides for more
clarity one is encouraged to use them. Furthermore for reasons of practical convenience
the sequential composition operator ; is assumed to be right associative, i.e., a;;as; a3
should be read as ay;(a2;as).

2.4. REMARK. The knowledge of agents, formalized by the K; operator, is mainly im-
portant for the Can-predicate and the Cannot-predicate. These predicates formalize the
knowledge of agents regarding the (in)correctness and (in)feasibility of their plans (see
also sections 5.2 and 6.2).

The semantics is based on the use of Kripke models.

2.5. DEFINITION. The class M of Kripke models contains all tuples M =< S,7,R,r,c >
such that

(1) S is a set of possible worlds, or states.

(2) 7 : I x8 — bool is a total function that assigns a truth value to propositional
symbols in possible worlds.

(3) R: A = p(S xS)is a function that yields the epistemic accessibility relation for
a given agent. Since we will assume S5 to axiomatize the knowledge of agents, it is
demanded that R() is an equivalence relation (cf. [HM85], [MH]}).

(4) T: Ax At > S — p(S) is such that r(i,a)(s) yields the (possibly empty) state
transition in s caused by the event do;(a). This function is such that for all atomic
actions a it holds that ViVs[|r(¢,a)(s)| < 1], where |V| denotes the number of elements
of the set V.

(5) ¢ : Ax At - S — bool is the capability function such that c(i,a)(s) indicates
whether the agent ¢ is capable of performing the action a in the possible world s.

The models from M are called standard models.

2.6. DEFINITION. Let M =< §,71,R,r,c > be some standard model. The functions =, r,
and c are extended by simultaneous induction as follows.

T : L XS — bool
(e,) = -m(p, s)

T(pV,s) = 7(p,8)V (e, s)
F(K;(P, 5) = m(s,s’)ER(i)”(‘P, 'SI)
T(<doi(@)> ¢, s) = Wa’EI‘(i,a)(s)W(‘Pa s')
m(A;a,s) = ¢(z,a)(s)

r : AXAc—o S - p(S)
r(7, confirm ¢)(s) ={s}if 7(p,8)=1

0 otherwise
(i,) (x(i, 1) ()
r(i,a;)(s) if m(p,8) =1
r(4, 0)(s) otherwise
{s' | 3k € NIsy...3s; € S[sp = s A s = s'A
7(—p,s') = 1]A
Vj < k[sj41 € (i, confirm ¢; 04)(s;)]}

r(i,a5; a3)(s)
r(s,if ¢ then oy else a, fi)(s)

1 T VA 1

r(i,while ¢ do a; od)(s)

where

r(i, a)(S") = Ugesit(i,a)(s’) for &' C S.

c : AX Ac— S — bool
c(¢, confirm ¢)(s) = 7(yp,s)
(2, o5 02)(8) = c(t,04)(8) A c(Z, a2)(x(2, 01)(8))

c(t,if ¢ then a; else a; £fi)(s) = c(¢,confirm ¢;ay)(s)V
c(¢, confirm —p; ap)(8)
1if 3k € N[c(¢, (confirm ¢; a;)F;
confirm -p)(s) = 1]

c(¢,while ¢ do a; od)(s)

= 0 otherwise
where
c(i, a)(S’) = Myesic(t,a)(s) for &' C S.

2.7. REMARK. The motivation for the choices made in definition 2.6 regarding the abilities
of agents is the following. An agent is capable of performing a sequential composition a;; a;
iff s/he is capable of a; and s/he is capable of performing o, after s/he has performed «;.
The definition of c(Z,confirm ¢)(s) is based on the idea that a test for ¢ is actually an
action that searches for confirmation of ¢; if it is not possible to get confirmation for ¢,
the agent is not capable of testing ¢. This is similar to the approach towards tests as
taken in dynamic logic.

An agent is capable of performing a conditional composition, iff s/he is able to test the
condition and thereafter s/he is capable of performing either the then-part or the else-part,
dependent on whether the condition or the negation of the condition is confirmed.
Lastly, an agent is capable of performing a repetitive composition while ¢ do o; od iff
s/he is able to perform the action (confirm ¢;a;)*;confirm —¢ for some k € IN. Note
that the definitions for both the conditional and the repetitive composition are based on
the defining equalities that hold in dynamic logic (see [Har84]).

2.8. REMARK. Singleton sets {s} with s € S are usually denoted by s.
2.9. DEFINITION. For all standard models M =< §,7,R,r,c >, for all possible worlds

s € 8, and for all formulae ¢ we define:

o M,sE ¢iff m(p,s)=1.
e The formula ¢ is valid in M, notation M = ¢, iff M,sl=pforall s€ S.

2.10. DEFINITION. For all formulae ¢ we define:

e The formula ¢ is satisfiable in M if some Kripke model M € M and s € S exist such
that M,s |= ¢.

e The formula ¢ is valid in 9%, notation f=gyn ¢ or simply k= ¢, iff M |= ¢ for all M € M.

2.11. DEFINITION. Let M =< §,7,R,r,c > be some Kripke model and let o be some
action.

o The event do;(a) is deterministic in some possible world s from & if and only if
(i, 0)(s)| < 1

o The event do;(a) is deterministic for M if and only if do;(e) is deterministic in all s
from S.

The framework given in this section is indeed a deterministic one:

2.12. LEMMA. All events do;(), where a € Ac as given in definition 2.2, are deterministic
for all M € M.

PROOF OF LEMMA 2.12: See [HLM93].
DX

3. Internal versus external nondeterminism

Intuitively the meaning of a nondeterministic choice between the actions @; and a5 is
given by: ‘choose one of a; and a3, and perform the action that is chosen.” As observed in
[Hoa85], this intuitive description gives rise to two different implementations. Given the
situation that the actor performing the actions is surrounded by, and strictly separated
from, some external environment, it follows that in principle both the actor and the
external environment could make the choice of what action to perform. Depending on
who makes the choice, two different nondeterministic actions result.

The situation as we consider it in this paper is as sketched above: a group of agents,
reasoning about their abilities and the effects of their actions, is surrounded by some
unspecified external environment.

Following [Mey92], the action in which the nondeterministic choice is made by the agent
itself is called internal; if the external environment makes the choice, the action is called
erternal. The notation used in this paper is also conform [Mey92]: the internal non-
deterministic choice between the actions a; and a is denoted by a; @ a,, the external
nondeterministic choice is denoted by a; + as.

An important difference between the system defined in this paper, and the systems of
[Mey92] and [WM91], in which also internal and external nondeterminism are considered,
is given by the fact that in our system the agents themselves are reasoning with and
about events and abilities. This implies that the semantic definitions of the internal and
external nondeterministic choice should be such that they correctly formalize the reasoning
of agents concerning their abilities and the effects of their actions when nondeterministic
choices are involved. In the other systems reasoning is only done at a meta level, by the
observers. This point is elaborated on in section 3.1.

Like in [Mey92], and unlike [WM91], the actual act of ‘choosing’ is not considered in this
paper. Since we will introduce internal and external nondeterminism separately, and hence
combinations of these actions do not occur, it seems fairly reasonable to ignore the ‘choose’

action: it is simply decided on beforehand whether the agent or the external environment
makes the choice for all nondeterministic actions.

As explained in section 2, the results of events are formalized using the diamond formula
<do;(@) > ¢. In the nondeterministic framework that we are going to define, truth of
<do;(a)> ¢ is intuitively taken to imply that at least one way of performing a is open to
agent ¢ such that ¢ follows as a result. The dual notion [do;(a)]p implies that all possible
ways open to agent i to perform o lead to ¢. The abilities of the agents are, cf. section 2,
formalized using the formula A;o.

Now assume that some agent ¢ is reasoning whether ¢ holds as a result of performing the
internal nondeterministic choice @ = ; @ a,. The agent could be reasoning as follows:

¢ Since I myself make the choice as of whether to perform o or s, in order
to conclude that ¢ holds as a result of performing o it suffices that for one of
a; and oy a way of executing exists that leads to . This is also a necessary
condition: if for neither of a; and @, a way of executing exists that leads to
¢, it is not possible that the internal nondeterministic choice between them
would lead to ¢.’

For the reasoning of the agent concerning his/her abilities for an internal nondeterministic
choice @ = a; @ a; an analogous line of reasoning can be given:

¢ Since I make the choice myself, in order to conclude that I am able to perform
a it suffices that I am able to perform one of the actions constituting c. It
is also necessary that I am capable of performing one of the actions, since
otherwise it is not possible that I am able to perform a.’

The observation given above for the internal nondeterministic choice expresses the idea
that the agent thinks of her/himself as showing an angelic (cf. [Bro86]) behaviour: when-
ever it is possible to perform an action in the correct, desired way, and the agent may
choose how to perform the action, s/he will choose to perform the action in this correct
way.

In case of an external nondeterministic choice & = ay + oy the agent has no influence
on which action is chosen and therefore s/he must be prepared to deal with either of the
actions. In particular, the agent may not assume that the external environment will make
the choice that is best for the agent, i.e., the agent should take into account that the
external environment shows a demonic (also cf. [Bro86]) behaviour. Now suppose that
agent ¢ is reasoning whether ¢ holds as a result of performing o = a; + ;. The reasoning
of the agent could proceed as follows:

* Since I have no influence whatsoever on which action is going to be chosen,
it is possible that performing o, + @, leads to ¢, if and only if for both of a,
and a; a way of executing exists that leads to . After all I must be prepared
to deal with either one of them.’

For the reasoning of the agent concerning his /her abilities for an external nondeterministic
choice @ = a; + a, an analogous line of reasoning can be given:

‘ Since the external environment makes the choice between oy and g, it is
possible that I am capable of performing a; + a5 if and only if I am able to
perform both of the actions.’

The semantics for the internal and the external nondeterministic choice, given in section 5
and section 6 respectively, are based on the observations given above.

3.1. REMARK. Note that the choice as of agents showing an angelic, and the external envi-
ronment showing a demonic behaviour is a somewhat arbitrary one. In fact the definitions
that we give are such that the opposite situation, or any of the four possible situations,
can equally well be formalized.

3.1. A comparison with some other approaches

As far as we know no formal systems exist that treat abilities in a way similar to ours,
let alone systems that consider abilities for nondeterministic actions. Nevertheless some
systems exist that for events either distinguish the two sorts of nondeterminism as dis-
cussed at the beginning of section 3, or deal with the related notion of concurrency. We
will briefly consider two such systems: one is the system of [Mey92], in which internal and
external nondeterminism are considered for events, the other one is the system of [Pel87]
that deals with concurrency.

The system of [Mey92] is based on the following two equivalences:

. <d0,¢((¥1) CYQ)>QO < (<do,»(a1)>g0/\ <do,-(a2)> SO)
o <doi(as + a3)> ¢ & (<dos(a1)> ¢ V <doi(ay)>)

It turns out that Meyer’s starting point is exactly the opposite of ours! This difference
is caused by the fact that in Meyer’s system an external observer is reasoning about the
effect of the actions performed by some agent /actor. The external observer has the implicit
assumption that the agent shows a demonic behaviour, and that the external environment
shows an angelic one. Thus the approach of Meyer is not in contradiction with ours: a
shift in perspective causes these two approaches to behave differently.

In [Pel87] Concurrent Dynamic Logic (CDL) is defined. In CDL the operator N is used
to combine two actions oy and a, into a new action, with intuitive meaning ‘a; and o, in
parallel’. The operator N is such that the following is a valid formula:

o <doj(a; Naz)>p ¢ (<do;(ay)> pA <do;(az)>)

Peleg’s approach is based on the idea that concurrency and nondeterminism (the kind of
nondeterminism that we would call internal) are dual notions. Hence it is obvious that
Peleg’s concurrency and our external nondeterminism (note that the latter is the dual
of internal nondeterminism) are analogous notions. Also intuitively this correspondence

8

seems to be correct: although in case of an external nondeterministic choice a1 + a, only
one of @; and @, is performed, the agent has to be prepared to deal with execution of
both, and hence reasons about the effect of this action as if both actions were actually
executed.

Although abilities are not considered in CDL it seems that our treatment of the external
nondeterministic choice is intuitively also a correct one for concurrency: an agent is able
to perform the actions a; and o, in parallel iff both actions belong to the abilities of
the agents. Hence our treatment of the external nondeterministic choice might as well be
taken to be one for the concurrency operator, i.e., besides two sorts of nondeterminism,
we also (implicitly) touch upon concurrency in this paper.

4. Why the obvious approach will not do

Both in [Pel87] and [Gol92] a semantics for events is given that deals with the concurrency
operator N, which bears a close resemblance to our external nondeterministic choice +, and
the nondeterministic choice operator U, which shows the same behaviour as our @. One
could be tempted to introduce nondeterminism/concurrency into the system of [HLM93]
by using a Peleg/Goldblatt approach towards the semantics for events, and extending the
semantics for abilities by adding the clause

c(i,ou @ az)(s) =1 & c(i,01)(s) = 1V c(i,a)(s) = 1
and
c(t, a1+ o2)(s) =1 & c(i,)(s) =1 Ac(d,a;)(s) =1

to deal with nondeterminism/concurrency. However according to our intuition this seman-
tics fails to satisfactory formalize the abilities of agents for the sequential composition. The
following two examples make this point more clear.

4.1. ExAMPLE (Internal nondeterminism and sequential composition).
Consider the Kripke model M =< S, 7,R,r,c > given by:

(1) 8§ ={s0,81,82}

(2) = is arbitrary.

(3) R is arbitrary.

(4) x(4,a1)(s0) = 81, r(4,a2)(80) = ss.

(5) (iyar)(s0) = 1 = c(i, as)(sy),
c(%,a2)(80) = 0 = c(4,a3)(s).

Intuitively agent i is capable of o = (a; @ a3); a3 in so: s/he is capable of a;, and since
all possible executions of a; lead to states in which s/he is capable of as, it is clear that
the agent is capable of ay;as, i.e., in the terminology of section 1, the agent is capable
of performing one of the actions constituting a. Should we use the semantics suggested
above, in which the equivalence

[doi(e1 & aa)] ¢ [doy(ar)]ep A [dog(as)]e

defines the @ for events, we would have to conclude that i is not capable of a:

(1) M,s0 = Ai(a; ® ay) since M, s, E Aja,,
(2) M, s0 £ [do;(ar & a3)]Asas, since M, s, [do;(a2)]Asas,
(3) hence M, sy [~ Ai(a, @ az) A [do;(a; @ a,)]A;as, and thus M, s, ¥ Aa.

In our opinion this is not the intuitively correct approach towards sequential composition.

4.2. EXAMPLE (External nondeterminism and sequential composition).
Consider the Kripke model M =< 8,7,R,1,c > given by:

(1) 8 ={s0,8}.

(2) = is arbitrary.

(3) R is arbitrary.

(4) x(i,a1)(s0) = 81, T(4,a5)(s0) = 0.

(5) e(i,a1)(s0) = 1 = c(4, a5)(s0),
c(i,a3)(s;) = 0.

Intuitively agent ¢ is incapable of @ = (a1 + az);a3 in so: s/he is capable of a; and a,
in sg, but since the only possible execution of @, leads to a state in which the agent is
incapable of as, s/he is incapable of a;; a3, Le., in the terminology of section 1, the agent
is incapable of performing one of the actions constituting a. Using a Peleg-like semantics
for events would result in the equivalence

[doi(a1 + az)] ¢ [dos(en)]ip V [dos(az)]ep
whereas a Goldblatt-like semantics would yield
[do; (e + a2)]p & (<dos(a;>tt — [doi(@2)]e) A (<doy(e> tt — [dog(a)]ep)

as a defining equivalence!. Regardless of which of these equivalences is used in the approach
suggested above, we have to conclude that the agent is capable of « in sg:

(1) M,s0 = Ai(a; + ay) since M, s, = Aia; and M, sy = Aja,,
(2) M, s = [do;(as)]Asas and M, s, F-<do;(az)> tt, hence M, sy = [doi(a; + a2)]Asas,
(3) hence M, s, = Ai(ar +az) A [do;(a; + a3)]A;as, and thus M, s, E Ai(a) + a3); as.

Again the obvious approach is not an intuitively acceptable one.

An intuitively correct treatment of the situations sketched in the examples 4.1 and 4.2
is what we are striving for with our definition of the semantics for the nondeterministic

'To avoid confusion both equivalences are expressed using our notation.

10

choices. The idea behind the semantics as we give it, is that the meaning of a composite
action is determined by the meaning of the sequences of (atomic) actions that constitute
it: for instance, in example 4.1, the meaning of @ = (a; @ a); a3 is determined by the
meaning of the sequences a,; az and a,; as.

5. Introducing internal nondeterminism

In this section we try and extend the definitions of section 2 such that internal nonde-
terminism is adequately dealt with. In particular example 4.1 should be treated in an
intuitively acceptable way.

We start with extending the syntax in an obvious way.

9.1. DEFINITION. The language £; is an extension of the language L. For the language
L; the class of actions Ac as given in definition 2.2 is extended by the following, thus
obtaining the class Ac; of actions.

=01 Do,

As touched upon at the end of section 4, the unraveling of composite actions into the
sequences of (atomic) actions that constitute them will be the basis of the semantics that
we define. This unraveling is done using finite computation sequences, as defined in [KT90].
A finite computation sequence of a given action « is a finite length string of atomic actions
and tests, representing a possible sequence of atomic steps that may occur in a halting
execution of some event do;(a).

9.2. DEFINITION. Let the language £; be as given in definition 5.1. The class of basic
actions Ac; based on L is given by the following BNF, where a is a typical element of At
and ¢ is a typical formula from £;.

a=a | confirm ¢ | oy,

If some action « is either an atomic action a or some confirmation confirm p, then «a is
called semi-atomic.

5.3. REMARK. Note that the class Acj is a subclass of Acy.

5.4. LEMMA. For all a € Acj and for all M € 9 it holds that do;(a) is deterministic for
M.

PROOF oF LEMMA 5.4: By induction on the structure of a.
®

11

NoTATION. To keep our notation compact we will sometimes use the following abbrevia-
tion:

I}, (¢, ;) o (confirm ¢;a,);...;(confirm ¢; a;); confirm -
where k € IN,k > 1, ¢ is some formula, and the a;’s are actions.

5.5. DEFINITION. The function CS, yielding the finite computation sequences of a given
action, is inductively defined as follows.

CS : AC] - P(ACI,)

CS(a) = {a}

CS(confirm) = {confirm ¢}

CS(a1; ag) = {of;05 | o) € CS(ay),a € CS()}

CS(if ¢ then o else a; £i) = CS(confirm ;) U CS(confirm ;5 ap)
CS(while ¢ do oy od) = UgZ,Seq;(while ¢ do oy od) U {confirm ~¢}
CS(ay & a3) = CS(ay) U CS(az)

where for k£ > 1
Seg(while ¢ do oy od)

{1 (p,0f) | o € CS(ey) for j =1,...,k}

5.6. REMARK. The definition of the finite computation sequences of action « is essentially
identical to that of the trace set of o using linear time semantics (cf. [BBKM84]). Note
furthermore that the set of finite computation sequences of an action « is determined by
the syntactical shape of « only.

5.7. LEMMA. For all actions o € Ac; we have: CS(a) # 0.

PROOF oF LEMMA 5.7: By induction on the structure of a: the cases for atomic actions,
confirmations, conditional composition, and repetitive composition are straightforward
from definition 5.5; these cases do not use the induction hypothesis. In the other cases

the induction hypothesis is used.
X

Having introduced the notion of finite computation sequences, the semantics fit to cope
in an intuitively acceptable way with the internal nondeterministic choice can be defined.
For events and abilities this semantics is a straightforward translation of the intuitive idea
that <do;(a)> ¢ holds iff it is possible for the agent i to execute @ in such a way that ¢
results, and A;a holds iff the agent i is capable of performing at least one of the atomic
sequences that constitute a.

5.8. DEFINITION. The valuation 7 as given in definition 2.6 is modified as follows.

m(<doi(e)>¢p,s) =1 & Ja' € CS(a)3s’ € S[r(i,a’)(s) = s&n(p,s)=1]
T(Aja,8) =1 < Jo' € CS(a)c(4,a’)(s) = 1]

12

where

r(¢, confirm ¢)(s)

I

{s}if m(p,s)=1
= () otherwise

(i, a5 00)(8) = & & 3t € S[r(i, a1)(s) = t & (i, 3)(t) = &)

c(7, confirm ¢)(s) = 7(p,8)
c(:i(z', ay; az)(s) = c(d,a1)(s) A c(3, ax)(x(i, a1)(s))
c(é, a)(0) =1

5.9. REMARK. Since events and abilities are separate concepts, it it important to note
that whenever in an example in this paper two states are connected via an arrow this is
an events only arrow, which has nothing to do with the actual abilities of the agent in
question.

5.

10. ExamPLES. The following examples show how definitions 5.5 and 5.8 work out in

practice.

Consider the Kripke model M =< S,7,R,r,c > as given in example 4.1. Again
consider the ability of agent ¢ for the action o = (a1 ® az); as:

M,s0 |E Aja

< T(Aj,8) =1

< do’ € CS(a)[c(i, a')(so) = 1]

< c(i,a15a3)(s0) = 1 or (i, a;a3)(s0) = 1

& (c(4,a1)(80) = 1 and c(4,a3)(s,) = 1) or
(c(7,a2)(s0) = 1 and c(i,a3)(sy) = 1)

<« true, since c(4,a;)(s0) = 1 and c(3,a3)(s1) = 1

Since the agent is capable of performing one of the atomic sequences that constitute
the action o, s/he is able to perform a. This is exactly the outcome as we intuitively
expected it to be.

Assume that M is the Kripke model for which the function r is for agent ¢ as in the
following picture.

s3
g1 33
s4
§ a2
s5
s 4
s6

Let action a be given by o &ef (a1 @ a3); (a3 ® a4). We have the following for M:
CS(a) = {ar505 | a; € CS(ay & ay), a3 € CS(as @ ay)}

= {ay;0; |) € {ay, az},a; € {as,a4}}
= {al;a3a ai; a4, G;ag, a2;a4}

Let M be the Kripke model given by:

13

(1) S§={s; |j €N}
(2) 7(p,5;) =04 j=2,
(g, 8)=1&j5=2.
(3) R is arbitrary.
(4) r: see picture below for the action transitions for agent 1.
(5) c(i,a1)(s;) = c(i,az)(s;) =1, for all j € IN.
s0 sl s s4

S

Let @ = while p do a; @ a; od. Note that the finite computation sequences for o are
given by the following equation:

CS(@) = {T_y(p,) | £ € N,k > 1,6 € {a1,a2)} U {contirm ~p}
5.11. PROPOSITION. The following is true for M:

(1) M, s l=<do;(a)>q.
(2) M,so = Aa.

PROOF OF PROPOSITION 5.11:

Case 1:
M, sq [=<do;(a)>q

& m(<doi(a)>¢q,8) =1

& 3o’ € CS(@)3s’ € S[r(i,a')(s) = &' & n(q,s') = 1]

& true, since of & (confirm p; ay); confirm —p € CS(a), r(i,o')(s) = sy,
and 7(g,s,) = 1.

Case 2:
M, s0 E Aja

~ 7r(A,:a, So) =1

< 3o’ € CS(a)[c(i,a')(s0) = 1]

< true, since (confirm p; a,); confirm -p € CS(a),
and c(z,(confirm p;a,); confirm —p)(so) = 1.

b

The following theorem shows that our semantics for the internal nondeterministic choice
behaves as desired.

5.12. THEOREM. For all agents i, actions oy, a, € Acy, and for all formulae ¢ we have:

o E<doi(an @ a2)>¢ & (<doy(ar)> @V <doi(as)> o).

l= A,-(al & ag) L d (A,’Ofl \Y A;az).

PROOF OF THEOREM 5.12:

14

First case:
M, s =<doi(aq B a3)> ¢
& m(<doj(a; ® a3)>p,8) =1
& 3o’ € C5(ou ® @2)3s' € S[x(i,a')(s) = 8’ & (i, 8') = 1]
& 3o’ € CS(01) U C8(a,)3s' € S[x(i,o!)(s) = ' & (e, &') = 1]
& da’ € CS(@1)3s' € S[r(i,0/)(s) = s' &7(ep,s') = 1] or
do’ € CS(az)3s" € S[x(i,a')(s) = &' &m(p,s') = 1]
& m(<doi(a1)>p,8) =1 or m(<do;(a)> ¢, s) = 1
& m(<doi(a1)> ¢V <do;(az)>p,8) =1
& M, s E<doi(ar)> ¢V <doi(ay)> ¢

Second case:
M, s k= Ai(a: ® ay)
& 1(Ai(ar ® az),s) =1
< do' € CS(ay @ ay)[c(s, o)(s) = 1]
& da’ € CS(a;) U CS(az)[c(3, a)(s) = 1]
& do’ € CS(a1)[e(i, @')(s) = 1] or Fo! € CS(az)[c(s,0')(s) = 1]
& m(Aia,8) =1 or n(Ajas,s) =1
& 1(Ajoq V Ajay,s) =1
& M, skE Aoy V Aja,

X

5.1. Composite actions revisited

In [HLM93] some validities in the language £ of definition 2.2 on M of definition 2.5 were
proved, both for events and abilities. In this section these validities are reconsidered in
the light of the semantics for the internal nondeterministic choice as introduced in the
previous section. Theorem 5.13 deals with events, theorem 5.14 deals with abilities.

With regard to events, our new semantics behaves as the semantics given in [HLM93].

5.13. THEOREM. For all agents i, actions a,,a, € Ac;, and for all formulae ¢ and ¢ we
have:

(1) E ¢ ¢r<do;(skip)> .
(2) | - <do;(fail)> tt.
(3) E<do;(confirm ¢)>19 & (9 A).
(4) E<doi(ar;a3)> ¢ &<doi(a;)> (<doi(ay)> ¢).
(5) E<do;(if ¢ then o, else a, £fi)> ¢ «
<do;(confirm ¢;0y)> ¢V <do;(confirm 0g)> 1.
(6) [E<do;(while ¢ do & 0d)>17 &
<do;(confirm ~¢)> ¢V <do;(confirm ¢; a;)><do;(vhile ¥ do oy od)> 1.

15

PROOF OF THEOREM 5.13: The first three cases are straightforward, since it holds that
CS(a) = o, for a = skip, fail, confirm . Also case 5 is easy to prove. Since the proof
of case 6 is analogous to that of case 4, we will prove case 4 only; equivalences that are
standard for first-order logic (see for instance [Gam91]) are assumed to be familiar and
are therefore used throughout this proof without mentioning them.

Case 4:

M, s =<do(a; a3)>
& m(<doj(a; a0)>p,8) =1
& 3o’ € CS(a1;02)38'[x(3,a')(s) = s & (¢, 8') = 1]
& Jdaj € CS(a1)Ia € CS(az)Is'3s"[x(3, !,)(s) = " & (i, a)(s") = s’ & n(p,s) = 1]
& 3oy € CS(@1)3s"3ay € CS(a)s'[r(i, o))(s) = s"&r(i,ay)(s") = & & n(p,s) = 1]
& Jdaj € CS(0y)3s"[r(i, 0)(s) = 8" & Ao, € CS(a)3s'[r(i, ap)(s”) = s' & w(p, 8') = 1]]
& dof € CS(01)3s"[x(3,0)(s) = 8" & m(<do;(as)> ¢, §") = 1]
& m(<doy(ar)><dos(az)>¢) =1
~ M, S |=<do,-(a1)><d0,~(a2)> @

b

It turns out that with regard to abilities the sequential composition and the repetitive
composition behave differently for the (nondeterministic) semantics of section 5 than they
did for the (deterministic) semantics of [HLM93]; for the other composite actions the same
validities are found as in [HLM93).

5.14. THEOREM. For all agents i, actions oy, a; € Acy, and for all formulae ¢ we have:

(1) E A;skip.

(2) E -A;fail.

(3) ¢ ¢+ A;confirm ¢.

(4) F Aif ¢ then oy else o, fi ¢+ A;(confirm p; 1) V Aj(confirm —p; as).

PROOF OF THEOREM 5.14: Straightforward and left to the reader.
X

5.15. THEOREM. For all agents i, actions ay, 03,03 € Acy, and for all formulae ¢ we
have:

(1) ¥ Ai(on;as) = Ajay A [do; ()] Asas.

(2) F Aiar Afdoy(ar)]Asez = Ay(ag; o).

(3) F Ai((on ® @;);03) 6 (As(on; a3) V Ay(a; 03)).

(4) E Ai(ar; (02 ® a3) & (Ai(ar;0) V Ai(ar; as)).

(5) k= Awhile ¢ do e, od ¢ (A;confirm ¢V A;((confirm ¢;a;);while ¢ do @; od)).

PROOF OF THEOREM 5.15: Case 1 is proved by the first of the examples given in 5.10. The
proofs of the cases 3, 4, and 5 are left to the reader. We show case 2.

16

M, s = Ao Adoi(e;)]Aa,
< Jaj € CS(ar)[e(z,a))(s) = 1] &
Vai € CS(en)Vs'[r(é,a))(s) = s = da; € CS(ay)[c(i, a5)(s') = 1]]

Now let o be such that c(i,a}) = 1. We distinguish two cases:

e x(i,a})(s) = 0. Take an arbitrary o, € CS(); this is possible since CS(as) # 0
(lemma 5.7). It now holds that of;a, € CS(ay;3) and c(4,af; o4)(s) = 1, and hence
M, s = Aja;;a,.

e r(i,0f)(s) = &, for some s’ € S. It then follows that c(i,ay)(¢') = 1 for some
oy € C5(az). Hence (4, 04; 4)(s) = 1 and since of; o/, € CS(ay; as) we conclude that
M,s = Aja;;a,.

This suffices to conclude that case 2 holds.
X

In our opinion theorems 5.13 to 5.15 show that our semantics are intuitively acceptable.
The first two cases of theorem 5.15 are associated with the properties observed in exam-
ple 4.1 and in the first example of 5.10.

5.2. The Can-predicate and the Cannot-predicate reconsidered

To formalize the knowledge of agents concerning correctness and feasibility of their plans
with respect to a given goal we used in [HLM93] a completely modified version of the
Can-predicate, originally defined by Robert Moore ([Moo80], [Moo84]).

Intuitively the Can-predicate Can;(a, ¢) expresses the fact that agent ¢ knows that a
is a correct and feasible plan to achieve the goal . As already indicated in section 2,
correctness of o with respect to ¢ is formalized by <do;(a) > ¢ and feasibility of a for
agent ¢ is formalized by A;o. Hence a straightforward definition of the Can-predicate is
the following one, which actually is the one used in [HLM93].

Can;(e, ¢) = K;(<do;(@)> ¢ A A;a) ()

For the deterministic case this definition turned out to be intuitively perfectly acceptable
(see [HLM93]). However as soon as internal nondeterministic actions are involved some
awkward situations come into being:

9.16. EXAMPLE (The poor agent). Consider the situation of a poor agent i. The agent
knows that making money by magic would make her/him rich, but of course s/he is
incapable of doing so. This situation is formalized in the model M =< S , TR, r, e >,
where a is the act of making money by magic, and r stands for richness.

(1) 8 = {s0,81},
(2) W(r’ 50) =0, 71'(7',81) =1,
(3) R(Z) = {(30730)7 (31’31)}s

17

(4) z(i,a)(s0) = s1,
(5) c(i,a)(s0) = 0.

In this model we find the following to hold:

(1) M,so =<do;(a)>r and hence M, s, =<do;(skip B a)>r.
(2) M, sy = A;skip and hence M, s, = A;(skip & a).
(3) M, so = Ki(<do;(skip ® a)>r A A;(skip @ a)), i.e.,

M, sy |= Canj(skip & a, 7).

Hence the agent concludes that s/he has a correct and feasible plan to become rich! Since
this conclusion is highly undesired, definition (1) is to be rejected.

To avoid the kind of counterintuitive behaviour as expressed in example 5.16, the Can-
predicate needs to be modified. A first possible attempt to modify the Can-predicate could
be to demand that all possible ways of doing « lead to the truth of ®, thus ending up with
the following definition:

Canj}(a, ¢) = K;([do;(a)]p A <do;(a)> ¢ A A;a) (1)

However definition (1) does not yield intuitively acceptable results either:

5.17. EXAMPLE (The living agent). Consider the situation of an agent ¢ that has a zest
for living. The agent knows that breathing keeps him /her alive and also that if s/he holds
his/her breath for half an hour, s/he would no longer be alive. The agent furthermore
knows that s/he is capable of breathing and not able to hold his/her breath for half an
hour. A possible formalization of this situation is given by the model M =< 8§, 7,R,1,¢ >,
where b is the act of breathing, & is the act of holding your breath, and ! stands for the
agent being alive.

(1) 8 ={s0,8},

(2) 7(l,s0)=1, n(l,8,) =0,

(3) R(?) = {(s0, %), (s1,51)},

(4) r(3,b)(s0) = 80, T(i,h)(80) = 51,

(8) <(4,b)(s0) = 1, c(i,h)(so) = 0.

In this model we find the following to hold:

(1) M, s [=<do;(b)>1 and hence M, s, =<doy(b @ h)> L.

(2) M,so = A;b and hence M, sy = A;(b@ h).

(3) M, s0 [~ [do;(h)]l and hence M, s, [[doy(b & h))L.

(4) M, 0 [~ K;([doy(b @ h)]l), and hence M, s, £ Can?(b@ h,1).

Despite the fact that agent ; determines which action is chosen and s/he knows that one
of the actions b and h is correct and feasible, the agent does not know that b DO his a

18

correct and feasible plan to stay alive. This is a consequence of the fact that not all
possible ways of doing b @ h lead to states in which the agent is alive. But since the agent
decides which action to perform, the demand that all possible ways of doing an (internal
nondeterministic) action lead to the desired goal is a counterintuitive one in the first place.
Therefore definition (1) is also to be rejected.

In order to ensure that the Can-predicate and the Cannot-predicate behave in an intu-
itively acceptable way in the situations sketched in the examples above, we will for the
internal nondeterministic case abandon the idea of defining the Can-predicate and the
Cannot-predicate as syntactical abbreviations. Instead we will treat these predicates as
independent ones that have their own semantics. It will not come as a surprise that the
unravelling of actions again plays an important part in this semantics.

5.18. DEFINITION. For a given model M =< S,7,R,r,c > the semantics of the Can-
predicate and the Cannot-predicate is defined as follows:

o M,s = Can(a, p) if and only if
do’ € CS(a)[M, s = Ki(<do;(e/)> ¢ A As)].
e M,s = Cannot;(a,) if and only if
Vo' € CS(a)[M, s = Ki(~ <doy(a)> ¢ V =A;a')].

The Can-predicate as given in definition 5.18 formalizes the idea that an agent knows
that some action e is a correct and feasible plan for some goal @ if and only if for some
o' € CS(a) s/he knows that o' is a correct and feasible plan for the goal. Defining the
Can-predicate and the Cannot-predicate as in 5.18 resolves the counterintuitive situations
that occurred in examples 5.16 and 5.17:

* in example 5.16, M, s, [~ Can;(a @ skip,r), and M, s, = Cannot;(a @ skip, r), i.e.,
the agent knows that a @ skip is either incorrect or unfeasible and therefore cannot
be used to achieve 7.

¢ in example 5.17, M, s, = Can;(b@ h,1) and M, s, |= Cannot;(b@® h, -!), i.e, not only
does the agent know that b @ h is a correct and feasible plan to stay alive, s/he also
knows that it is not a correct and feasible plan to end his/her life. This corresponds
to the idea that the agent decides which of b and A is to be executed.

Furthermore two intuitively desirable equivalences hold when using definition 5.18:

5.19. LEMMA. For all agents i, all actions a; and a3, and for all formulae @ the following
holds:

o | Cani(a; @ a3, 9) ¢ Can;(ay,¢) V Can;(ay, ¢).
* | Cannot;(e; @ a3,¢) ¢ Cannot;(a;,) A Cannot;(as, ®).

PROOF oF LEMMA 5.19: The lemma easily follows from definition 5.18.
R

19

Lemma 5.19 clearly expresses the idea of agent 4 being in control: the agent knows that
an internal nondeterministic choice between two actions is correct and feasible if and only
if one of the actions to be chosen is. Since the choice is completely free to the agent, this
is what one intuitively would expect.

6. Introducing external nondeterminism

Next we will try and incorporate external nondeterminism into the system given in sec-

tion 2. As in the case of internal nondeterminism, we start with extending the language
L.

6.1. DEFINITION. The language L is an extension of the language £. For the language
Lg the class of actions Ac as given in definition 2.2 is extended by the following, thus
obtaining the class Acg of actions.

Q=) + oy
The class of basic actions based on Lg is defined in the obvious way:

6.2. DEFINITION. The class of basic actions Acf,E based on Lg is given by the following
BNF, where a is a typical element of At and ¢ is a typical formula from L.

a:=a | confirm ¢ | ay;a,

Note that, just as was the case with Ac{ , for all actions a € Ach it holds that all events
do;() are deterministic for all M € 9.

In the light of the remarks made in the previous sections, one could be tempted to modify
definition 5.8 in the following obvious manner:

o 7(<doi(a)>¢p,s) =1 & VYo' € CS(a)Is'[r(i,a')(s) = s &7 (p,s') = 1] (*)
o w(Aja,8)=1&Va' € CS(a)c(i,a’)(s) = 1] (%)

This approach however has some undesired and awkward consequences, as can be seen in
the following example.

6.3. ExaAMPLE. Consider the action a & if % then skip else fail fi. Assume that
the event do;(a) occurs in a state s in which ¢ holds. Given the intuitive meaning of o
one would expect the event do;() to behave in s as the event do;(skip) would. However,
when using the definition of r(<do;(e)> 1, s) as given in (%), this is not the case:

M, s [=<do;(a)>tt
& m(<do;(a)>tt,s) =1
& Vo' € CS(a)3s'[r(i,o')(s) = &' & m(tt,s') = 1]

20

& 3s'[r(¢, confirm ; skip)(s) = ¢’ & 7(tt,s’) = 1] and
3s"[r(i, confirm —p; fail)(s) = s” & 7(tt,s") = 1]

<« false, since r(i, confirm —p; fail)(s) = 0

whereas

M, s =<do;(skip)>tt

& m(<do;(skip)>tt,s) =1

& Vo' € CS(skip)3s'[r(i, skip)(s) = s' & n(tt,s') = 1]

& m(tt,s) =1

< true.

Example 6.3 clearly shows the problems that are associated with using the definition (%)
(an analogous problem occurs with the definition (#+)): due to the fact that the set of
finite computation sequences of an action o is determined by the syntax of o alone, this
set contains some sequences that should be left out of consideration in certain states
for certain agents. For instance, the action if ¢ then skip else fail fi should have
confirm p;skip as the only relevant computation sequence in states in which ¢ holds.

To correctly deal with external nondeterminism, the relevant computation sequences of a
given action, for a given agent in a given state, need somehow be singled out. We will call
these relevant sequences the finite computation runs of the action, given an agent and a
state.

Before we give the definition of the finite computation runs some additional terminology
is necessary.

6.4. DEFINITION. For all agents ¢ and actions a we define:

o the event do;(e) is voidly non-terminating in a given state s if the event does not cause
any state transition. For instance the event do;(fail) is voidly non-terminating in all
states s.

o the event do;(a) is infinitely non-terminating in a given state s if the event causes
infinitely many state transitions. An example of an event that is infinitely non-
terminating in all states s is do;(while tt do skip od)

Since o may contain external nondeterministic choices, for < do;(a) > ¢ to hold it is
demanded that no way of executing o exists such that a non-terminating event results;
for in case of a non-terminating event certainly no end state exists, which is demanded for
<do;(a)> ¢ to be true. For A;a to hold it is necessary that no way of executing o exists
such that an infinitely non-terminating event results: since people die and machines break
down, agents cannot be expected to be able to perform actions that result in infinitely
non-terminating events. Note that it is possible that agents are able to perform actions
that would lead to voidly non-terminating events (for instance the action that consists of
washing hair in the shampoo example of section 2); it is therefore possible that actions
resulting in a state s for an agent 4 in voidly non-terminating events still are relevant. For
these reasons the definition of finite computation runs is such that if some computation
sequence of an action a results, for a given agent ¢ in a given state s, in an infinitely

21

non-terminating event, the set of finite computation runs of o for the agent and the state
is equal to the singleton set {fail}. If none of the finite computation sequences of action
o results in an infinitely non-terminating event for i in s, the set of finite computation
runs of a is defined inductively. In this inductive definition it is taken into account that,
depending on the truth or falsity of the condition, only some of the finite computation
sequences of a conditional or a repetitive composition are finite computation runs. Note
in particular that the set of finite computation runs of an action is determined by the
context of the action, i.e., the agent that executes the action and the state in which it is
executed, and is no longer determined by syntax alone.

To check whether an action a, for a given agent i and a state s, can be executed in such
a way that an infinitely non-terminating event results, the predicate Term is used. The
definition of this predicate is a rather straightforward formalization of the idea that in-
finite events result in infinitely many state transitions. If we assume that execution of
semi-atomic actions takes one execution cycle, then execution of an action that results in
an infinitely non-terminating event takes more than k execution cycles, for all k € IN. To
successfully define the termination predicate according to this intuition we define for basic
actions the notion of one action being the prefiz of another action, and the notion of the
norm of an action, representing the number of execution cycles it would take an agent to
execute the action.

The prefix predicate is necessary to successfully deal with infinite while-actions; the need
for this predicate is caused by the definition of the computation sequences for the while-
actions. If we consider for instance the action o < while tt do skip od in a given state
s for a given agent %, it is obvious that execution of o by i results in infinitely many state
transitions from s to s. However, the set of finite computation sequences of a fails to
express this: since all finite computation sequences of o are of the form o jconfirm ff, all
of these computation sequences result in voidly non-terminating events!

The definition of Term as we give it, i.e., using the prefix predicate, can cope with the situ-
ation sketched above: for all natural numbers k a natural number n > k exists such that for
some finite computation sequence o/ € CS(while tt do skip od) the prefix of ' of length
n results in n state transitions from s to s, and hence the event do;(while tt do skip od)
is infinitely non-terminating in all states s, for all agents ¢.

After this, hopefully explanatory, introduction the actual definitions of the various predi-
cates can be given.

6.5. DEFINITION. The relation Prefix C Acig X Acf is defined as follows, where o, 8, €
Acf.

(1) Prefix(e,a).

(2) if Prefix(e, 8) then Prefix(a, 8;7).

(3) Prefix(a; B, a; v) iff Prefix(8,7).

6.6. DEFINITION. The function |.| : Acf — IN, denoting the norm of an action, is defined
by:
|| = 1if a is semi-atomic

22

lo; o] = [oy] + |y

6.7. DEFINITION. For all actions o, € AcP, and for all n € IN we define ||, by:
lal, = o & Prefix(¢/,a) & |o/| = n

6.8. DEFINITION. The function Term, indicating termination of a given action, in a given
state and for a given agent, is defined as follows.

Term(i,a,s) = 0 if
VEkdn > k3o’ [@" = |o'],, o € CS(@) and (3, 0)(s) # 0]

Term(i, o, s) = 1 otherwise.

6.9. REMARK. Note that the definition of Term as given above is correct only since the
nondeterminism that is considered in this paper is bounded, i.e., no infinite branching inside
a nondeterministic choice is possible (cf. [AP86]). It is not hard to see that for bounded
nondeterminism it indeed holds that Term(i,c,s) = 0 implies that do;(e) is infinitely

non-terminating in s. For unbounded nondeterminism this implication is in general not
valid.

6.10. DEFINITION. The function CS : Acg — Ac; is defined as in 5.5, where the clause
CS(o1 @ a2) = CS(e1) U CS(exz) is replaced by CS(ay + ;) = CS(ay) U CS(az).

6.11. DEFINITION. Let M be some standard model. The functions CR, 7, r, and c are
by simultaneous induction defined as follows:

The function CR, denoting the finite computation runs, is defined by:

CR : AX Acg x S = p(AcE)

CR(i,a, s) = {fail} if Term(¢,0,5) =0
else if Term(i, @, s) = 1:

CR(i,a, s) = {a}

CR(i,confirm ¢, s)
CR(i, a1; s, 8)

{confirm ¢}
{a};ay | oy € CR(i,04,s),
aIZ € CR(Z’ s, I‘(i, all)(s))}
CR(i,confirm p; a1, s) if m(p,s) =1
CR(i, confirm —¢; ay, s) if 7(p,s) =0
{confirm -~} if 7(p,s) =0
{¢/ € CS(while ¢ do e; od) |
(o = (confirm ¢;711);7), 11 € CR(3, 1, 3),
v € CR(i,while ¢ do a; od,r(i,7;)(s))}

CR(i,if ¢ then a; else a; fi,s)

CR(i,while ¢ do a; od, s)

if m(p,8)=1
CR(i, 01 + a3, 8) = CR(i,04,8) U CR(1, 3, s)
and
CR(i,, D) = CS(a)

23

the function 7 as given in definition 2.6 is for events and abilities modified as follows:

T(<doy(a)>p,8) =1 & Vo' € CR(i,a,s)3s' € S[r(i, ')(s) = 8' &
(g, ') = 1]

171r(A,-a,s) =1 & Vo' € CR(3, , 8)[c(,a’)(s) = 1]
r(¢, confirm p)(s) = {s}if r(p,8)=1

= () otherwise
1('1(i,a1; az)(s) = & 3t € S[x(i, 01)(s) = t & (i, a5)(t) = §']
(i, a)(0) =0
c(%, confirm ¢)(s) = 7(¢p,8)
cii(i, ay; az)(s) = c(d,a1)(8) A c(4, a2)(z(3, @1)(s))
c(é,)(0) =1

6.12. REMARK. Note that well-definedness of CR(i,, s) in definition 6.11 depends essen-
tially on termination of the event do;(a) in the state s.

6.13. REMARK. The definition of CR(%, @, #) may seem to be a somewhat arbitrary one at
this point: replacing CS(«) by for instance Acg or by {skip} would not alter the behaviour
of the = function. However the definition as it is given is such that some interesting and
intuitively desirable relations exist between the set of finite computation runs and the set
of finite computation sequences (see theorems 6.18 and 6.20, lemmas 6.15 and 6.17, and
corollaries 6.19 and 6.21).

6.14. REMARK. Note that in the definition of the finite computation runs the conditional
and the repetitive composition are not considered to be some sort of degenerated (exter-
nal) nondeterministic choice, this in contrast with the usual approach in dynamic logic
(cf. [HR83], [Har84], [KT90], [Gol92]). In our opinion the approach that we take in defi-
nition 6.11 is an intuitively better one than the standard dynamic logic approach. Since
compared to the nondeterministic choice, the conditional does not comprise any real choice
since the choice as to perform the then part or the else part is completely determined by
the value of the condition; this is an imposed choice that has nothing to do with either
the agent or the external environment surrounding the agent making a choice. An analo-
gous line of reasoning can be given for the repetitive composition. The treatment of the
conditional and the repetitive composition in definition 6.11 is based on our conviction
that these action constructors are essentially deterministic by nature: in a given state s it
is for a given conditional if ¢ then a; else a; fi completely fixed whether a; or as is
performed. This depends only on the truth value of the conditional ¢, and is by no means
nondeterministic. Also for the repetitive composition it can be determined on beforehand
whether the action in the body of the while will be performed, since this depends only
on the truth or falsity of the ¢ in while ¢ do a; od. This intuition is clearly visible
in the definitions of the finite computation runs for the conditional and the repetitive

24

composition. The fact that in section 5 a correspondence does seem to exist between the
conditional if ¢ then o, else a, £i on one side, and the internal nondeterministic choice
(confirm ¢; a;) @ (confirm —p; @) on the other side, is a consequence of the fact that the
imposed choice in the conditional has the same behaviour as the angelic nondeterministic
choice with regard to the results of events and abilities.

The following lemmas and theorems sum up some of the properties of Term, CS and CR.

6.15. LEMMA. For all models M =< S,7,R,r,c >, for all s € S, for all agents i and for
all actions a € Acg we have:

o CS(i,a,8) #0.
e CR(i,a,s)#0.

PROOF OF LEMMA 6.15: Both cases are proved by induction on the structure of .
&

6.16. THEOREM. For all models M, for all s and for all actions oy, s € Acg and formula
¢ we have:

o if Term(i,01; @9,8) = 1 then Term(i,,s) = 1 and Term(i, a3, 8') = 1 for all &' =
(i, a})(s) with o) € CS(a;).

o if Term(i,if ¢ then a; else o, fi,s) = 1 then Term(i,confirm ¢;a;,s) = 1 and
Term(t, confirm —¢p; a;,s) = 1.

o if Term(i,while ¢ do a; od,s) = 1 then for all o" such that Prefix(a”,a') with
o' € CS(while ¢ do e; od), if r(i,a")(s) = s’ then Term(s, confirm g; ap,s')=1.

o if Term(s, 0 + a3,8) = 1 then Term(i,ay,s) = 1 and Term(i, oy, 8) = 1.

ProoF OF THEOREM 6.16: The cases for the conditional if @ then a; else a, fi and the
external nondeterministic choice a; + a, are easily proved. We will show the two other
cases.

(1) Case 1: Sequential Composition.
Firstly we will show that if Term(i, o, s) = 0 then Term(%, 04; @, 8) = 0, and secondly
that if for some s’ = r(i,})(s), with @} € CS(ey), it holds that Term(i, ay,8') = 0
then Term(i,o4; as,8) = 0. With this the contraposition of the implication given
above is proved.

e Assume that Term(7,a;,s) = 0. We will show that Term(t, a1; az,8) = 0 by
showing that for all k € IN, an n > k and actions o', o exist, such that o =
|'|n, o € CS(ay; ;) and r(i,a”)(s) # 0. Let k € N. Since Term(i,aq,8) = 0
some n > k, (', " exist such that 8" = |3'|,, §' € CS(a;) and r(z,8")(s) # 0.
Now take an arbitrary o} € CS(ay); such an o exists since CS(a) # 0. Now we
have: " = |3 &y|n, n > k, ;04 € CS(ay;a,) and r(¢,5")(s) # 0. Since k was
chosen arbitrary in IN this suffices to conclude that Term(i, a; as, s) = 0.

25

(2)

X

o Assume that &' = r(i,0})(s), for &} € CS(a,) is such that Term(s, a,,s') = 0. As
in the previous case we will show that Term(%, a1; @, 8) = 0 by showing that for
all k € IN, an » > k and actions o, o exist, such that o' = ||, o € CS(ay;as)
and r(i,a")(s) # 0. Let k € N. Since Term(i,a,,¢') = 0 some n > k, 7/, "
exist such that v = |7'|,, v € CS(a,) and r(i,7")(s) # 0. It now holds that
o137 € CS(ar; a3), laj;7”| = n' > n, and (4,);7")(s) # 0. Since k was chosen
arbitrary in IN it follows that Term(i, ;; as, s) = 0.

This suffices to conclude that case 1 holds.

Case 3: Repetitive Composition.

Assume that Term(i,while ¢ do a; od,s) = 1. Let ky € IN be such that Vn >
koVa'Va''[a" = |o/|, & o’ € CS(while ¢ do a; od) = r(i,a”)(s) = 0]. Assume
that s, o” and o' are such that Prefix(a, o), o/ € CS(while ¢ do o od), and
r(i,a”)(s) = §'.

Assume towards a contradiction that Term(i, confirm ¢; a;, s’) =0. Let m > ky and
7', v" be such that ¥ = ||, ¥’ € CS(confirm p;a;) and r(i,7")(s") # 0.

Note that, since Term(i, confirm ¢; ay,s') = 0, it holds that 7(¢p, §)=1.

Hence o”, which is such that r(i, a”)(s) = &, has any of the following three forms:

e o' =confirm ¢, or
o o' = (confirm p;a});...;(confirm ¢;a}), for I > 1, or
e o' = (confirm ¢;0});...;(confirm ¢;a}); confirm ¢, for { > 1.

Now define the action d in any of the three cases given above as follows:

o d=n"
e 0= (confirm p;a});...;(confirm ¢;a});y".
e 0= (confirm p;a));...;(confirm p;c});y".

It holds that § = |4;confirm -y, for some 2 > m > ky, (0; confirm ~¢) €
CS(while ¢ do a; od), and r(,8)(s) # 0. Since = > ko this contradicts the def-
inition of ko as given above. It follows that Term(i, confirm ¢; ay, s’) = 1, which was
to be shown.

6.17. LEMMA. For all models M, for all s and for all actions oy € Acg we have:

Term(i, a,s) = 1 = CR(i, o, 8) C CS(a)

PRrROOF oF LEMMA 6.17: By induction on the structure of @, using theorem 6.16.

b

6.18. THEOREM. For all models M =< 8,m,R,x,c >, for all s € S and for all actions
a € Acg:

Term(i, @, 8) = 1 = Va'Vs'[o! € CS(e) and x(i,o’')(s) = &' iff

o' € CR(i,a,s) and (i, a/)(s) = &']

26

PROOF OF THEOREM 6.18: We will show by induction on o € Acg that, given that
Term(i, 0, s) = 1, it holds that Vo'Vs'[o/ € CS(e) and r(i,e)(s) = ¢ = o € CR(i,q,s)
and r(i,a')(s) = &']; the reverse implication is trivial since CR(i,a,s) C CS(e) holds by
lemma 6.17.

(1)
(2)

(3)

(4)

« is semi-atomic. This case is trivial since for semi-atomic actions « it holds that
CR(i,a, s) = CS(a).

o = o505 Let of € CS(a), and let s’ be such that r(¢,0/)(s) = s'. By definition
of CS(ai;a2), @ = af; 0, for some o € CS(a;) and ay € CS(a3). Let of = of;al.
From r(i,ef;a5)(s) = ¢ it follows that a ¢ € S exists such that r(é,ay)(s) = ¢
and r(z,5)(t) = . Since Term(i,0;;a,s) = 1 it follows that Term(i,a;,8) = 1,
and we conclude by induction hypothesis that o} € CR(i, 1,) and r(i,0})(s) = t.
Furthermore, from Term(i,oy;a,,8) = 1 it follows that Term(i, o, t) = 1, and we
conclude by the induction hypothesis that oy, € CR(i, as,t) and r(i,a5)(t) = s'. From
o) € CR(i,ay,3), r(i,0})(s) = t, o, € CR(i,as,t) and r(i,05)(t) = s’ we conclude
that o}; o € CR(4, a1; s, 5) and (i, f; a4)(s) = s, which was to be shown.

@ = if ¢ then o, else a; fi. Let &/ € CS(a), and let s’ be such that r(i, a')(s)=¢.
We distinguish two cases:

o 7(p,s) = 1: from r(i,a')(s) = ¢ it follows that o/ € CS(confirm ¢;a,); for if
o' € CS(confirm -;a,) then r(i,a’)(s) = 0. Hence o/ = confirm p; o for
some &) € CS(a,). Since 7(p,s) = 1 it follows that r(i,o!)(s) = s'. Further-
more from 7(p,s) = 1 and Term(s,if ¢ then o, else a, fi,s) = 1 it follows
that Term(i, a;,s). By induction hypothesis it follows that oy € CR(i,04,s) and
r(i,0f)(s) = s'.

Then confirm ¢; o) € CR(%,confirmp; ay,s) = CR(i,if ¢ then o else oy £i, s)
(the identity holds since 7(y,s) = 1) and r(i, confirm ¢; ay)(s) = &, which was
to be shown.

o 7(~¢p,s) = 1: completely analogous to the case where T(p,8) = 1.

@ = while ¢ do @, od. Let o’ € CS(a), and let s’ be such that r(i,a’)(s) = s'. We
distinguish two cases:

o w(~¢p,s) = 1: from r(i,a')(s) = ¢ it follows that o/ = confirm -, and s = s'.
Also CR(i,while ¢ do a; od,s) = {confirm -}, and hence r(i,a')(s) = s and
o' € CR(i,while ¢ do ; od,s).

o 7(p,s)=1: then o’ =TI¥_,(p,), where k > 1 and o} € CS(av). Let sy ...8541
be such that s = s;, s34, = &' and for all j < k, (i, confirm p;a5)(85) = sj41.
We will show by finite backwards induction that for all 1 < 7 £ kit holds that
II}_; (¢, o}) € CR(i,while ¢ do a; od, s;).

Basis: j = k.

Since 7(~¢p, sk41) = 1 we have CR(i,while ¢ do a; od, Sk+1) = {confirm —y}.
From Term(i,while ¢ do ; od, s) = 1 it follows that Term(i, 0y, 8;) = 1 and since
(%,)(8k) = Sk41 it follows by the outmost induction that a; € CR(4, a1, s;) and
(2, 0})(sk) = Sk41-

Hence (confirm ¢; o}); confirm ~¢ € CR(i,while ¢ do a; od, si).

Induction step: j + 1+ j,

Assume that IIf_; ,, (¢, a}) € CR(4,while ¢ do a; od, Sj+1)-

27

Now since Term(7,while ¢ do a; od, s) = 1 by theorem 6.16 also Term(i, oy, 8j) =
1. Furthermore since o € CS(ev;) and (3, a})(s;) = s;4, it follows by the outmost
induction that o} € CR(4,,s;) and r(i,0})(s;) = sj41. Since 7(p,s;) = 1 it
follows that (confirm ¢;a}); IIf_;,,(p,0}) € CR(i,while ¢ do o, od, s;).

By induction it holds that IIf_;(¢, e;) € CR(i,while ¢ do a; od,s;) for all 1 <
J < k,, and hence in particular o = II%_, (¢, a}) € CR(i,while ¢ do oy od, s) and
r(¢,a’)(s) = ¢, which was to be shown.

(5) @ =a;+a,. Let o/ € CS(a), and let s be such that r(i,a’)(s) = . Now either o €
CS(a) and then from Term(i, 1+ a3, 8) = 1 = Term(i, a1, 8) = 1 and r(s, o’)(s) = &'
it follows by induction hypothesis that o/ € CR(i,a;,5) C CR(3, a1 + as, s),or o €
CS(az2) and then from Term(i, a;+ay,8) = 1 = Term(i, a3,) = 1 and (i, ’)(s) = &'
it follows by induction hypothesis that o/ € CR(i, a3, s) C CR(3,; + s,). In both
cases @’ € CR(i,; + a3,) and r(i,a')(s) = &', which was to be shown.

X

6.19. COROLLARY. For all models M =< S,n,R,1,c >, for all s € S and for all actions
a € Acg:

Term(i, o, 8) = 1 = Vo'Vs'[a’ € CS() and r(i,a')(s) = ¢ and c(i,o’)(s) = 1 iff
o € CR(i,a,s) and r(i,o')(s) = ' and c(i,a')(s) = 1]

PROOF OF COROLLARY 6.19: Directly from theorem 6.18.
X

6.20. THEOREM. For all models M =< S,n,R,x,c >, for all s € S and for all actions
a € Acg:

Term(i, ,8) = 1 = Yo'[’ € CS(a) and r(i,a’')(s) = 0 and c(i,a')(s) = 1 iff
o' € CR(i,,s) and r(i,o')(s) = 0 and c(i,a')(s) = 1]

PROOF OF THEOREM 6.20: The proof of this theorem proceeds in a way similar to that of
theorem 6.18. We will show the case where a = while ¢ do ; od, the other cases are left
to the reader. As in the proof of theorem 6.18 we show only the left to right implication:
the other one is trivial by lemma 6.17.

e a =vwhile ¢ do a; od. Assume that o/ € CS(while ¢ do a; od), r(i,o')(s) = 0, and
c(i,&')(s) = 1. Obviously o/ # confirm -, since in that case r(i,o’)(s) = @ and
c(%,a')(s) = 1 would conflict. Hence o/ = 51 (p, @}), where k > 1 and o € CS(ay).
Determine the greatest m < k such that r(é,confirmep; a}); .. .; (confirmp; o,))(s) =
t, for t € S, and r(7, (confirm ;e .,)(t) = 0. For such an m to exist it is necessary
that r(s, (confirm @;01);...;(confirm ¢;04))(s) = 0. But this is indeed the case:
for would (7, (confirm ¢;a});...;(confirm ¢;a}))(s) = u, then m(p,u) = O since
r(i,a’)(s) = 0 whereas c(%,a’)(s) = 1 forces (¢, u) = 1.

Let s;...8m41 be such that s = sy, 8,4y = ¢, and r(i,confirm ¢;al)(s,) = sp4q for

28

X

all n < m. Note that from c(i,a')(s) = 1 it follows that c(i,;a’,)(s,) = 1 for all
n < m+ 1. We show by a finite backwards induction that for all 1 < n < m + 1 it
holds that IIf_,(¢,}) € CR(i,while v do ; od,s,).

Basis: n=m+ 1.

Note that 7(¢, sm+1) = 1. Now since Term(s,while ¢ do o, od,s) = 1 it follows by
theorem 6.16 that also Term(i, confirm ;a;,sm41) = 1, and since (@, Sm41) = 1,
also Term(i, o, 8my1) = 1.

From the fact that af,,, € CS(a1), Term(i,an,s) = 1, r(i, el ,,)($ms1) = 0, and
(%, @y 1)(Sme1) = 1 it follows by the outmost induction that Ay, .q € CR(4, a1, Smy1),
(6 @1)(Sma1) = 0, and c(4, oy)(8my1) = 1.

Now CR(7,while ¢ do @; 0d, (4, a},,,)(Sm+1)) = CS(while ¢ do a; od), which implies
that II¥_,.,, (¢, @}) € CR(i,while ¢ do a; od,x(4, e, ;)(8ms1))-

Thus ITf_,,., (¢, ;) € CR(i,while ¢ do a; 0d, Spy1).

Induction step: n+ 1+ n.

Assume that II}__ (o, a}) € CR(i,while ¢ do a; od, s,4;).

Now since Term(i,while ¢ do a; od,s) = 1 also Term(%,a,,s,) = 1. Furthermore
since oy, € CS(a1) and r(4,0},)(sn) = Sp41 it follows by theorem 6.18 that o/, €
CR(i, 0, 8,) and r(i,0a},)(3,) = 8p41. Since 7(p,s,) = 1 it follows that 5. (p,0}) €
CR(4,while ¢ do e od,s,).

By induction, II}_, (¢, o) € CR(i,while ¢ do a; od,s,),forall 1 < n < m+1. Hence
in particular o/ = II_,(p,}) € CR(i,while ¢ do o, od, s). Since also r(i,c’)(s) = 0
and c(%,a')(s) = 1 we conclude that for @ = while ¢ do a; od the theorem is correct.

6.21. COROLLARY. For all models M =< S,n,R,r,c >, for all s € S and for all actions

(47

€ Acg:

Term(i, e, s) = 1 = Vo'[o’ € CS(a) and c(i,a/)(s) = 1 iff
o' € CR(i,a,s) and c(i,a')(s) = 1]

PROOF OF COROLLARY 6.21: The corollary follows from corollary 6.18 and theorem 6.20.

X

6.22. EXAMPLES. The following examples show how the definition of finite computation
runs as we give it behaves in practice.

Consider the Kripke model M =< §,7,R,r,c > as given in example 4.2. Consider
the ability of agent i for the action & = (a; + a3); a:

M,So I= A,-a
& m(Ajo,8) =1
& Vo' € CR(%, a, so)[c(i, a’)(s0) = 1]
& c(i,a1;a3)(s0) = 1 and c(4, az;a3)(s0) = 1
< (c(4,a1)(s0) = 1 and c(4,a3)(s;) = 1) and
(c(i,a2)(s0) = 1 and c(,a3)(P) = 1)
<> false, since c(¢,a3)(s,) = 0.

29

Since the agent is not capable of performing all of the atomic sequences that constitute
the action a, s/he is not able to perform a. This is exactly the outcome as we intuitively
expected it to be

Assume that M is the Kripke model for which the atomic actions are for agent 7 as
given in the following picture.

1 99
s2

Assume furthermore that p holds in all states except s; and $;993.

Let action @ be given by a 4 while p do @, + a; od. To determine the computation
runs of o for agent ¢ in state so, first note that Term(i, a, sq) holds, since for k = 3986
(note that |(confirm p;a;)'**% confirm —p)| = 3985) it holds that for all n > k no
action o/ € CS(a) exists, such that r(i, |a’|,)(so) # 0.
It now holds that CR(¢,a, s0) = {o/, 0"} where:
(1) o = (confirm p;a,);confirm —p.
(2) @ = (confirm p;a;)'*%; confirm —p.
Consider the Kripke model M such that r for agent ¢ is as given in the following
picture, and such that 7(p,s;) = 1 for j = 0,1,2 and c(4,a1)(s;) = (2, a2)(s;) = 1 for
i=0,1,2.

sl

al

s2
Let o = while p do a; + a, od. Now we have:
6.23. PROPOSITION. In M it holds that
CR(i, @, 89) = {(confirm p; &}); (confirm p; a); B | &, € {a1,a,},8 € CS(a)}

PROOF OF PROPOSITION 6.23: First note that Term(s, o, so) = 1: for k = 5 it holds that
for all n > k no action @’ € CS(a) exists such that r(s, |a'|n)(s0) # 0. Furthermore it
holds that:

(1) CR(i,e,x(i,a1)(s1)) = CR(3, a0, x(3,a3)(s;)) =
CR(i, 0, x(i,a1)(s2)) = CR(i, 0, 1(3,a5)(s3)) = CS(a), since r(i,a,)(s;) = ... =
r(i,a2)(s2) = 0.

(2) 7(p,s1) =7(p,s2) =1 and CR(i,a,+ay,8,) = CR(,a,+a,,8,) = {a1,a;}. Hence
CR(ivaa'sl) = CR(i,a,.Sg) = {(confirm b alz);al I alZ € {ala a2}’a, € CS(CY)}

(3) m(p,s0) =1 and CR(i,a, + a3, 50) = {ay, a,}.

Hence CR(i,a,s0) = {(confirm p;a});(confirm p;);B | ar,a; € {a1,as},8 €

CS(a)}.

x

30

As a consequence of proposition 6.23 we have that it holds that M, s, = A;o and
M, Sp b"-<do,-(a)> tt.

Consider the Kripke model M as given in the following picture and such that 7(p, s¢) =
7(q,80) = m(p,81) = 1 and 7(q,s;) =0for j =1,...,4 and n(p,s;) = 0 for j = 2,3,4.

gal ’8

S0 al
) \

s2 s4

Consider the ability of an agent ¢ for the action o, given by « & vhile p do confirmgq+
(a1; a2) od. In order to determine CR(i,a, so) we first check if Term(:, a, so) holds.
Take an arbitrary k € IN. Note that o o (confirm p; confirm ¢)¥*!; confirm —p €
Seqy41(@) C CS(a). Now |@ |52 = (confirmp; confirmq)**!, and r(i,|e/|2e+2)(s0) =
3o. Thus Term(i, o, s0) = 0, and CR(, e, 80) = {fail}. Hence the agent is capable of
performing a in s, iff s/he is able to perform fail, and we conclude that the agent is
not capable of performing a.

The following theorem shows that our semantics for the external nondeterministic choice
behaves as desired.

6.24. THEOREM. For all agents i, actions oy, a; € Acg, and for all formulae ¢ we have:

I=<do,-(al + 042)> ("2 =4 (<do,-(a1)> SO/\ <do,~(a2)> (P)
'= A,-(al + ag) L d (A,'al A A;az).

PROOF OF THEOREM 6.24:

First case:

M, s E<doj(ag + aa)> ¢

& m(<doj(a; + a)>p,8) =1

& Vo' € CR(i, 01 + ag,8)38" € S[r(i,a')(s) = 8 &n(p,s) = 1]

& Vo' € CR(i,a;,8) U CR(%, aq,8)3s’ € S[x(¢,0')(s) = ¢ &n(p,8) = 1]
& Vo' € CR(4,a1,8)3s' € S[r(i,a’)(s) = 8’ & n(p,s’) = 1] and

Va' € CR(i,az,8)3s8' € S[r(i,a')(s) = s &(p,s) = 1]

& m(<doj(a1)>p,s) =1 and m(<do;(az)>¢p,8) =1
< 7r(<do,-(a1)>go/\ <do,-(a2)> @, 3) =1
o M, s E<do;(a)> @A <do;(a)> ¢

Second case:

-~

M,s = Ai(ag + ay)
m(Ai(oq +2),8) =1

& Vo' € CR(i, 01 + ag, 8)[c(i,a’)(s) = 1]

& Vo! € CR(i,a4,3) U CR(3, as, 8)[c(i,e')(s) = 1]

& Vo' € CR(i, o4, 8)[c(i,a')(s) = 1] and Vo' € CR(3, a, 8)[c(,a')(s) = 1]
& 7(As,8) =1 and m(Aiap,s) =1

31

& m(Ajon A Ajaz,s) =1
& M, s (Ajar A Ajay)

=

6.1. Composite actions revisited

As in section 5.1, we will reconsider the validities proved in [HLM93], this time in the light
of the semantics given for the external nondeterministic choice.

It turns out that for events the same validities hold as found for the internal nondeter-
ministic choice, i.e., theorem 5.13 also holds for the semantics given in definition 6.11.
Also theorem 5.14 holds for the semantics for the external nondeterministic choice, this
completely in accordance with our intuition.

As was the case with the internal nondeterministic choice, the behaviour of the sequential
composition and the repetitive composition differs from that observed in [HLM93]. Fur-
thermore, the behaviour of the sequential composition is for the semantics of definition 6.11
different from the behaviour for the semantics of section 5.

6.25. THEOREM. For all agents i, actions a;,ay,a3 € Acy, and for all formulae ¢ we
have:

(1) E Ai(ag;a) > Ajey A [doi(ay)]Asas.

(2) K Ajoq Afdoi(ay)]Aso = Ai(ay;).

(3) E Ai((o1 + az);a3) © (Ai(e;a3) A Ai(@z; 03)).

(4) E Ai(ar;(az + a3) & (Ai(ar;a2) A Ay(ay;03)).

(5) [A;while ¢ do a; od & (A;confirm -V A;((confirm ¢; @,);while ¢ do o; od)).

PROOF OF THEOREM 6.25: In the first case corollary 6.21 is used, the proof of the other
cases is similar to the proof of theorem 5.15, and is therefore left to the reader.

=

Note that the first two cases of theorem 6.25 are associated with the observations made
in example 4.2. The third and the fourth case represent the intuitively desired behaviour
of the sequential composition when an external nondeterministic choice is involved.

6.2, The Can-predicate and the Cannot-predicate reconsidered

The problems with the Can-predicate and the Cannot-predicate that occurred in the
internal nondeterministic case do not occur with the external nondeterministic one. The
semantics for the external nondeterministic choice as given in definition 6.11 is such that
the Can-predicate and the Cannot-predicate express an intuitively acceptable behaviour
when defined by the syntactical abbreviations that are also used in [HLM93].

32

