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Abstract

We propose an epistemic logic in which knowledge is fully introspective and implies truth, al-
though truth need not imply epistemic possibility. The logic is presented in sequential format and
is interpreted in a natural class of partial models, called balloon models. We examine the notions
of honesty and circumscription in this logic: What is the state of an agent that ‘only knows ¢’ and
which honest ¢ enable such circumscription? Redefining stable sets enables us to provide suitable
syntactic and semantic criteria for honesty. The rough syntactic definition of honesty is the existence
of a minimal stable expansion, so the problem resides in the ordering relation underlying minimality.
We discuss three different proposals for this ordering, together with their semantic counterparts, and
show their effects on the induced notions of honesty.

keywords: circumscription, honesty, modal logic, partial models, stable sets

1 Introduction

In this paper we argue that honesty in knowledge representation calls for a partial approach, for reasons
of adequacy and efficiency. Let us first (re)introduce the central concepts, honesty and partiality.

Honesty is the quality of a proposition which can be said to be only known, i.e. knowing that fact
and its consequences, but not knowing more than that. For example, you may only know that Pat will
come tomorrow, without knowing anything at all about, say, Sue. Also, you may only know that either
Pat or Sue will come tomorrow, which implies you do not know which one of the two will come. These
are examples of honest knowledge. By contrast, you cannot honestly claim to only know that you know
whether Pat will come, for then you would either know that Pat will come or know that she won’t come,
both options being logically stronger than what is supposed to be known.

Partiality is the idea of not giving a truth value to every proposition. In a given situation the truth of
a formula may be undefined, for example due to lack of information. Such undefinedness may even occur
for classical tautologies, such as the well-known ‘law of excluded middle’ (tertium non datur) ¢ V -,
which is therefore not valid in the partial semantics we advocate.

Partiality and honesty may seem totally unrelated themes, but we will argue that in fact they are very
closely related. Let us reinspect the case in which you only know that Pat will come tomorrow. This,
we claim, does not involve any knowledge about Sue or some other part of the universe. For example, it
does not even imply that you know the possibility that Sue will come too: you may not be acquainted
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to her, or just not consider her possible arrival. In a straightforward total semantics ignorance leads to
wide knowledge of possibilities, which, however, contradicts the initial idea, of only knowing some honest
formula. The proliferation problem simply does not occur in our partial semantics, since facts unrelated
to some honest formula can be left undefined.

This, in a nutshell, is our prime motivation for ‘going partial’: it provides a more adequate and natural
account of circumscription (i.e. describing what you only know). But there is more to it. One of the
other advantages of partial semantics is its efficiency, which is reflected in the much smaller size of the
characterizing models. Classical possible world semantics leads to a combinatorial explosion: the less one
knows, the bigger the model. For example, honest knowledge of p and complete ignorance of n other
propositional variables leads to 2" worlds in a model that represents what one only knows. This may
be contrasted to a partial model to the same effect that uses but one or two worlds. Moreover, addition
of information may lead to growth of the partial model, unlike the elimination usual in possible worlds
models — again the partial approach seems more natural and intuitive.

Finally partial semantics allows for a greater flexibility with respect to the epistemic background
logic. For the case study presented in this paper this is revealed in adopting the veridicality principle
of knowledge Op = ¢ (“if you know something, it must be true’), without being forced to accept its
contrapositive ¢ = Oy (‘if something is true, you must consider it possible’). Moreover, knowledge will
be fully introspective: both positive introspection (“if you know something, then you know that you know
it’) and negative introspection (‘if you consider something possible, then you know you do’), as well as
their contrapositives are properties our logic embraces. In all, the logic resembles a weak variant of the
classical system S5. Apart from fitting our intuitions about (strong) knowledge, this logic enables us to
simplify the kind of models needed, essentially omitting most of the relational structure.

The rest of the paper is organized as follows. In the next section we introduce the epistemic logic,
presenting its language, semantics, inference system, and proving its completeness. Then, in section 3,
we study circumscription for this logic, discussing different notions of honesty, both from a deductive
(minimal stable sets) and from a modeltheoretic perspective (minimal models). Moreover, we provide a
useful inferential test for honesty (disjunction properties). We round off by summarizing our results in
the conclusion.

2 The Logic

In this section we introduce a partial modal logic L of which we will investigate the notions of stability,
honesty and several disjunction properties in subsequent sections. We present our logic following a
common pattern: we first give its language and a partial semantics (section 2.1), then we provide a
deductive system for L (2.2) and round off with a completeness result (2.3) connecting them.

2.1 Language and Semantics

Definition 2.1 Let P be a non-empty countable set of propositional variables. The language L is the
smallest superset of P such that

PV eEL=p,(pAY),L,0p€ L.

Ly is the subset_of L of all formulas which do not contain O-operators. For any I' C £, we write Ty
for ' N Ly and T for {peLl|pgrl} Moreover, for any I' C £ and any © € {-,0,0}, we define
®P={@'yl'yGF}and@‘I‘:{’yI@’yEI‘}.

Here, the intended meaning of Oy is that ‘p is known’. We write T for =L, V9 for ~(-¢p A 1))
and Oy means —~O-p. It is important to note that in our set-up, Oy does not just mean that - is not



known, but that the agent considers some epistemic alternative to be possible, in which  has a meaning:
it is true!

Given a set of formulas I, we may consider its objective kernel (Ty), the knowledge it encodes (o~
and its possibilities (O~T'). These sets induce the following orderings.

Definition 2.2 Let I and I be sets of formulas of £. Then:
e I'CoI" & Ty CIy
eI'CoI"sOTCOT
eI'Co" 0T COT

Each of these orders can be linked to an equivalence relation, e.g. T' = IV & Iy = . Let R be some
subset of p(L), the power set of £. For any x € {0,8, ¢}, we say that T" € R is C,-minimal in R, if for all
I"e R, T C, I, and similarly for C-minimality in . Note that these minimal sets are the first (smallest)
elements with respect to the corresponding ordering, rather than the elements without a predecessor.

We now give a formal interpretation of the language £. The mathematical structure for such an inter-
pretation is a Kripke model with partial worlds. Since we are only interested in models for our epistemic
logic here, we do not have to consider arbitrary partial Kripke models.! Instead, we restrict attention
to what we call ‘balloon models’, which somewhat remind of the well-known KD45-Kripke models. The
basic entities in our balloon models are partial worlds, which are defined in terms of partial valuations.

Definition 2.3 A partial valuation V is a partial function which assigns truth-values to a given set of
propositional variables P. The collection of all partial valuations is denoted by VAL. The domain of V
is defined as Dom(V) = {pe P | V(p) € {0,1} }. V' € VAL is said to be an estension of V € VAL if
V(p) = V'(p) for all p € Dom(V). We abbreviate this relation by VC V.

Definition 2.4 A balloon modelis a triple M = (W, g, V) with W a non-empty finite set of worlds, called
the balloon, g the root or generator of the model, and V a global valuation function V : W U {9} — VAL,
such that V(w) C V(g) for certain w € W. We also write M, for such a model: note that any w € W
and V : W — VAL give rise to a model M,, = (W,w, V).

The truth and falsity of a formula ¢ € £ in a balloon model M = (W,9,V), written as M = ¢ and
M = o, respectively, are defined by induction:

ML Mo L
MEp *Vigp)=1reP) M<p @ V(g)p)=0(peP)
ME-¢ &MHp MA-p &MEp

MEeAY @MEpandMEy MeAoAy eMgpor Mgy
M EOp e MyEpforalweW M=0Op 4 My = ¢ for some w e W

Note the special role played in the truth definition by the root of the model. Although we usually display
the models with the root outside of the balloon, the recursive O-clauses show that this need not be the
case. (Alternatively, we can duplicate the root, the new root being outside of the balloon.)

Also note that the truth-definitions yield the intended effect for O-formulas: we have that M E Oy
& M, = pforsomew e W. In particular, our partial semantics makes OpV -0y, and hence O-pV Oy
invalid. This reflects the idea that, in our opinion, Gp-formulas should express some positive evidence
about ¢, not just lack of knowledge of —.

Example 2.5 Figure 1 denotes two typical balloon models M and M’. We call a world in which no atom
is true or false an empty world; note that M’ has such a world. Moreover note that M |= OpA Oq; M b
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Figure 1: two balloon models M and M’
O=q and M | Oq. For M, we have M’ |= OT, but at the same time M’ ¥ O(-pVp), M'#AO(-pVp).

For any model M = (W, g, V) we define the theory Th(M) of M by Th(M) = {p € L | M |= ¢}, the
knowledge k(M) in M by k(M) ={pe L| M = Op} and the possibilities w(M) by T(M)={p€e L]
M = Op}. Note that kM = O~Th(M) and 7(M) = O~Th(M). Let T and A be sets of formulas. We
write I' = A, if all balloons which verify all members of T" also verify at least one of the elements of A,
Le. VM :T C Th(M) = ANTh(M) # 0. Finally, we write M =T for ' C Th(M).

Lemma 2.6 (Propositional Persistence)
Let M = (W,g,V) and M’ = (W, ¢', V') be two balloon models. Then, for all w € W U {g} and all
w' e Wu{g'}):

V) EV'(W') & V¥re Ly: (My =72 M, )

Lemma 2.7 (Internal Persistence)
For every balloon model M = (W, g,V) and w,w’' € W U {g}:

V) EV(W') & Ve l: (My o= My )

Proof: The ‘<’-part follows from Lemma, 2.6. The ‘='-part is proven using induction on ¢; in fact, to
take care of negations (and hence of O-formulas), it is more convenient to prove that for all pEeL:

V() EVW) = [(My b= ¢ = My k) and (My 5 ¢ = My = ¢)]

For ¢ € P, this follows from Lemma 2.6; for conjunctions and negations it is straightforward. So let us
consider ¢ = O; it turns that no inductive assumption about 9 is needed: M |= Oy & Vv € W, M, E
’l,b < Mw’ ': D’l[) [ ]
There is also a more global way to achieve persistence. The notion that we need is a special case of a
definition given in [JT93].

Definition 2.8 For two balloon models M = (W,9,V) and M’ = (W', ¢', V') we say that M’ bisimu-
lates M, if

* V(g) EV'(9)

* Vw € W 3w’ € W’ such that V(w) C V'(uw')

* Vw' € W' 3w € W such that V(w) C V'(w')
Theorem 2.9 (General Persistence)

M’ bisimulates MoeVoel:MEp=>M o
For a general approach, see [Thi92) or [JT93].




Proof: ;From left to right, the proof is similar to that of lemma 2.7. (From right to left, suppose that
M' = (W', ¢g',V') does not bisimulate M = (W,g,V). By definition 2.8, we have one of the following
cases:

e V(g9) ZV'(¢'). Applying lemma 2.6 we find a formula 7 € Lo such that M = w and M’ |£ .

e dwe WVw € W V(w) Z V'(w'). For such w lemma 2.6 gives us, for each w’ € W', a formula
Ty € Lo for which M,, |= 7y, but M., £ my. But then M |= O Awew: Tw, whereas M’
<o /\w’EW’ Mo

* Juw' € WVw e W V(w) Z V'(w'). For such w' lemma 2.6 gives us, for each w € W, formulas
Tw € Lo such that M, | Twy M}, ¥ 7. But then M E DVwGW Tw, whereas M’ j£ O Vwew o

Summarizing, we see that if M’ does not bisimulate M , we always find a formula ¢ for which M E o,
M' ¥ . [

2.2 Deductions in L

We now formally define the deductive machinery of our logic. The sequent I' - A should be understood
as: ‘the disjunction of the members of A follows from the conjunction of the formulas in I"’. Instead of
FU{p}and TUA we write I, p and T', A respectively.

Definition 2.10 To start with, we distinguish the following structural rules:

¢ TNA#0=>TH+A START
'FA ACA' TCIY

TF A MON
TFp,A I',ok A
y I?P'FA(pA' cuT

If we add to those structural rules the following propositional rules, we obtain the partial propositional
logic rL* (from [Thi90]). Those rules explain how the logical constants (c.q. connectives) are introduced
on the left (L-TRUE) and right hand side (R-TRUE) of the ‘+’, respectively; possibly accompanied with a,
negation sign (L-FALSE or R-FALSE).

ko A
T,~prFa L-TRUED
Lo, FA F'Fo, A TV, A
) W L-TRUE A L) F, i F ? A 1/), A, A, R-TRUE A
e T'F-i1,A R-FALSE L
. LoFA L-FALSE . hI‘ Fo, A R-FALSE
T,~—¢F A - TFo—p,A -
T,~pFA I, -k A Tk —p, -, A

 TT, (A9 FA, A VPALSEA e oA A~ RFALSE A

Finally, we add to rL* the following epistemic rules:



LokA TFo,-A
L] m L-TRUE 0O ° orF D(P, ~0A R-TRUE O
T,~¢F -A L'k Op,A
* TOr,-OpF -oA LFALSED * Troopa 9o
. I''Optk A 5 o I'F-0p, A 5
T,-O-0pF A °° TFO-O0p,A °F

The rule L-TRUE L (T', L + A) is derivable in L. On the other hand, the rule R-TRUE - is not derivable:
adding such a rule to rL* would yield a sequent system for classical propositional logic! (Cf. [Thi92]).

Definition 2.11 The rules above constitute the system L and are thus called L-rules. A sequence
A C L is said to be L-derivable from another sequence I' C £, ' by, A, if T' + A can be derived after
a finite number of applications of L-rules. We usually drop the subscript ‘L’ in the sequel. Then, two
formulas ¢, 1) € £ are said to be equivalent, ¢ -k 9, if - 1) and ¥ I ¢.

Derivable sequents are at least valid on balloon models:
Lemma 2.12 (Soundness) Forall[LACL: THFA =T E A.

Proof: We prove soundness of L-TRUE O and R-TRUE O. To start with L-TRUE 0O, suppose that I', o = A.
This means that for arbitrary balloon models M we have M ETU{p}=>36€ A, M6 (%).

To prove I',0¢ = A, suppose that N = (W,g,V) is an arbitrary balloon model for which N E=
I'U{O¢}. This means that both N, =T and Ny |= Op. By definition of balloon model, there is some
w € W with V(w) E V(g). Since N, |= O¢p, we have for this w that N, = ¢. Now by internal persistence
we conclude that Ny = ¢. Thus we have N, = T'U {¢}, and applying (*), we get N, k= 4, for some
d € A.

To prove soundness of R-TRUE 0, suppose that T F »,~A. Let M be a model (W, g, V') such that
M E0Or. So M, =T for all w € W. Now suppose M [£ Oy, then, for some u € W we have M, ¥ .
Since I' = ¢, ~A, we have M, |= -4 for certain & € A, and hence M |= -04. Therefore M E Op,-0A
for an arbitrary balloon model M verifying O, hence OT = Oy, ~0A. n

Let us pause for a moment and reflect on our basic logic. Claims below that some sequents are not
derivable, are now easily verified semantically, as is justified by lemma 2.12.

e The first thing to note about the logic is that it is indeed partial, which is mirrored by the fact that
we do not have the law of excluded middle:
¥ e,
In fact, as is shown in [Thi92], there is not any theorem of L in the {L, T}-free language.

e Moreover, we do not have contraposition:

''FA#A -AF-T

e Although L lacks contraposition and does not have any {L, T }-free theorems, there are the following
propositional equivalences:



De Morgan: ~(¢p A¢) 4 = V (o VY) - —pA -
Double negation: -y —F ¢

Distribution: ¢ A (¥ Vx) 4+ (@ AY) V(0 A X)
eV (@AX) (V) A(pVx)

Associativity: o A (¥ Ax) - (@ AP) A X eV@Vy) dF(pVy)Vvy
Idempotence: ¢ A @ - ¢ Ve p

Commutativity: o A - A VY-V

Absorption: ¢V (¢ AY) - ¢ PA(pVY) -

o For the defined symbols one easily proves the following derived rules:

I''-THA L-FALSET I''FT,A R-TRUET

1;::%&: :}v 5'11/2: AA,’ L-TRUE V TFE% R-TRUE V

I‘I::E:,\; %’]_AA L-FALSE V I;f_r;'f’f(cp \I/V w")"ﬁﬁ' R-FALSE V
_D% L-TRUE © DFF:_;;"(;,AO A~ R-FALSE <

e L has the following distribution property:

Op A Oy - O(p A )

e For the epistemic part, we have the following:
Positive introspection: Op - O0p OCp F Oy
Negative introspection: ~Oyp - O-0Op <©Op F Oy
Veridicality: Op F ¢ ¢ I Op!

Note that, although we do have veridicality of knowledge (‘known facts are true’) we got rid of
its contrapositive (‘true facts are considered to be possible’). Negative introspection is now better
motivated than in classical 85: if some fact is considered possible by the agent, it is explicitly
present in his set of alternatives, so he knows that particular possibility. This should be contrasted
to the classical case where merely not knowing the opposite is supposed to involve knowledge of
the possibility. In the sequel, we will denote a property like positive introspection by ‘0 = OO’ or
OO = O,

To see the system L at work, we will provide a proof of the property that nestings of modal operators
are in fact superfluous (theorem 2.16). Later on, this property will be used in our completeness proof.
To start some preliminary work, let us first define the modal depth md(p) of a formula ¢ by: md(p) =
md(L) = 0 (p € P); md(-~p) = md(p); md(p A ¢) = max(md(p), md(x)); md(Dp) = 1 + md(p).
Secondly, by using the propositional equivalences as stated above and treating formulas like Oa and ¢
as literals, we obtain the following normal forms in L :

Proposition 2.13 Every ¢ € £ is equivalent with a formula of the form



V A

i=1 j=1

where each ¢; ; is of the form Oa with md(a) < md(p), OB with md(8) < md(p), ~por p. If n =0, we
interpret ¢ as L (the ‘empty’ disjunction) and if n > 0 but m = 0, v is to be understood as T. We call
the format displayed above a semi-disjunctive normal form of . There also exists a semi-conjunctive
normal form:

n m
AV e
i=1j=1
where the formulas ¢; ; are of the same form as above.

The following proposition is the heart of theorem 2.16: it explains how nesting of modal operators are
removed.

Proposition 2.14 We have:
1. O(Oa Vv ¢) 4+ Oa v Oy
2. O(QaAy) 4+ Oa A Oy

Proof: We only prove the first equivalence, the second is similar.

1. Dot O« START 1. ¢ FOavy START
2. Yk START 2. YFOavy R-TRUE V (1)
3. DaVvytOay L-TRUE V (1,2) 3. Oy F+ O(@aVy) R-TRUE O (2)
4. O(»aVy)F OO0a,0¢ R-TRUE O 3) 4. Dot O,y START
5. ODatl Oa o0=0O 5. QatDavy R-TRUE V (4)
6. O(@aVy)F Oa,0y cuT (4,5) 6. DOat O(@aVy) R-TRUE O (5)
7. D(0aVy)FOaVvOyp R-TRUE V (6) 7. Oat 00« 0= 00

8. Datl O(QaVy) cur (6,7)

9. DaVvOyFO(0aVy) L-TRUEV (3,8)

Corollary 2.15
O(Vi, Oa; v Vi, OB; V) 4+ Vi, Oa; v Vi, ©B; v Or
O(Aizy Oai A /\;n=1 OB Am) - AiL; Oas A /\;n=1 OB; A Om
By means of these preliminaries we now easily establish:
Theorem 2.16 Every ¢ € L is equivalent with a formula @' with md(¢') < 1.

Proof: The proof runs by induction on the modal depth of formulas. Obviously the result for the
basic step is ‘for free’.

Let the modal depth of ¢ be larger than 1. By purely propositional reasoning ¢ is equivalent with
the following semi-disjunctive normal form



n m 1
\/(/\ Oa;,j A /\ OBik A i)
i=1 j=1 k=1

with 7 € Lo, md(a; ;) < md(p) and md(B;x) < md(y).

The induction hypothesis applies to all the formulas a;; and B; . This means that these formulas
can be assumed to have a modal depth at most 1. If this result can also be obtained for Oe; ; and OBi ks
then the result has been shown for the formula ¢. This result can be obtained quite easily by using
proposition 2.14, together with O(a A o) 4 (O A Od’) and O(B v ') - (©BV <OpB"). If o has modal
depth 1 it must be equivalent with a semi-conjunctive normal form

m 1

a /\(V Oo; ; V v <>77i,k \ 7r,-) with iy 055, Mk € Lo,

i=1 j=1 k=1

while each 3 is equivalent to the semi-disjunctive normal form:

n m I
B A+ V(/\ Oei,; A /\ Ok A 0;) with 0;,¢€; 5, Ak € Lo.

i=1 j=1 k=1

Corollary 2.15 yields, after applying sc r-true O and O-distribution over A for the a’s and B's in the
semi-disjunctive normal form of ¢:

Oa -+ /\?:1(\/;’;1 Uo,; V Vic:l ik V Om;), and

OB 4t VILy (ATL1 Oeig A Ay OAik A OT3).
Clearly the latter formulas have a modal depth not larger than 1. ]

Combined with proposition 2.13, this theorem also implies that every formula has a semi-disjunctive and
a semi-conjunctive normal form of at most modal depth 1.

2.3 Completeness

The aim of this section is to prove that the logic L is complete for the class of balloon models. By
definition 2.4 our models are finite; as a consequence, not each consistent set will be satisfiable (e.g.
{O@1 A~ Apa_1 A=p,) | n € IN} has only infinite models). We can guarantee satisfiability of finite
sets. However, this requirement can be eased a little: what we can prove is that ' H A = T' = A for
those I and A for which the set of atoms in ' U A is finite. To avoid cumbersome notation, from now
on we simply assume that P itself is finite. We first show that this assumption implies that L is logically
finite.

Proposition 2.17
L is logically finite: there are only finitely many non-equivalent formulas.

Proof: From the proof of theorem 2.16 we learn that every formula in £ is equivalent to a semi-disjunctive
normal form of modal degree < 1. Since P is assumed to be finite, modulo logical equivalence there are
only finitely many distinct formulas in £y. Thus there are only finitely many logically different choices
for the ; ;, B;r and m; in the semi-disjunctive normal form displayed on page 9. Therefore there are
only finitely many non-equivalent formulas. n
Now we are ready to give a Henkin-type construction of a canonical balloon model, based on consistent
sets of formulas. However, instead of working with mazimally consistent sets, we build such a model out
of consistent, disjunction-saturated, deductively closed theories.



Definition 2.18 Let ¥ C £ and ¢, € £. Then:

e X is consistent iff £t/ ¢ A - for all ¢.
e T is a (deductively closed) theory iff T+ ¢ = ¢ € T for all ¢.
o ¥ is disjunction-saturated if TF oV => Tk por DF ¥ for all ¢ and .

Using our sequent calculus, we have an elegant characterization of consistent disjunction-saturated
theories:

Definition 2.19 Let X, A and  be subsets of £. Then:

e X C L is saturated iff for every A: T+ A= INA # 0. SAT is the collection of all saturated sets
(in L).

e {1 is a saturator of T iff 2N A # @ for all A such that £ F A. In such a case we write 5 Q9.
Lemma 2.20

1. A set I is saturated iff it is a consistent disjunction-saturated theory.

2.Z40if T KA.
Proof:

1. We only argue that a saturated set is consistent: suppose that T is not consistent, i.e. we have that
for some formula ¢, ' F ¢ A =p. Then:

TFpA-p assumption
ek START
R ] L-TRUE -, 2
PA-pF® L-TRUE A, 3
ko CUT, 1, 4

U W~

So I cannot be saturated, since this would imply that ' n @ # 0, which is impossible.

2.251QiffﬂisasaturatorofEiiffora.llAC_IL:(QﬂA:@:EVA)iffforallAQL:(Ag
1 = X ¥ A) iff (by R-MON) £ I/ Q.

Lemma 2.21 (Saturation Lemma)
If £ 49, then there exists a saturated set I" such that & crca.

Proof: See [JT93]. ]
The following lemma, from [Thi92, p-108], is equivalent to the Saturation lemma. It guarantees that each
consistent set ¥ and each set of non-consequences A can be separated by a saturated set I' D .

Lemma 2.22 (Separation Lemma)
If £ I/ A then there exists a saturated set I such that & CTland ANnT =40.

Proof: If ¥ I/ A then, by lemma 2.20 (2) A is a saturator of £. But then, the saturation lemma
guarantees the existence of a saturated set I' with & C I C A, ie. a saturated set I’ with & C I' and
'nA=0¢. n
We will now build a canonical model for L . Whereas in classical modal logic the canonical worlds are
maximally consistent sets, in partial logic this role is taken over by saturated sets.

10



Definition 2.23 (Canonical Model)
Let I be a saturated set. We define the canonical model for T as Mrp = Wr,T', V), where

e Wr={Z|X issaturated and T C £ C ©-T}

1 if peX

e Forall ¥ € WrU{T'} and p € P: V(E)(p):{ 0 if wpex

Lemma 2.24 The canonical model My is a balloon model.

Proof: (Cf. Definition 2.4)
1. W is finite by proposition 2.172
2. V is well-defined since saturated sets are consistent (lemma, 2.20).

3. The root I' is an extension of some world in the balloon, i.e. for some ¥ € Wr it holds that
V(Z) E V(T'). To see this, we claim that 0T 94 Q = O~ T'N T'; then we are done, since then (by
the saturation lemma) there is a saturated & such that O-T € X C O I'NT. Therefore & € Wr
and £ C T, and so V(Z) C V(T'). The proof of the claim about § is as follows.

By induction on finite A C £ we prove that
OTHFA=ANTNOT #0.

Because O°T I/ @ 3, the implication above holds in a trivial way for A = @. So suppose A =
{M,..,A}, (n>1),and O-T F A, Then, by n — 1 applications of R-TRUE V we have, for each
(t<n),0CFA V- ---VX_1V Ait1V -+ V Ag), A; and hence, by using R-TRUE O, we obtain

Vi<n:TF O(A1 V-V V Ais1 Ve VAL, ON
Since T is saturated, we have two possibilities:

e Forsome i <n O V- --VAi_y VAy1V---VA,) €T, Then O-T + A\ {\} and, by the
induction hypothesis, A\ {\;} "TNO-T # 0, and hence AN N O-T #0.
e For all i <n,0\ €T. Then A C O°T (a), and, since O-T A, by the L-TRUE O-rule, we

have I' F A and hence, by saturation of I, TN A # 0 (b). Combining (a) and (b), we obtain
ANTNOT #£0.

Lemma 2.25 (Truth Lemma)
For all formulas ¢ € £, and all sets T' € SAT and each canonical model Mr:

MrEp&pel Mrdpo-pel
Proof: By induction on ¢: we only give the O-step. So we assume that ¢ = Oy, while the induction

hypothesis (IH) says that the lemma holds for 1.
First we show the equivalence for |=:

2Notice this is virtually the only place where the specific (introspection) rules of L are used in the completeness proof.
Le. these rules license the special form of our balloon models.
30 T+P=>D0"F+L=>TrHOL=>TF L,
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(=) If Mr |= Oy, then, by the truth definition of 0, for all A € Wr : Ma = 9. By IH, we conclude
that for all A € Wr, v € A. Now consider

[+ Oy, 00T (%)

After observing that OO-T = {Oy | Oy ¢ T'}, we claim that (x) holds: for, suppose not, then
by R-TRUE O and L-MON we also have O~T' If 4, O~ and we use the separation lemma, to find a
A for which O"T'C A C _6——F, and 9 € A, contradicting IH. Thus, since (*) holds, we may use
saturation of I" to conclude that either Oy € T or 'N GO-T # 0. Since the latter is impossible,
we conclude that O € T

(<) Suppose Oy € T, and choose A € Wr which means that A € SAT and T C A COT. We
immediately find ¥ € A and, by IH, M4 = 9 so that My E O9p.

Next the steps for = are:

(=) If Mp o Oy, then, by the falsity condition for O, for some A € Wr : Ma = v, and, using IH,
~% € A. Since A C 07T, O €T, and, since I is deductively closed, -0y € T.

(<=) Suppose Oy € T'. We claim that O-T U {—¥} 2 O7T. To see this, suppose that © is such that
O0-T'U{-%} F O, then, by L-FALSE 0O, also OO-T, -0y F ¢© and, by monotonicity, ', -0  ©O.
Since ~04 is already a member of T, this implies I - ©©. Now we use saturation of T to find a
formula ¢80 in 'N ©0, s0 § € O-T'N O. Now we have proven the claim, we use the saturation
lemma to obtain a saturated set A with O-T' U {~%} € A C OT. Clearly, A € Wy, € A, so
we apply IH to conclude Ma = 1. =

Theorem 2.26 (Corﬁpleteness) Foral B,ACL, T EA=ZFA.

Proof: Suppose I If A, then, using the separation lemma we obtain a saturated set T for which X CT
and I'N A = 0. Clearly, by lemma 2.25, My |=  and Mp W d for all § € A, hence T j£ A [ ]

Corollary 2.27 ForallTand A, ZFA & L EA.

3 Honesty

This section concerns both the ‘syntactic’ and ‘semantic’ view on circumscription and honesty. Circum-
scribing the knowledge expressed by, say, ¢, is to characterize what a rational agent knows when (s)he
only knows ¢ (together with its logical consequences). If such circumscription is possible, o is called
‘honest’ in [HM85]. Though it may seem, prima facie, that circumscribing ¢ is always possible (by tak-
ing, e.g., the deductive closure of ), this need not be the case. For example, the formula ¢ = Op v O-p
cannot be circumscribed (and is, hence, dishonest): only knowing ¢ implies not knowing more than that,
in particular, not knowing p and not knowing -p. However, the latter two conclusions, combined with
¥, lead to an inconsistency.

The main issue we want to address in this section, is to decide which formulas ¢ can be rendered
honest. We will in fact present several notions of honesty in section 3.1, and illustrate them using
several examples. Most of the technical justification for these examples, (in particular, examples 3.6, 3.12
and 3.16) as well as for observation 3.14 is provided after we have given a semantic account of the various
notions of honesty, and are therefore postponed until section 3.2. In section 3.3 we connect the semantic
view on honesty with a syntactic one.
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3.1 Stable Sets

We start out by investigating the deductive view on circumscription and honesty. Which criteria does
the set Co,, consisting of consequences of Oy have to meet to consider  honest? The crucial notion here
is that of a stable set*. Although stability can be defined in many ways, the notion itself is stable, since
various definitions turn out to be equivalent.

Thinking of Cn,, as the ‘epistemic state’ (in terms of [HM8S5]) of a rational agent knowing only ¢, it
is clear that a stable set at least has to be a consistent theory (Cf. definition 2.18). In addition to being
a consistent theory we want a stable set to have the property that the ignorance of non-consequences
is compatible with the knowledge of consequences. In [Moo85] and [Jas91b] this leads to the following
requirements for a stable set with respect to a normal modal system:

e S is a theory

e 0S5 U -0OS is consistent

Though correct for normal systems, the latter requirement is too strong for the partial logic we advocate.
Recall from section 2.2 that our logic does not have any {T,L}-free theorems. We want to exploit
this property by allowing the set S = Cat to be stable, characterizing the epistemic state of an agent
knowing nothing. However, S is unstable by the second requirement: since OT I/ (p V —p), we have that
(pV -p) € S, and therefore {OT,-0(p v -p)} would be consistent, which it is not. So we propose to
replace the requirement above by the more general condition that knowledge of non-consequences does
not follow from the initial knowledge.

Definition 3.1 (Stability) _
A set S of formulas is stable iff S is a theory for which OS V¥ OS

Notice that stable sets are consistent: suppose that S is an inconsistent theory. By the rule L-TRUE
1 and the theoricity of S we have S = £ and hence OS = 0. The inconsistency of S implies that of O,
s0, by the proof of lemma 2.20, we have OS  §, which means OS + os, implying that S is not stable.

The insightful but somewhat esoteric definition 3.1 can be recast in a format which is closer to
Stalnaker’s original formulation:

Proposition 3.2
S is a stable set of formulas iff

1. S is a theory
2. if p € S then Oy € S (positive introspection)
3. if Op Vv DOy € S then p € S or 9 € S (modal saturation)

4. ¢ & S for some ¢

Lemma 3.3 (modal saturation)
For all consistent theories S modal saturation is equivalent to
SHFO = SNT#@forallT C L

4See [Sta], [Mo085], [HM8S5] for S5 stability; [Jas91b] defines stability for arbitrary normal systems. Our text definition
is from [Thi92].
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Proof: Modal saturation is obviously implied by the above requirement. For the other direction, suppose
that S + OT. First note that the consistency of S implies that T’ # 0. By the finiteness of L we
may assume that I' is finite, say {y1,...,7.}. So S FOyn V...V Ovn, therefore (by corollary 2.15)
S+ O(0y, V-V Oy,), and thus (by proposition 2.14) S+ Oy, vO(Oye V - - V Oy,). Therefore, by
modal saturation, y; € S or Oy, V -+ -V O, Repeating this argument it follows that for some i, v; € S.

n
Because of this equivalence, we will also refer to the elegant property displayed in lemma 3.3 by ‘modal
saturation’.

Proof of proposition 3.2:
(=) Let S be a stable set. Then

1. by definition, § is a theory
2. suppose ¢ € S and Op ¢ S then, since Oy + OOy, S violates the I/ condition.

3. suppose for some [, we have S + OT, and S nr= @, then T C S, so Or C 08, so that, by
monotonicity, S - 0OS and, by L-TRUE, 0OS | OS, contradicting the stability of S.

4. S is consistent, so pA-p & S.

(<) Next let S satisfy the conditions (1-4) then S is a theory, thus (by 4 and ez falso) consistent. Suppose
OS +OS. By (2) OS C S, so by MON S F OF. Lemma 3.3 tells us that SN S # 0, a contradiction. =
Although the characterization of stability given by proposition 3.2 is useful, sometimes a more concise
requirement is convenient.

Proposition 3.4 S is stable iff $ = O~T for some I' € SAT.

Proof: (=) Let S be stable, then OS ¥ OS. By our Separation Lemma there is a saturated set T such
that (i) OS CT and (ii)) TNOS = 0. Thenp € S = (byi)Opel'=>peO0TandpgS=0OpedS=
(by ii)) Op ¢ T = ¢ ¢ O-T. Hence § = O-T. (<) Suppose S = O-T for some saturated set I', and
also that OS + OS. Since OS C T, and using R-MON we have I' - OS. T is saturated, and hence there
is some ¢ € S with I" - O¢. But then, since I is deductively closed (lemma 2.20), we have Oy € I" and
hence ¥ € S, a contradiction. [

Having characterized stability in different ways, we are ready for a formal account of circumscription
and honesty. If we write ST (i) for {S C L|p € S and S is stable }, then circumscription of knowledge
of ¢ involves finding a minimal element in ST (y), the stable sets containing the initial information .
If there is a stable set which is minimum, according to some order on sets of formulas, the knowledge is
honest. What is this ordering relation? In the paradigm case of the (total) system S5, different stable
sets are incomparable, so set inclusion does not work. This is not the case for the present (partial) system,
basically because the notorious Stalnaker condition ¢ & § = -0p € S does not hold for stable sets in
partial logic. The invalidity of the latter condition implies that in L a stable set is not determined by its
propositional content (the purely propositional formulas in it), although a stable set is determined by its
formulas of degree 1 (i.e. with modal depth less or equal than 1), by theorem 2.16. This might suggest set
inclusion as the ordering relation of the stable sets, and a definition of honesty induced by C: ¢ would
then be ‘stable-honest’ iff there is a C-smallest stable expansion of {¢}.

Definition 3.5 (Naive Honesty)
¥ is called naively honest iff there is a C-minimal element in ST (p).

Example 3.6 The formulas p, pA ¢, Op, O(p A q), Op and O(p A g) are all naively honest.
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Can we give other sufficient and necessary conditions for naive honesty? To this purpose reinspect
Cuo, = {9 | Op F ¢}. First observe that

o Cn, is a theory, since |- is transitive;

e Cp, is contained in every stable set containing ¢: by proposition 3.2(2) if ¢ € some stable S, then
O € S, so, by proposition 3.2(1) S contains all the consequences of Oy, i.e. Co, € S.

As an easy result, we now present a necessary and sufficient condition for a stable set being C-minimal.
Theorem 3.7 A set S is C-minimal in ST (p) iff S = Cq,, is stable.

Proof: (=) Suppose S is C-minimal for ¢. By definition ¢ € S, and, by the remark above, Cn, C S.
Now suppose that S € Cn,, then we have a 1 with ¢ € § and Oyp I/ 9. The separation lemma then
provides a saturated set I’ for which Oy € I',9 € I'. Since O | 9, by lemma 2.20 we also have Oy ¢ T".
By proposition 3.4, O~ T is a stable set containing ¢, contradicting the C-minimality of S.

(«) If Co, is a stable set, by the remarks above it must be C-minimal. =

The theorem above immediately provides a necessary and sufficient condition for naive honesty; more
strict characterizations are given in section 3.3:

Corollary 3.8 ¢ is naively honest iff Cg,, is stable.

Proof: Let Co, be stable. By L-TRUE O, ¢ € Cg,. By theorem 3.7, Cn,, is also C-minimal for ¢,
implying that ¢ is naively honest. The other direction is obvious. ]

Intuition says that all objective (i.e. propositional) formulas should be rendered honest: it seems to
be perfectly sensible to claim to only know some objective information. This is where the definition of
naive honesty is too strong (and also too naive):

Observation 3.9 The objective formula p V g is not naively honest.

Proof: Suppose that S would be C-minimal in ST (pVq), then (pvg) € S, and, by proposition 3.2(2), also
O(pVgq) € S. Since (by R-TRUE and & = 0¢)), we have O(pV ¢q) F OpV 0OOq, we use proposition 3.2(3)
to conclude that either p € S or ¢g € S (*). Now, let £; = {Op} and ¥; = {Og}. Using completeness,
we immediately see that X; I/ O0Oq and g I/ Op. The separation lemma then guarantees the existence of
saturated sets I';, T'p for which £, C T;(1 = 1,2),00q ¢ T'; and Op ¢ I';. By proposition 3.4 we find two
stable sets S§; = O°T,(z =1,2), 5, € ST(pV q), for which Og ¢ S and p & S2. Since S is C-minimal in
ST(pVq) we find p € S,Oq € S, contradicting (*). =

Therefore, though the set inclusion ordering of stable sets is (non-trivially) possible, it produces wrong
results as far as honesty is concerned. Now one alternative is to replace ordinary set inclusion by the
relation of epistemic inclusion Cg. This, however, will not produce any new results, due to the following
observation.

Observation 3.10 For all stablesets ",A: T Cp A& T C A.

Proof: straightforward from the definitions. ]

Somewhat surprisingly, since its propositional content does not determine a stable set, propositional
minimality of a stable expansion produces a more adequate notion of honesty.
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Definition 3.11 (Weak Honesty)
@ is weakly honest iff there is a Co-minimal element in ST ().

This is in fact the same definition of honesty that was proposed by Halpern Moses in [HM85]. However,
in L one can generally derive less conclusions from the circumscription of a weakly honest formula than
in the S5 case (Op for instance, is honest in [HM85] and also weakly honest in L, but ‘knowing only Op’
entails different conclusions in both set-ups).

Example 3.12 Naively honest formulas are weakly honest. The disjunction pV ¢ is also weakly honest:
more generally, for each consistent objective formula 7, 7 itself, Or and O are weakly honest. Other
examples are Op A Og, and disjunctions like Op V =Op and p V =Op. The formula Op Vv Oq is not weakly
honest, neither is Op V —p. (This will be proved in section 3.3.)

Notice that a propositionally smallest stable expansion for some formula need not be unique: SN Lo
does not determine S. For example, in the case of pV g, § may or may not contain O(p A g).

Theorem 3.13 A set S is Co-minimal in ST () iff S € ST (¢) and So = (Cop)o = {1 € Lo |Op F p}.

Proof: Omitted; essentially the same as the proof of theorem 3.7. [

In the introduction to this section we explained why OpV Oq should not be rendered honest: although
it makes perfect sense for an agent to claim that he knows that he either knows p or g, it is absurd for
an agent to claim that all he knows is that either he knows p or he knows ¢, because it would imply that
he neither knows p (Op being logically stronger than Op Vv Og) nor q.

Essentially the same analysis can be made if the agent claims to only know some disjunction of
possibilities he considers possible: if the agent only knows OpV Ogq, he does not know the stronger ©p,
nor g, though OCp v OOq follows in L from O(Op Vv Og). And, indeed, intuition says that an agent
may know some disjunctive information about facts for which he has some evidence, but this cannot be
all he knows. This is why the current notion of honesty is too weak:

Observation 3.14 The formula OpV Oq is weakly honest>.

Proof: We provide a semantical argument in observation 3.29; here we give a deductive one. It is easily
seen that OpV Oq I OLy. By the separation lemma, there is a I' € SAT for which OpV Oq € T,
and T' N 0OLy = §. By proposition 3.4, O°T is a stable set, that moreover contains Op V Og (the latter
is true by Opv Oq - O(OpV <Oq)). Since O"I'NLy = @, O T is obviously a Co-minimal set for OpvOq. m

Analyzing the reasons for this observation, note that for weak honesty we did minimize the objective
formulas in the stable set for ¢, but not the possibilities contained in it. In fact, Co-minimality is
insufficiently restrictive: among the Co-minimal stable sets, we want to single out those containing the
least number of epistemic possibilities. This is achieved in our last notion of honesty:

Definition 3.15 (Strong Honesty) A formula ¢ is called strongly honest if there is a Co-minimal
element in the set {S C £| S is Co -minimal in ST (y) }.

Example 3.16 Now, OpV Oq is not strongly honest. As with weak honesty, for each objective formula
7 € Lo, the formulas 7 and On are strongly honest, but now, O(p V ¢) is not strongly honest (Cf.
section 3.2).

When characterizing the stable sets that contain a strongly honest formula, we need a lemma that we
will not prove until section 3.2, and one more definition.

5We remark that OpV Og is also honest in the analysis of S5 as given in [HM85].
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Lemma 3.17 Let S and S’ be two stable sets such that -5 Co OS5’ and ¢S5 Co ©~S’. Then
Scs.

Proof: Postponed until corollary 3.23 =

Definition 3.18 For a formula 1 we define its diamond remainder Rgv, as follows:

In words, R&,; contains O-formulas with a propositional argument, that are derivable from Oy, in dis-
junction with those O-formulas of which the argument is propositional and not a consequence of Oyp.

Theorem 3.19 A set S is Co-minimal in {S C £| S is Co -minimal in ST () } iff So = (Cuy)o and
SNOLy = RS, and S € ST(y).

Proof:

(=) Let § be Co-minimal in {S € £|Sis Co -minimal in 8T(p) }. Clearly, S is Co-minimal in
ST(p), hence, by 3.13, So = (Coy)o. In order to show that R, C SN OLy, suppose Op € RS,
Then Op F O(Cay)o, Ou. Let T be saturated such that S = O~T. Then, Op € I' and, by definition
of saturation, I' N (O(Cay)o U {Ou}) # 0. Suppose I' N O(Cay)o # . Then there is some v € Lo
with Oy € T',0¢ t/ 7. But then v € S and ¥ & (Cay)o, which contradicts the Co-minimality of S (Ct.
theorem 3.13). Thus, we conclude that Op € T'. Since Op + OOu, we find Op € SNOLy. To see that also
SNOLy C Rg(p, suppose for certain p € Lo that both Op € S, and Opu ¢ ng. Then Qg i O(Cay)o, Op-
Using the separation lemma, we find a saturated set I" for which Op € T"and T'N (O(Cap)ou{On}) =0.
Clearly, O°T is stable for ¢ and also O°T' N (Co,)o = @. But then O°T'N Ly C (Coy)o. Since, by
stability of O-T we also have (Ca,)o € O~T'N Lo, we can apply theorem 3.13 to conclude that O7T'is a
Co-minimal set for ¢. However, this contradicts the fact that S is Co-minimal amongst the Co-minimal
stable sets for ¢, since we have Op € S,Op ¢ T hence OOu ¢ T', thus Ou ¢ DT

(<) Suppose that both SNLy = (Cay)o and SNOLy = RY,, for some S € ST(p). Then SN (Lo U OLy) =
(Cap)o U RSW Let S’ be an arbitrary stable set for ¢ that is Co-minimal. We have to show that S Co §';
by lemma. 3.17 it is sufficient to show that both 0=S Co 075" and ©~§ Co O~ S'. Since SNLy = (Cog)os
by theorem 3.13 we have S Co S’ so in particular, 0~S Co O~5’. So suppose that we have some p € Lo
with Op € S. Since SNOLy = RS, this means that Op - 0(Cay)o, Ont, and thus, OS5’ - O(Cay e, Op.
Since §’ is Co-minimal for ¢, we have, by theorem 3.13 that S’ N Lo = (Cay )o, hence, §'N (Cap)o =10
and I'NO(Coy)o = 0, for S’ = O-T". But, then, since I is saturated, we have Op € I’ (by an argument
similar to the one above), so that (by © = 00) Op e §'. n

3.2 Minimal Models

Proposition 3.4 ties up the notion of stable set with a main semantic notion: recall from the construction
of the canonical model, that saturated sets correspond to partial worlds. Let us make the following
corollary of 3.4 relating stability directly to the knowledge in a balloon model.

Corollary 3.20 S is stable iff § = k(M) for some balloon model M.

In order to decide whether some formula is honest, we considered stable sets that were minimal in
some sense. Combining this with corollary 3.20 gives rise to the following orders on models.

Definition 3.21 For any two models M = (W, g,V) and M’ = (W',¢', V') we define:

e (Smyth order)
MCoM &V eW JweW:V(w) CV'(w)
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o (Hoare order)
MCoM &VweW I e W :V(w) CV'(w')

¢ (Egli-Milner order)
M;M’@MEDMI&MEQM’

e For any < € { Co,Co,C }, we say that a model M is <-minimal for ¢ if ¢ € k(M) and for all M’
with ¢ € k(M') it holds that M < M'. We then say that ¢ has a X-minimal model.

The above orders are familiar from domain theory; see e.g. [Sto77]. The orders do not specify anything
about the root g of a model M = (W,g,V). Recall that Th(M) = { ¢ € L|M | ¢ }, that (M) =
O-Th(M) and n(M) = O~Th(M). This is how the relations C, and C, are related:

Theorem 3.22 Let M = (W,g,V) and M' = (W',¢', V') be models. Then:
1. MCo M' & Th(M)NOLy Ca Th(M') & k(M) Co s(M')
2. MCo M' & Th(M)NOLy Co Th{(M') & m(M) Co 7(M')
3. MC M & V(g) CV'(¢') ¢ M’ bisimulates M & Th(M) C Th(M')
4. MC M & k(M) C (M) and (M) C 7(M') & s(M) C s(M')

Proof: We only prove the first item in eztenso, the second is proven similarly, whereas the third is
already observed in theorem 2.9. The facts in the last item can be deduced from the others, using the
degree 1 normal forms from the proof of theorem 2.16 for the first equivalence.

So, suppose that M Eo M’ and let p be some propositional formula for which M |= Oy, ie. for all
w € W : My, |= . Choose any v' € W’. Since M Eg M’ there is a v € W such that V(v) CV'(¢'), and
s0, since p € Lo we use the lemma about propositional persistence (lemma 2.6) to conclude M, E= p.
Since v was arbitrary, we have M’ |= Ou. The opposite direction is proven using contraposition: if
M g M, then there is some w' € W’ such that for all w € W: V(w) € V'(w’). So, for each
w € W there is a literal a,, € P U P such that M, = a, and M/, £ an. Now if & = V e Qw;
obviously & € Lo and M, |= a for all w € W, so M | Oa, yet M, £ o, so M' j£ Oa. Therefore
k(M)N Lo € k(M'), ie. k(M) Lo k(M'). n
It is not hard to see that we really need the restrictions to Lo; in the case of Cp for instance, let
M' = (W' g, V') such that V'(w')(p) = 0 for all w' € W'. Consider M = (W,g,V) with W = w'u{z}
for some = ¢ W', V(z)(p) = 1 and V(w') = V'(w') for all w' € W’. Although M Cao M’, we have
M |= OOp, but at the same time M’ & OOp.

Corollary 3.23 (Lemma 3.17, continued) Let S and S’ be two stable sets such that O~ 8§ C, O 8’
and ©~S C; O~ 8. Then SC 9.

Proof: Let M and M’ be such that S = k(M), S’ = k(M'). Applying the first two items of theorem 3.22,
we obtain M Co M' and M Co M, hence M © M’ and thus, by the last item of the same theorem,
scJs. "

Corollary 3.24 (Filtration) For every model M = (W, g,V) there is a model M "= (W', g, V') such
that V(g) = V'(g) and for all u,v € W' for which u # v, V(u) # V(v) and Th(M) = Th(M'). We call
M' a distinctive model, and denote it also with D(M), the distinctive model that M gives rise to.

Proof: If g ¢ W, put ¢’ = g and V'(¢’) = V(g). For worlds in W we define the equivalence relation
z =y & V(z) = V(y), denoting the equivalence class of z with [z]. Then, we define W' = {lz] |ze W}
and V'([z]) = V(z). By definition of V', all worlds in W’ have a different valuation; moreover one
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easily checks that we have V(g) C V'(¢') E V(g) and M & M’ C M, whence, by theorem 3.22,
Th(M) = Th(M"). ]

Since we assumed P to be finite, our filtration result differs from the classical filtration lemma by the
fact that we do not need to make a filtration through a given formula. Moreover, by identifying worlds,
we only compare their propositional content. This is explained by the special structure of balloon models;
essentially the same property guarantees a normal form with a modal degree at most 1. The way we
will exploit the above filtration result is a more traditional one, however. To formulate it, let us write
M = M’ for the equivalence defined by D(M) = D(M’).

Corollary 3.25
e L is sound and complete with respect to { D(M) | M is a balloon model}.
e For all models M and N, and any <€ {Co,Co,C}, wehave D(M) X N & M = N & M < D(N).

¢ Every consistent formula ¢ has only finitely many finite models that are not &-equivalent.
Now we can characterize our different notions of honesty in semantic terms.
Theorem 3.26 ¢ is naively honest iff Oy has a C-minimal model.

Proof: Using corollary 3.20 and theorem 3.22, the argument is straightforward:

 is naively honest & (definition)
IS € ST(p) VS €ST(p):SC S’ & (cor. 3.20)
IM : g € w(M) & VM'(p € K(M') = k(M) C k(M')) < (def. &, thm 3.22)
IM:MEOp &VYM' (M EQp=>MCEM) & (def. 3.21)
3M which is C-minimal for O
[

Example 3.27 Figure 2 gives C-minimal models for pAg, O(pAq) and O(p A g), respectively. As was
announced in example 3.6, the latter two formulas are thus naively honest by virtue of the two models.
Let us check that M’ is C-minimal for O(p A q): suppose N is an arbitrary model for O(p A g). Since
M’ has an empty world, we immediately obtain M’ Co N; moreover, since N = O(pAq), there must be
some world u satisfying both p and ¢, and this world obviously extends the two balloon worlds of M’,
therefore M' Co N.

M M’ M”
- »a
g

A * D:q
g g
Figure 2: Three C-minimal models

Theorem 3.28 ¢ is weakly honest iff Op has a Co-minimal model.
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Proof: Again a direct argument is possible:

¢ is weakly honest & (def. weak honesty)
IS €8T (p) VS €ST(p) : S Co S & (cor. 3.20)

IM:p € (M) &M (p € K(M') = k(M) Co x(M')) &  (def. , thm 3.22)
IM : M = Op & YM'(M' | Op = M Ca M') & (def. 3.21)

3M which is Cn-minimal for O

Example 3.12 (continued)

The models M and M’ of figure 3 are Co-minimal for O(p V g) and Op V —Op, respectively. To see the
latter, note first that M’ is a model for ~Op, and hence for Op v ~Op. Moreover, M "Cg N for any N,
due to the empty world in M’; thus M’ is Co-minimal amongst the models for O(Op v -0Op).

D (=

M M

. p .
g g

Figure 3: Two Cp-minimal models

We make the latter idea explicit, on the fly providing an alternative proof of observation 3.14:
Observation 3.29 Let us consider the following language Lo 2 Lo:

7 € Lo, p, ¥, € Lo=>TE Lo, Op € Lo and (pAY) € Lo
Then, for all ¢ € Lo, we have: (y is satisfiable < ¢ is weakly honest).

Proof: Note that formulas of Co are satisfiable iff they are satisfiable in a model M with an empty
world. But for such a model, we obviously have M Cp N, for every model N. [ |
Connecting strong honesty with a semantic notion requires one more definition.

Definition 3.30 A model M is called strongly minimal for ¢ if M is Co-minimal in the set { M’ |
M'is Cg -minimal for ¢ }.

Note that strongly minimal models for ¢ are by definition Co-minimal for . Also note, however, that a
strongly minimal model (for ) need not be Eo-minimal.

Theorem 3.31 ¢ is strongly honest iff O has a strongly minimal model.

Proof:

(=) Assume S to be Co-minimal amongst the Co-minimal stable sets for ¢, and let M be a model
for which S = k(M) (corollary 3.20). We will show that M is strongly minimal for ¢, ie. M Co M’
for any M’ that is Co-minimal for . Consider such an M’. Then, as in the proof of theorem 3.28,
k(M') is Co-minimal in ST (). So, by assumption, k(M) Co k(M’). To draw the required conclusion
M Co M, it suffices, because of theorem 3.22 (2), to show that 7(M) Co m(M'). This is straightforward:
aEW(M)ﬂL',o=>M}=<>a=>M|=L‘.I<>a=><>a€rc(M)=><>a€n(M’)=>M’}=D<>a=>M’I=<>a¢
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aen(M).

(<) Let M be strongly minimal for O¢p, and § = k(M). If S’ is some Co-minimal stable set for ¢, the
proof of theorem 3.28 shows that the model M’ for which ' = k(M’) is Co-minimal for Ogp. We have
to show that S Co S'. Since M was strongly minimal for Oy, we have that M Co M’ and M Co M/,
i.e. M T M'. Hence, by theorem 3.22 k(M) C k(M'),ie. S C S, and so OOy € Th(M), then S Co S'. m

Example 3.16 (continued)

We argue that OpV Oq is not strongly honest: consider the two models M and M’ of figure 4. Both models
verify O(OpV <g) and contain an empty balloon world, whence both are Co-minimal for O(opV<q). But
then we also see that there can be no model N for O(OpV ©q) for which both N Co M and N Co M":
such a model N has to contain at least a p- or a g-world, if it has a p-world then N Zo M',ifit has a
g-world, then N Zo M.

o (O

M M

.
/

g g

Figure 4: Two Co-minimal models

3.3 Disjunction Properties

One might want to have an even more direct condition providing honesty, without interference of the
notion of stability. Here, we will provide several syntactic, of perhaps rather deductive characterizations
for honesty®. Inspecting the properties of saturated and stable sets, one good candidate for this is the
disjunction property, defined below. In fact, this property is already mentioned in [HC84], be it that
there it is a property of logical systems, rather than of formulas. In partial logic this property should be
slightly reformulated.

Definition 3.32 Disjunction Properties

Let ¢ € L. The following conditions define when ¢ is said to have the disjunction property (DP), the
propositional disjunction property (pDP) or propositional diamond disjunction property (PDDP), respec-
tively.

DP VECL: Opt0OS=>30€l:0pko

PDP VIIC Lo: OprOld=>3rell:Optkm

pDDP VIIC Lo: Dt O(Cayp)e, Ol = 3Ir € I1: Op 0O(Coy)o, OT
Observation 3.33

e All disjunction properties imply consistency. Take I, = = @ for the arguments IL, ¥ in the rules of
the definition above.

61n fact, it is highly questionable whether a real syntactic/morphological criterion for circumscriptive knowledge exists.
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e Note that Op - ¢ & Ogp Oy for all 9 € L. Furthermore, Op F 0A, Oy & Op F OA, 009
for every formula 1. These are simple consequences of corollary 2.15. This observation facilitates
proving the next theorem on the relation between different notions of honesty and the various
disjunction properties which were presented in the definition above.

e Note that PDDP implies PDP. To see this implication, suppose that ¢ is a formula which does not
have PDP. This means there exists [T C Lo such that O¢p F OII (1) and O i/ 7 for all 7 € II. This
means II C (Co,)o, and by application of R-MON to (1) we derive Oy + O(Coy)o- This implies
that ¢ does not have the PDDP, for there exists a T (viz. @) such that Oy F 0(Cay)o, O and
Og if O(Cay)e, Oo for all o € .

Theorem 3.34 (Disjunction properties and honesty)
¢ has the DP & is naively honest
© has the PDP & is weakly honest
¢ has the PDDP & ¢ is strongly honest

Proof: We start by proving the <-direction for the stated equivalences. These are in fact almost
immediate consequences of the modal saturation property of stable sets (Cf. proposition 3.2 item 3) and
the various characterizations of minimal stable sets.

e Let ¢ be naively honest. This means it has a C-minimal stable set S. Now suppose Og - O, then
S+ OF. By modal saturation we know SNZ # 0. According to theorem 3.7, S = Caoy, so for some
o € I, Oy I o. In other words, ¢ has the disjunction property.

e If o is weakly honest, there is a similarly straightforward proof that ¢ has the PDP, since by theorem
3.13: 35 € ST(p) : So = (Cny)o-

e Let ¢ be strongly honest. Suppose Oy F O(Cay)o, OII for certain II C Lo. The second item in
observation 3.33 tells us that

Oy F O(Cay )e, OCTL

Let S be Co-minimal amongst the Co-minima of ST(y). Again modal saturation shows that there
exists a ¢ € (Cay)o U OII such that ¢ € S. On account of theorem 3.19 we know that So = (Cay)o,
so o must be some O7 in OII. We also know from 3.19 that SN OLy = RS, 50 OT € Rg,. By

definition of the diamond remainder of Oy, we conclude that Op F O(Coy )o, O, the PDDP.

The =>-direction of the proof is accounted for by the saturation lemma and the relation between stability
and saturation as formulated in proposition 3.4. Then following three claims provide the desired results.

a. @ has the DP = {Op}<QA; := OCg, UOL,
b. ¢ has the PDP = {Op} QA O(Cay)o U OL,,
c. ¢ has PDP & PDDP = {Op} 9 As:= 0(Cay)o U ORZ, U (DLy U OLy).

i

The following arguments show that these implications are sufficient.

1. ¢ has DP = (Saturation Lemma, claim a above)
30 € SAT : {0p} € © COC,UOL = (S =06, proposition 3.4)
3S € ST(p): S=Cn, = (corollary 3.8)

 is naively honest.
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2. ¢ has PDP = (Saturation Lemma, claim b above)
30 € SAT : {Bp} C© C O(Cay)o UDOLy = (S =0"6, proposition 3.4)
35 € ST(p) : So =(Coyp)o = (theorem 3.13

 is weakly honest.

3. ¢ has PDDP => (Saturation Lemma, claim c)
30 € SAT : {Op} C © CO(Coy)o UCRY, VDL, UOLy = (S=076)
35 € ST(y) : So = (Coyg)o & O(©~S)o = RS, = (theorem 3.19)
 is strongly honest.

What remains to be shown are the three claims a — ¢ above. Recall that this boils down to showing
LN A; #0, for each T for which Op - X1 < 3).

a Suppose ¢ has the DP and Oy I X.

o If S NTL # 0, we immediately obtain ZN A; # 0.

e If TNOL = 0 then & C OL, which means that £ = OX' for certain ¥’ C £. DP guarantees
the existence of a ¢’ € ¥’ such that Oy I ¢'. Since this means that O¢' € OCq,, we may
conclude £ N OCqy, # 0, hence TN A; #0.

b Suppose ¢ has the PDP, and Op - Z.
If & C OLg then, according to PDP, there exists Oo € ¥ such that Oy - ¢. This means £ N
O(Cayp)o # 0. If © ¢ OLg, then &N TOLy # 0. Consequently, in all cases TN A # 0.

¢ Suppose ¢ has the PDDP, and Op + X.

e X N(OLoUOLy) #0then TNA; #0.
o Suppose ¥ C 0Ly U OLy.
~ If 2N 0O(Cay)o # 0, then also TN Az # 0.
— Take EN0OLy € O(Coy)o- In this remaining case all formulas of T are either of the form
O with 7 € Lo or Op with g € (Coy)e. Application of the rule R-MON yields
Oy F O(Cay ), N OLg.

According to PDDP this means that there exist ¢ € £ N OLy such that Op F O(Cay o, 0
and therefore o € <>R8¢. We conclude, also in this last case, X N A3z # 0. .

Since the disjunction properties are purely inferential and strictly related to the possibly honest formula
under inspection, and neither involves extension to a stable set that is minimal in some sense, nor min-
imization in a class of models, they provide a very convenient tool for testing honesty. In particular, to
prove that some formula is dishonest, disjunction properties may be a great help, as is illustrated below.

Example 3.12 (continued)

Using the PDP it easily follows that OpV Ogq is not weakly honest: O(0pV Ogq) F OpV Og, so O(OpVvOg) +
O{p, q}, yet O(OpVv Og) I p and O(OpV Og) I/ ¢ (where non-derivability is shown by providing a counter-
model, as usual). That OpV -p is not weakly honest has a similar proof, again by taking £ = {p,q},
thus contradicting the PDP.
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Some of the earlier proofs can also be simplified. For example, observation 3.9 now has a very easy
proof: O(pV q) F OpV OOq, yet O(pV ¢) I/ p and O(p V q) i Og, and thus DP shows that p V ¢ is not
naively honest.

Though less comfortable, PDDP can be used for an alternative proof of example 3.16: ¢ = OpV Og is
not strongly honest since Oy F O(Cay)o, O{p, ¢}, Op ¥ O(Cay)o, Op, and Oy 0(Cay)o, ©g. To show
the latter, consider the model M from the proof at the end of section 3.2: M verifies Oy, but does not
verify Og, nor any element of 0(Ca,)o. To make this last point, suppose that M |= Oa for some a € Lo.
Then in the empty balloon world e: M, = a, thus (by propositional persistence) |= o, and therefore
o€ (ch,)o.

4 Conclusion

We have described a new epistemic logic with the remarkable feature that on the one hand knowledge
implies truth, yet on the other hand truth does not imply epistemic possibility, thus avoiding at least one
type of logical omniscience. The logic is shown to be sound and complete for so-called balloon models
with partial interpretation.

This logic is then used as a vehicle to study circumscription of knowledge. We have introduced
different notions of honesty, each of which can be equivalently described in a number of ways. This
results in a hierarchy of honesty, since we can easily prove

¢ is naively honest = ¢ is strongly honest => ¢ is weakly honest.

We summarize our hierarchy of honesty in the following table:

[ type || in ST (p) | w.r.t. Ca, and RS, [ for models of Oy *DP |
weak 3 Co-minimum IS € ST(p) : S =¢ Cayp 3 Cg-minimum PDP
strong || 3 Co-min. of Co-minima | 35 € ST (p) : S =¢ Ca, & (O~ S)e = Ry, | 3 strong minimum | PDDP
naive 3 C-minimum Cu,, is stable 3 C-minimum DP

Table 1: Criteria for ¢ being honest

As we have illustrated on a number of examples, naive honesty is too strong (i.e. it yields too many
dishonest formulas), whereas weak honesty is indeed too weak — strong honesty is the preferable option.
By means of honesty we can also define the semantics of the operator ‘Agent only knows’.

Finally, we can evidently define a non-monotonic preferential entailment relation |~ by:

¢ b~ ¥ & o is strongly honest and for all strongly minimal S € ST(¢) : ¢ € S.

This relation intuitively denotes that, if ¢ is only known, then 4 is also known. Due to the partial
background logic, we find no entailment of irrelevant possibilities, e.g.:

p B Oq.
Notice that though many non-monotonic entailments that were valid for the classical system S5 do not

qualify for our partial system L, such entailment still differs from (partial) consequence and derivability:
we have e.g. that

(pvae) ¥Op & (pVg) b Op.
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We can extend the latter example to show that ‘I’ is indeed a non-monotonic relation: we have for

instance
(pVa)A-p It Op.
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