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The provision of intelligent control over reasoning is generally considered one of the main contri-
butions of artificial intelligence research to automated reasoning: knowledge-based systems thank
their success largely to their ability to apply specialized knowledge for pruning search spaces and
for selectively gathering evidence. As a first step towards extending the belief network framework
with explicit means for exerting control, we present a method for selective gathering of evidence
for diagnostic belief networks. The paper is organised as follows. In Section 2 we give an informal
introduction to the belief network framework. Section 3 discusses our method for selective evidence
gathering. The paper is rounded off with some conclusions in Section 4.

2 Preliminaries

As we have mentioned in our introduction, the belief network framework provides a formalism for
representing knowledge concerning a joint probability distribution on a problem domain. A belief
network comprises two parts: a qualitative representation and a quantitative representation of the
distribution.

The qualitative part of a belief network is a graphical representation of the independencies
between the statistical variables discerned in the domain; it takes the form of an acyclic directed
graph. Each node in the digraph represents a variable that can take one of a set of values.
In the sequel, we will restrict the discussion to binary variables taking one of the truth values
true and false; the generalization to variables with more than two discrete values, however, is
straightforward. We will adhere to the following notational convention: v denotes the proposition
that the variable V' takes the value true; V = false will be denoted by —w. The arcs of the digraph
represent dependencies between the variables. Informally speaking, we take an arc (V, W) in the
digraph to represent a direct ‘influential’ or ‘causal’ relationship between the linked variables V
and W; the direction of the arc designates W as the effect or consequence of the cause V. Absence
of an arc between two nodes means that the corresponding variables do not influence each other
directly, and that the variables are (conditionally) independent. The digraph of a belief network
is generally configured by an expert from human judgment; hence the phrase belief network.

Associated with the graphical part of a belief network is a numerical assessment of the ‘strengths’
of the represented relationships: with each node of the digraph is associated a probability assess-
ment function which basically is a set of (conditional) probabilities describing the influence of the
values of the predecessors of the node on the probabilities of the values of the node itself. The as-
sessment functions of a belief network provide all information necessary for uniquely defining a joint
probability distribution that respects the independency relationships portrayed by the graphical
part of the network.

Example 2.1 Consider the belief network shown in Figure 1, representing a small piece of fic-
titious medical ‘knowledge’ concerning the diagnosis of acute cardiac disorders. The information

Pr(p|m)=0.9
Pr(p| -m) =0.2

Pr(f|m)=0.3
Pr(f|-m)=0.8

Figure 1: A fictitious diagnostic belief network.

represented in the network pertains to patients presenting at a first aid clinic. We like to stress
that the belief network just serves illustrative purposes and should not be taken too seriously. The



belief network comprises only four variables: the variable S represents the smoking history of a
patient, the variable M represents the presence or absence of a myocard infarct, more commonly
known as a heart infarct, the variable P represents whether or not a patient is suffering from pain
on the chest, and the variable F' represents whether or not a patient complains of tingling fingers.
In the digraph, the smoking history of a patient is denoted as having a direct influence on the
presence or absence of a myocard infarct in this patient. On having a myocard infarct, a patient is
likely to complain of pain on the chest: this is expressed through the probability of chest pain given
myocard infarct being equal to 0.9. On the other hand, given myocard infarct a patient is very
unlikely to have tingling fingers which is expressed through the low probability Pr(f | m) = 0.3;
the presence of tingling fingers in fact suggests that a patient is suffering from another disorder
such as hyperventilation, not modelled in our incomplete network. O

For making probabilistic statements concerning the variables discerned in the problem domain,
two algorithms are associated with the belief network formalism:

e an algorithm for (efficiently) computing probabilities of interest from a network, and

e an algorithm for processing evidence, that is, for entering evidence into the network and
subsequently (efficiently) computing the revised probability distribution given this evidence.

Since a joint probability distribution on the variables is uniquely defined by the topology of the
digraph of a belief network and its associated assessment functions, any probability of interest can
be computed from these functions. Equally, the impact of a value of a specific variable becoming
known, on each of the other variables in the network can be computed from the initial assessment
functions. Now, observe that the assessment functions describe the joint probability distribution
locally for each node and its predecessors. Calculation of a (revised) probability from the joint
probability distribution defined by the belief network in a straightforward manner, however, is
computationally expensive and will generally not be restricted to performing computations that
are local in terms of the graphical part of the network. In the literature therefore, several less naive
algorithms for computing probabilities of interest from a belief network and for processing evidence
in the network have been proposed, see for example [Pearl, 1988] and [Lauritzen & Spiegelhalter,
1988]. Although all schemes proposed for evidence propagation are based on probability theory,
they differ considerably with respect to the algorithms employed and their complexity; it should be
noted that in general probabilistic inference in belief networks without any restrictions is NP-hard,
[Cooper, 1990].

3 Selective Gathering of Evidence

The goal of diagnostic problem solving is to confirm a hypothesis concerning the cause of an
observed malfunction to sufficient extent. This is generally achieved by successively gathering
and processing evidence for variables representing manifestations. We have mentioned before that
it often is not necessary to obtain all possible evidence before a sufficiently accurate diagnosis
is reached: it generally suffices to carefully select a few variables for which to acquire evidence.
Evidence gathering may be stopped as soon as a hypothesis is confirmed or disconfirmed to sufficient
extent.

In this section, we develop a method for performing the task of selective evidence gathering in
the context of diagnostic belief networks. In doing so, we make two simplifying assumptions. First,
we restrict the number of variables representing hypotheses to one. This assumption excludes the
possibility of interacting causes of an observed malfunction. Note that the belief network framework
in essence allows for representing and dealing with multiple hypotheses. Dealing with multiple,
interacting hypotheses in view of selective evidence gathering, however, is not straightforward.
Secondly, we take a myopic approach to evidence gathering, [Gorry & Barnett, 1968), that is, vari-
ables to obtain evidence for are selected one by one. It is conceivable that in practical applications
a non-myopic approach in which variables are selected groupwise might outperform any method
for selective evidence gathering based on a myopic approach. Adopting a non-myopic approach,



however, poses some serious computational problems. Further research is aimed at gaining insight
in solving these problems, [Heckerman et al., 1993].

Now envision performing the task of selective evidence gathering in the context of a diagnostic
belief network. It may be outlined as follows:

1. Select the variable that is expected to contribute most to the confirmation or disconfirmation
of the hypothesis;

2. Request the value of the selected variable from the user and process the entered value in the
belief network;

3. Decide whether the hypothesis is confirmed or disconfirmed to sufficient extent;
4. If more evidence is necessary, then re-iterate the process from step 1; otherwise stop.

From this informal outline, it is seen that the task of selective gathering of evidence involves several
issues that are not supported by the belief network framework.

From a knowledge-representation point of view, we observe that in the task of evidence gathering
different types of variable are discerned. In a belief network, therefore, we have to distinguish
between the following types of node, [Henrion, 1989)]:

e the hypothesis node is a node that represents the hypothesis that has to be confirmed or
disconfirmed;

e an evidence node is a node that represents a statistical variable whose value can be obtained
by observation - an evidence node pertains (directly, or indirectly) to the confirmation or
disconfirmation of the hypothesis;

e an intermediate node is a node that represents a statistical variable not classified in either of
the former two groups.

Furthermore, additional knowledge is involved in computing the expected contribution of acquiring
information on a specific variable to the confirmation or disconfirmation of the hypothesis. This
computation for example requires weighing the costs of obtaining information versus the benefit
resulting from a more accurate diagnosis. Note that the belief network formalism does not allow
for incorporating such knowledge.

The belief network formalism can be extended to provide for the representation of additional
knowledge as indicated above. In fact, the influence diagram formalism may be viewed as such an
extension, [Howard & Matheson, 1984]. To our opinion, however, extensions to the belief network
formalism itself tend to obscure the representation of a joint probability distribution and to decrease
the framework’s flexibility to perform different types of probabilistic computation. Therefore, we
have decided not to enhance the basic formalism itself but to embed the belief network framework
in a two-layered computational architecture instead. The first layer of this architecture specifies a
belief network and its associated algorithms for computing probabilities and processing evidence.
In the sequel, we will call this layer the probabilistic layer of the architecture. The second layer
incorporates the method for selective gathering of evidence as outlined above and the additional
knowledge required for this method; this layer is called the control layer. The two layers of the
architecture cooperate in the following fashion: the control layer queries the probabilistic layer for
information about the variables of interest and decides on what computations should be performed
next by the probabilistic layer. The general idea is illustrated in Figure 2. The idea of designing
a multi-layered architecture is not a new one - in fact, the idea pervades many areas of present
artificial intelligence research, [Levitt et al., 1990, Russell & Wefald, 1991].

In the following subsections, we further detail our method for selective gathering of evidence.
In Section 3.1 we introduce a decision structure used by the method. Section 3.2 then presents full
details on the method itself. We conclude with some observations concerning the computational
complexity of the method presented.



Figure 2: A two-layered belief network architecture.

3.1 The Decision Structure

As mentioned before, the task of selective gathering of evidence involves several decision problems.
Classical decision theory provides a mathematical framework for solving these problems, [Smith,
1989]. Although decision theory has a longstanding history and has proven its worth for test
planning, it is only recently that artificial intelligence research has begun to aim at exploiting this
theory on a larger scale in knowledge-based systems, [Horvitz et al., 1988].

The first decision problem in the task of selective evidence gathering for a diagnostic belief
network is to select the evidence node that is expected to contribute most to the confirmation or
disconfirmation of the hypothesis. Consider a belief network composed of a digraph G and a set
of assessment functions, defining the joint probability distribution Pr. We take the digraph G to
consist of the hypothesis node H; the set of evidence nodes is denoted as E(G) = {E,...,En},
m 2> 1; I(G) denotes the set of intermediate nodes. The problem of selecting the evidence node
that is expected to contribute most to the hypothesis is modelled using a decision tree of the
form depicted in Figure 3. The decision tree comprises one decision node whose outgoing edges

€1

_|em

Figure 3: The decision structure employed.

correspond to the different decision options available, that is, to the decisions to obtain evidence
for node E;, ¢ = 1,...,m. In addition, the decision tree has m chance nodes representing the
separate evidence nodes; the edges emanating from a chance node represent the values the cor-
responding evidence node can adopt. With each leaf of the decision tree is associated a utility
indicating the usefulness of ‘knowing’ the corresponding evidence value in view of the confirmation
or disconfirmation of the hypothesis. To this end, decision theory provides several types of utility
function, [Ben-Bassat, 1978, Glasziou & Hilden, 1989, Heckerman et al., 1992]. These functions
may be based on probabilistic information only and not contain any other information about the



domain at hand; an example of such a function is the well-known entropy measure of information
content. Yet, a utility function may also involve non-probabilistic aspects from the domain, such
as the costs of obtaining evidence. In practice, the utility function best chosen will generally be one
that involves probabilistic as well as other domain-dependent information. For ease of exposition,
however, we will use in this paper a simple (linear) utility function based on probabilistic infor-
mation only. In the method presented, this utility function can easily be replaced by, for example,
the entropy measure.

Suppose that after obtaining and processing some evidence the probability of the truth of the
hypothesis node H equals Pr(h | c), where ¢ denotes the conjunction of all evidence obtained sofar.
Now, for an uninstantiated evidence node E; the difference between Pr(h | c) and Pr(k | c A €;)
indicates the confidence gained in A if the evidence E; = true is observed; a similar observation
holds for the evidence E; = false. This motivates our utility function u being defined by

u(E;) = |Pr(h|c)— Pr(h|cAE;)|

for all E; € E(G), where E; takes a value from {e;, ~e;}. We note that this utility function satisfies
the axioms of utility theory and reflects the value of imperfect information.

The decision tree thus constructed is evaluated using foldback analysis, [Smith, 1989]: for a
chance node its expected utility is computed from the utilities associated with the leaves of the
corresponding subtree and the probabilities of the values of the node. For the decision node
the maximum expected utility is computed from the expected utilities of the chance nodes. The
evidence node yielding the maximum expected utility is the one likely to contribute most to the
confirmation or disconfirmation of the hypothesis.

3.2 Details of the Method

We will now present full details on our method for selective gathering of evidence building on the
aspects discussed above. The method is composed of two basic algorithms. The first algorithm
selects the evidence node that is expected to provide the largest support for or against the hypoth-
esis. The second algorithm decides when evidence gathering may be stopped. We will discuss these
basic algorithms separately before combining them into the main algorithm. The computational
complexity of the resulting algorithm is discussed in Section 3.3.

In the description of the first basic algorithm we use E C E(G) to denote the set of uninstan-
tiated evidence nodes and c to denote the conjunction of all evidence obtained sofar.

procedure select-node(E,E;)
build a decision tree D from E as in Figure 3;
for each evidence node E; in E do
compute the utilities |[Pr(h | c) — Pr(k | cAe;)} and |Pr(h | c) — Pr(h | c A —e;)|,
and associate these with the corresponding leaves of D
od;
for each chance node in D do
compute its ezpected utility
od;
compute the mazimum ezpected utility for the decision node
and let E; be the evidence node that is responsible for it
end

Note that all probabilities required by this algorithm can be computed from the belief network in
the probabilistic layer of our architecture.

After application of the algorithm the user is prompted for a value for the evidence node E;
selected by the algorithm. The entered value is subsequently processed in the belief network and
the algorithm is called for the set of remaining evidence nodes E \ {E;}. Repeated application of
the algorithm thus yields a sequence of evidence nodes for which evidence has to be entered. The
following example illustrates the application of the algorithm.



0.030

0.070
0.231

0.468
0.238

0.207

Figure 4: Decision tree, first step.

Example 3.1 Consider once more the belief network shown in Figure 1, representing some medical
knowledge concerning the diagnosis of acute cardiac disorders. The hypothesis node is node M,
the evidence nodes are E(G) = {S, P, F'} and there are no intermediate nodes, that is, I(G) = @.
The select-node algorithm first builds a decision tree D from E(G). The prior probability of the
presence of a myocard infarct is computed from the belief network and is found to be Pr(m) = 0.67;
if this probability seems to be extremely high, then recall that the information of the network is
conditional on a patient’s presenting to a first aid clinic. In addition, the utilities for the leaves of
the tree are computed. For example the utility yielded by the evidence that a patient suffers from
pain on the chest equals

u(p) = |Pr(m)-Pr(m|p)|=
= |0.67—0.901] =
0.231

Figure 4 depicts the resulting decision tree and its associated utilities. Now, for each chance node
the expected utility is computed. For example, for the chance node P we find the expected utility

4(P) = Pr(p)-u(p)+ Pr(-p)-u(-p) =
= 0.669-0.231 +0.331 - 0.468 =
0.309

Next, the maximum expected utility is computed for the decision node, yielding the value 0.309.
Since node P is responsible for this value, the user is requested to enter evidence concerning the
presence or absence of chest pain in the patient. It depends on the specific evidence entered
what the user will have to do next. Suppose that the evidence P = true is entered, that is, the
user confirms the patient’s suffering from chest pain. Then, a new decision tree is built and the
corresponding utilities are computed as shown in Figure 5. This results in the user being requested
to enter evidence for node F. O
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Figure 5: Decision tree, second step.

Note that the sequence of nodes yielded by repeated application of the algorithm is not guaranteed
to be the best because of the uncertainties involved. It may happen that the actual evidence
obtained for a selected node is not so informative as hoped for. This situation arises when the
expected utility is largely determined by an outcome that has a high probability and a high gain
of confidence. However, if the outcome turns out to be the one with the low probability and the
low gain of confidence, it will fall short of expectations.

We now turn to the algorithm for deciding when to stop evidence gathering. Recall that the
purpose of reasoning with a belief network in diagnostic problem solving is to confirm or disconfirm
a given hypothesis. We say that a hypothesis is confirmed if the probability of the truth of the
hypothesis given evidence for all evidence nodes has exceeded a certain threshold value ¢, 0 < ¢ < 1.
Likewise, a hypothesis is disconfirmed if the probability of the truth of the hypothesis given evidence
for all evidence nodes has dropped below a threshold value, for example, 1 — ¢.

Now suppose that after obtaining several pieces of evidence the probability of the truth of
the hypothesis has surpassed the threshold value t. Theoretically, we have to obtain evidence
for all remaining evidence nodes before we can confirm the hypothesis. However, if we know
that the probability of the truth of the hypothesis can never drop below the threshold value
whatever evidence may be obtained for these nodes, it is not necessary to actually obtain the
evidence before confirming the hypothesis. Therefore, before we confirm the hypothesis we compute
the probabilities of the truth of the hypothesis for all possible combinations of evidence for the
remaining evidence nodes. We illustrate this with an example.

Example 3.2 Consider once more the belief network shown in Figure 1. Suppose that the thresh-
old value for confirming the hypothesis m equals 0.8. Furthermore, suppose that we have observed
and processed the evidence P = true. The probability of m given this evidence, Pr(m | p), equals
0.901 and therefore has exceeded the threshold value. For deciding whether or not the evidence
entered sofar is sufficient for confirming the hypothesis the following probabilities are calculated
from the belief network in the probabilistic layer:

Pr(m |pAsAf) = 0.797
Prim|pA-sAf) = 0717
Pr(m|pAsA~f) = 0974
Prim|pA-sA-f) = 0.959

Since for some combinations of evidence for the remaining evidence nodes S and F, the probability
of the truth of the hypothesis drops below the threshold value, it is necessary to obtain some
additional evidence before the hypothesis can be confirmed. Recall from Example 3.1 that the



