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Abstract

Trees are among the most common structures in computing and many
algorithms for drawing trees have been developed in the last years. Such
algorithms usually adopt different drawing conventions and attempt to
solve several optimization problems. The aim of this paper is to study two
different types of drawing conventions for trees, namely 1-strong visibility
representation and 2-strong visibility representation. For both of them
we investigate the problem of minimizing the area of the representation.
The contribution of the paper is twofold: (i) we prove tight lower and
upper bounds on the area of such representations; and (iz) we provide
linear-time algorithms that construct representations with optimal area.
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1 Introduction

The problem of drawing a graph in the plane has received increasing atten-
tion recently due to the large number of applications, including VLSI layout,
algorithm animation, visual languages and CASE tools. Vertices are usually
represented by points and edges by simple Jordan curves. Graph drawing algo-
rithms attempt to construct a representation of the input graph that satisfies
a set of geometric properties, such as minimizing edge crossings, emphasizing
symmetries and minimizing the size of the required area. For an up to date
overview on graph drawing problems and algorithms, the reader is referred to
the bibliography by Di Battista, Eades, Tamassia and Tollis [6].

The area of a drawing of a graph is the area of the smallest covering rectangle
with sides parallel to the axes, where we assume the existence of a resolution rule
that prevents the drawing from being arbitrarily scaled down. Typical resolution
rules are requiring integer coordinates or a minimum distance between vertices.
Asymptotic bounds on the area of drawings of graphs do not depend on the
specific choice of resolution rule. The width and the height of the drawing are the
width and the height of the covering rectangle. Since the first results on graph
drawing were published, the area required by different drawing conventions has
been one of the most intriguing problems in the field.

A planar drawing of a graph is a drawing where no two edges intersect,
except possibly at their endpoints. A planar graph is a graph that admits a
planar drawing. It is well known that every planar graph admits a straight-line
planar drawing, where vertices are represented by points on the plane and edges
by segments between pairs of adjacent vertices. De Fraysseix, Pach and Pollak
(5, 4] and, independently, Schnyder [21] showed that a planar graph with n
vertices has a planar straight-line drawing with O(n?) area.

An upward drawing of a directed graph is such that every edge is a directed
curve monotonically nondecreasing in the vertical direction. Upward drawings
are ofter used to visualize hierarchic structures. Only acyclic digraphs admit
upward drawings.

In this paper we consider the area-efficient planar drawings of trees. Let T
be a tree with n vertices. Crescenzi Di Battista and Piperno [3] showed that
if T is a complete binary tree or a Fibonacci tree, then T admits an upward
planar straight-line drawing with O(n) area; Garg, Goodrich and Tamassia [12]
proved that if T is a rooted tree, then T has an upward planar drawing with
O(n) area. They also showed that if T is a binary tree, then T has an upward
planar orthogonal drawing with O(nloglogn) area, and that this area bound
is optimal in the worst-case. If T is not rooted and the upward requirement
is relaxed, then, as independently shown by Leiserson [15] and Valiant [26], T
admits an O(n)-area planar orthogonal drawing. Eades, Lin and Lin [9] studied
upward drawings of rooted trees where the covering rectangles of the subtrees
of each node are disjoint and show how to optimize the area of such drawings.



The concept of visibility (see, e.g., [18, 16, 22, 10, 11, 17, 24]) plays an
important role in computational geometry, and arises in art gallery problems,
motion planning, and graphics. The study of visibility representations of graphs
was originally motivated by VLSI layout and compaction problems (see, e.g., [23,
20]). Further applications of visibility representations concern PERT diagrams
(see e.g., [7, 8]) and orthogonal graphs (see, e.g., [25]).

Given a set of disjoint objects in the plane (e.g., points, lines, rectangles),
two objects of are said to be 1-visible if they can be joined by a vertical segment,
called visibility segment that does not intersect any other object. Two 1-visible
objects are said to be e— visible if they can be joined by a vertical band of
nonzero width, called visibility band, that does not intersect any other object in
the set.

A 1-vigibility representation of a graph G maps the vertices of G to disjoint
horizontal segments such that any two adjacent vertices are associated with 1-
visible segments. Graph G admits a 1-visibility representation only if it is planar.
Variations of this representation are called I-weak, 1-strong and I-e visibility
representations, and are illustrated in Figure 1. A 1-visibility representation
of a directed graph G is said ot be upward if for every edge (u,v), the vertex-
segment of u is placed below the vertex-segment of v.
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Figure 1: Example of 1-weak, 1-¢, and 1-strong visibility representations of a
graph G.

In a I-weak visibility representation, adjacent vertices are associated with
visible vertex-segments. However, visible vertex-segments are not necessarily
associated with adjacent vertices. Linear-time algorithms for constructing 1-
weak visibility representations of planar graphs were presented by Tamassia
and Tollis [24] and, independently, by Rosenstiehl and Tarjan [19]. Recently,
Kant [13] showed that a 1-weak visibility representation of an n-vertex planar
graph with area at most (|2n] — 3) x (n — 1) can be constructed in O(n) time.

In a I-strong visibility representation, two vertex-segments are visible if and
only if their associated vertices are adjacent. Tamassia & Tollis {24] showed that



every 4-connected planar graph has a strong visibility representation. However,
Andreae [1] proved that deciding whether a general planar graph has a strong
visibility representation is NP-complete.

In a 1-¢ visibility representation two vertex-segments are e— visible if and
only if their associated vertices are adjacent. Efficient algorithms for construct-
ing 1-¢ visibility representations and recognizing those graphs that admit them
were independently given by Wismath [27] and by Tamassia & Tollis [24]. Re-
cently, Kirkpatrick and Wismath [14] have presented a polynomial time solution
to the problem of determining whether a given weighted graph admits a 1-€ vis-
ibility representation in which the weight of each edge is equal to the width of
the maximal visibility band joining the corresponding vertex-segments.

Several years after the publication of the first papers on 1-visibility represen-
tations, researchers started the study of 2-visibility representations of graphs,
where the vertices are represented by disjoint isothetic rectangles in the plane,
and the edges are represented by visibility-segments (or bands) in the horizontal
or vertical direction. As for the 1-visibility case, we distinguish 2-weak, 2-strong
and 2-e visibility representations. See the example of Figure 2. The only pre-
viously published result on on 2-visibility representations is by Wismath [28],
who proved that every planar graph admits a 2-¢ visibility representation.
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Figure 2: Example of 2-weak, 2-¢, and 2-strong visibility representations of a
graph G.

In this paper we study the area required by 1-strong and 2-strong visibility
representations of trees. As a resolution rule, we assume that vertex segments
have integer coordinates. Our contribution is twofold: (i) we prove tight lower
and upper bounds on the area of such representations; and (i7) we provide
linear-time algorithms that construct representations with optimal area.

The paper is organized as follows. Preliminaries are given in Section 2. In
Sections 3 and 4, we study the area requirement of 1- and 2-strong visibility rep-
resentations of trees, respectively. Conclusions and open problems are discussed
in Section 5.



For brevity, in the rest of this paper 1-strong visibility and 2-strong visibility
representations will be simply called 1- and 2- visibility representations.

2 Preliminaries

We begin by defining some of the graph theoretic and geometric terminology
used in this paper. For more details see 2] and {18].

2.1 Graphs and Trees

A graph G = (V, E) consists of a finite nonempty set V' of vertices, and a set E
of unordered pairs of vertices known as edges. An edge e consisting of vertices
u and v is denoted by e = uv; u and v are called the endpoints of e and are
said to be adjacent vertices or neighbors. The degree of a vertex v, denoted by
deg(v), is the number of edges which have v as an endpoint. A path in a graph
G is a finite non-null sequence P = v;v; ... v where the vertices vy, va,..., %
are distinct and v;v;y; is an edge for each i = 1...k — 1. The vertices v; and
vx, are known as the endpoints of the path. The length of a path P, denoted by
¢(P), is the number of edges of P. A cycle is a path whose endpoints are the
same. An acyclic graph is a graph that contains no cycles. A graph is connected
if, for each pair of vertices u,v € V, there is a path from u to v.

A free tree is a connected acyclic graph. If T is a free tree, a leaf of T is
a vertex v € V(T), such that deg(v) = 1. A rooted tree is a free tree T along
with a distinguished vertex called the root of T. The height of a rooted tree T,
denoted by h(T) is the length of a longest path from the root of T' to a leaf; an
ancestor of a vertex v € V(T') is any vertex v’ # v in the path from the root of
T tov.

2.2 Visibility Representations

Given a set S of non overlapping horizontal segments in the plane. Two segments
are 1-visible if they can be joined by a vertical segment, which does not intersect
any other segment.

A 1-visibility representation of a graph G is a mapping of G into the plane
such that (i) vertices of G are represented by non overlapping horizontal seg-
ments (vertez-segments); (ii) two vertex-segments are visible if and only if the
corresponding vertices in G are adjacent.

Given a set S of nonoverlapping zy-rectangles in the plane, two rectangles
of S are said to be 2-visible if they can be joined by a horizontal or vertical
segment which does not intersect any other rectangle.

A 2- visibility representation of a graph G is a mapping of G on the plane
such that (i) vertices of G are represented by non overlapping zy—rectangles



(vertez-rectangles); (ii) two vertex-rectangles are 2-visible if and only if the
corresponding vertices in G are adjacent.

In this paper points, segments and rectangles will be drawn on an integer
grid (i.e. our reference coordinates are integer numbers). Given two points
p1 = (21,%1) and p2 = (x2,y2) on the grid, a horizontal strip (vertical strip)
between p; and p; is the set of points with y-coordinate in the set [y, 2] (z-
coordinate in the set [z1,Z2]). A row (column) of the grid is a vertical strip such
that yo =y1 +1 (172 =z + 1).

We denote by S(v) the vertex-segment (or vertex-rectangle) associated with
vertex v; S(v) is identified by specifying its rightmost and leftmost z-coordinates,
and its lower and upper y-coordinates. We denote this by S(v) = (z(v), y(v)) =
(lz1, z2), y1,92]). M 21 = z2 (y1 = y2), then we denote S(v) = (1, [v1,¥2])
(S(v) = ([z1,z2]),41)) for short. We also denote z; by z.(v) and x5 by zg(v).
For any vertex-rectangle S(vx) = ([z1, 2], [y1,y2]) we can identify four strips;
the above strip is composed by all points (z,y) with = € [z1,22] and y > yo;
the right strip is composed by all points (z,y) with y € [y1,y2] and = > zg;
the below and left strips are defined similarly. The above and below strips are
vertical strips, the right and left strips are horizontal.

Finally, given a visibility representation of G, T', we denote by zr(T’) (z.(I"))
the rightmost (leftmost) z-coordinate of I'(G) and by y(T') the maximum y-
coordinate of I'. Let G’ C G and let IV C T be the visibility representation
of G'. The right of I is the subdrawing of I" composed by I'' and the vertex-
segments of I that are entirely drawn in the half-plane (zp(IV), 00).

3 1-Visibility Representations

In this section we study the area required by 1-visibility representations of trees.
We consider rooted trees separately from free trees.

3.1 Rooted Trees

In this section, we study upward 1-visibility representations of rooted trees.

Lemma 1 Let T be a rooted tree with l leaves and height h. The area required
by an upward 1-visibility representation of T is Q(h-1).

Proof: Let I" be an upward 1-visibility representation of I'. To avoid unwanted
visibilities, no two leaves of T' can be represented by vertex segments in the
same column of the grid. Thus, the width of I is at least | — 1. Also, each
vertex segment of I' must be placed above its children. Thus the height of T is
at least h. o

The following algorithm constructs a 1-visibility representation of a rooted
tree.



Algorithm 1-ROOTED -
Input: Rooted tree T with height h and [ leaves.
Output: An upward 1-visibility representation of T' with area O(h - I).

1. Order arbitrarily the children of each node, and label the leaves of T as
V1, -+, U, from left to right.

2. Map each leaf v; to vertex segment S(v;) = ([2i,2i + 1},0).

3. For each internal vertex v, let T, be the subtree rooted at v, h(v) be the
height of T'(v), and v; and v; be the leftmost and rightmost leaves in T,.
Map vertex v to vertex segment S(v) = ([21,25 + 1],0].

end Algorithm.

In Figure 3 we give an example of the upward 1-visibility representation
constructed by Algorithm 1-ROOTED.
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Figure 3: Example of the upward 1-visibility representation constructed by
Algorithm 1-ROOTED.

Lemma 2 Let T be a rooted tree with n vertices, | leaves, and height h. Algo-
rithm 1-ROOTED constructs in O(n) time an upward 1-visibility representation
T of T with area (21 — 1) - h, i.e., the representation has width 2l — 1 and height
h.

Proof: The bounds on the width, height, and time complexity are trivial. We
show that T is a 1-visibility representation of T. No two vertex segments of I’
overlap. For each internal vertex v of T the leftmost (rightmost) z-coordinate
of S(v) in T is the leftmost (rightmost) z-coordinate of the vertex segment as-
sociated with the leftmost (rightmost) child of v. The y-coordinate of S(v) is



greater than the maximum y-coordinate of its children. Thus S(v) and the
vertex segments associated with the children of v are visible. Since the sub-
trees rooted at the children of v are entirely drawn in the vertical strips below
the vertex segments associated with their roots, no other descendants of v are
visible from S{v). Thus, algorithm 1-ROOTED produces an upward 1-visibility
representation correctly. ]

Combining the results of Lemmas 1 and 2, we obtain the following theorem:

Theorem 1 Let T be a rooted tree with n vertices, | leaves and height h. The
area required by an upward 1-visibility representation of T is Q(l- h). Also, an
upward 1-visibility representation of T with O(l - h) area can be computed in
O(n) time.

3.2 Free Trees

In this subsection we study the area required by 1-visibility representations of
free trees.

3.2.1 Area Lower Bound

We observe that for each internal vertex v of a free tree, we can choose two
subtrees of v that can be drawn to the right and to the left of S(v), respectively.
This leads us to the following definitions.

Let T be a free tree, and let v be a vertex of T. A subtreeof v in T is a
subtree of the rooted tree obtained by rooting T at v. Let T3, T3, -+, T4 be the
subtrees of v sorted by nonincreasing height (i.e., h{(T1) > h(T2) > - -- > h(Ty)).
We call h(T}) the k-th height of v. A subtree of v with height equal to the k-th
height of v is called a k-tallest subtree of v. If T has degree at least 3, we call
critical height of T the maximum third-height of any vertex of T', and critical
vertez of T a vertex with maximum third-height. In the example of Figure 4,
each degree-3 vertex is labeled with the heights of its subtrees, and the unique
critical vertex is shown.

The following lemma gives a lower bound on the area.

Lemma 3 Let T be a free tree with n vertices and | leaves, and let h* be the
critical height of T. The area required by a 1-visibility representation of T is
Q(n +1-h*).

Proof: Let I" be a 1-visibility representation of T. Each vertex-segment of I'
uses at least one grid point. Thus, the area of I is at least n. Since the vertex-
segment associated with a leaf of T' can see only one other vertex-segment, a
grid column can contain at most two vertex-segments, and hence the width of I'
is at least [£]. Also, for each vertex v, all but two subtrees of v must be drawn
upward in the vertical strip between the endpoints of S(v). It follows that the
height of T is at least h*. m]



Figure 4: Example of free tree with critical height h* = 3. A longest path is
drawn with thick lines. Each internal vertex is labeled with the heights of its
subtrees, and the unique critical vertex v* is shown.

3.2.2 Critical Vertices and Longest Paths

The following lemma shows how critical vertices and longest paths are related.
Its proof is illustrated in Figure 5.

Lemma 4 Let P be a longest path of free tree T, and v* a critical vertez of T.
Then v* is on P.

Proof: Assume, for a contradiction, that v* is not in P. Then, P must be
entirely contained in a subtree of v*. We claim that any third-tallest subtree
T* of v* does not contain path P.

Proof of the Claim: Assume, for a contradiction, that T* contains P. Let w be
the vertex of P closest to v*, and let Q be the path of T joining v* to w.
Vertex w splits P into subpaths P’ and P” , where £(P’) > ¢(P") and
P'") > ¢(P)/2. (We recall that £(Z) denotes the length of a path Z).)
Let R be a longest path from v* to a leaf. Since the first-tallest subtree
of v* does not contain P, we have that ¢(R) > £(Q) + ¢(P'). Hence,
the path obtained by the concatenation of P', @, and R has length at
least 2(4(Q) + £(P')) > £(P), which contradicts the hypothesis that P is
a longest path. This concludes the proof of the claim.



Figure 5: Hlustration of the proof of Lemma 4.

As in the above proof of the claim, we let w be the vertex of P closest
to v*, and Q be the path of T joining v* to w. Since P is a longest path,
the two subtrees of w containing a subpath of P are each a first- or a second-
tallest subtree. Hence, a third-tallest subtree of w has height at least equal to
£(Q) + h* > h*, which contradicts the fact that v* is a critical vertex. a

Let P be a longest path of free tree T', and v a vertex of P. We denote with
T, the tree rooted at v obtained by deleting from T the subtrees of v rooted at
the neighbors of v in P.

Lemma 5 Let P be a longest path of free tree T with critical height h*, and v
a vertez of P. Then h(T,) < h* 4 1.

Proof: Since P is a longest path, the two subtrees of v containing a subpath
of P are a first- and second-tallest ones. o

Lemma 6 A longest path P in a free tree T with n vertices can be computed in
O(n) time.

Proof: This result is folklore. We sketch the algorithm for the sake of com-
pleteness. First we find the center of tree T' by iteratively removing the leaves
of the tree, one level at a time. At the end we are left with either one node
(the center of T) or two nodes joined by an edge (a double center of T'). Next
we root T at the single center (or one vertex of the double center) of T, call it
r, and find the first- and second-tallest subtrees. A longest path P in free tree
T can be obtained by concatenating a longest path in the first-tallest subtree
followed by r followed by a longest path in the second-tallest subtree. Clearly
the above steps can be computed in O(n) time.

(m}



3.2.3 Drawing Algorithm

The algorithm for constructing a 1-visibility representation of a free tree T
consists of two phases. In the first phase we find a longest path P of T and
draw it. In the second phase, for each vertex v of P we draw T, using Algorithm
1-ROOTED.

First, we show how to draw trees when all the internal (i.e., nonleaf) vertices
of T have degree at least 3. Later we extend the drawing algorithm to work for
any tree.

Algorithm DRAW-TREE

Input: Free tree T with n vertices, [ leaves, and critical height h*, such that all
the internal vertices of T have degree at least 3.

Output: 1-visibility representation I of T with area O(l - h*).
1. Compute a longest path P = (vp,v1, -, Um+1) of T

2. For each i = 1,---,m, apply Algorithm 1-ROOTED to T, which yields an
upward 1-visibility representation of T,,. If ¢ is odd, extend S(v;) two
units to the left and two units to the right. If ¢ is even and S(v;) has
length < 2, extend S(v;) one unit to the left and one unit to the right.
Let T; be the resulting 1-visibility representation of T;.

3. Let S(v) = (]0,2],0).

4. For i = 1,---,m, translate I'; such that z7(S(v;)) = zr(S(vi-1)) — 1 and
y(S(v;)) =i mod 2.

5. Let S(Um+1) = (xr(S(vm)) — 1, [zr(S(¥m)) + 2}, (m + 1) mod 2).

End Algorithm

In Figure 6 we show the 1-visibility representation constructed by Algorithm
DRrAW-TREE for the tree of Figure 4.

Lemma 7 Let T be a free tree with n vertices, | leaves, and critical height h*,
such that all the internal vertices of T have degree at least 3. Algorithm DRAW-
TREE constructs in O(n) time a 1-visibility representation I' of T with area
O(l - h*), width at most 3 -1, and height at most h* + 2.

Proof: The correctness is established by observing that two vertex-segments of
T are visible if and only if its associated vertices are adjacent in T.

By Lemma 2, the height of I'; is equal to h(T,), and by Lemma 5, h(T5,) <
h* + 1. Hence, the height of T" is at most h* + 2.

10



Figure 6: 1-visibility representation constructed by Algorithm DRAW-TREE for
the tree of Figure 4. The vertex-segments associated with vertices of the longest
path are drawn with thick lines.

By Lemma 2,the width of I'; is 2-1; + 3 if ¢ is odd, and at most 2-1;+1if i is
even, where /; is the number of leaves of T, (recall that segment S(v;) may be
extended in Step 2) . Hence, since I'; and I';;; have overlap in a vertical strip
of unit width, each leaf contributes to at most three units of width.

The time-complexity bound follows from Lemmas 2 and 6. a

Suppose now T has vertices of degree 2. The following algorithm constructs
a linear-area drawing of a path with a prescribed height, and will be used as a
subroutine.

Algorithm DRAW-PATH
Input: Path P with n vertices. Integer parameter k < n.
Output: 1-visibility representation of P with height k and width 2- [%] + 1.

1. Partition P into subpaths Py,- -, Ps, where P, has at most k vertices, and
the remaining subpaths have exactly k vertices (s = [£]).

2. For each subpath P;, draw P; as a stack of left-aligned horizontal segments,
vertically spaced by one unit. The last segment has length three, and
the remaining segments have length one. The stack extends downward or
upward according to whether 7 is odd or even.

3. Combine the drawings of the subpaths as follows. Let v; and w; be the
first and last vertex of P;, respectively. For 1 < i < s, we have that
T (Viy1) = Tr(w;) — 1 and |y(vit1) — y(wi)| = 1. Also segment S(viy1)
is below or above S(w;) according to whether i is odd or even.

End Algorithm

An example of 1-visibility representation produced by Algorithm DRAW
PATH is given in Figure 7.

11



Figure 7: Example of 1-visibility representation of a path produced by Algorithm
DRAW-PATH.

Lemma 8 Let P be a path with n vertices, and let k be a positive integer param-
eter with k < n. Procedure DRAW PATH constructs in O(n) time an O(n)-area
1-visibility representation T(P) of P with height k and width 2- [£] + 1.

Proof: The time complexity bound is immediate. Each vertex segment in T(P)
does not overlap any other vertex segment. Also, a vertex segment S (v) is visible
only by the vertex segments representing the predecessor and the successor of
v in P. The stack constructed for each subpath of P in Step 2 has width 3
and height k — 1. In Step 3, we form I'(P) by combining the stacks. We use
one extra grid row to make visible the first and last segment of two consecutive
stacks, and we add two new grid columns each time we add a new stack. Since
there are [} stacks, we conclude that I'(P) has height k and width 2- [2] +1.

0

We are now ready to describe Algorithm 1-FREE-TREE for general free trees.
The basic idea of Algorithm 1-FREE-TREE is to draw first tree T" as if no vertices
of degree 2 were in the longest path P. Then, we apply Procedure DRAW-PATH
to draw each maximal subpath of P consisting of degree-two vertices.

Algorithm 1-FREE TREE

Input: Free tree T with n vertices, ! leaves, and critical height h*.
Output: 1-visibility representation of T with area O(h* -1 + n).

1. Compute a longest path P of T'.

12



2. For each maximal subpath Q of P consisting of degree-two vertices, contract
Q into a single edge eg. Let T’ and P’ be the resulting modified tree and
path.

3. Apply Algorithm DRAW-TREE to compute a 1-visibility representation I'" of
T', where we use path P’ instead of the longest path of T'. Note that each
edge eg of P’ associated with a subpath @ of P consisting of degree-two
vertices is mapped to a unit square sg in I'.

4. For each maximal subpath Q of P, construct a 1-visibility representation
T'(Q) of Q by applying Algorithm DRAW-PATH with parameter h*, and
replace sqg with I'(Q), as shown in Figure 8.

End Algorithm

Lemma 9 Let T be a free tree with n vertices, | leaves and critical height h*.
Algorithm 1-FREE-TREE constructs in O(n) time a I-visibility representation
of T with area O(n +1- h*).

Proof: By Lemma 7, the 1-visibility representation I' of T” constructed in
Step 3 has width O(l) and height O(h*). By Lemma 8, each 1-visibility rep-
resentation I'(Q) constructed in Step 4 has height h* and area proportional to
the number of vertices ng of Q. The replacements performed in Step 4 increase
the height by at most a constant. Hence, each replacement increases the area
by O(ng). We conclude that the area of the 1-visibility representation T(T) is
O(n + 1+ h*). The time complexity bound follows from Lemmas 6, 7, and 8. O

By combining Lemmas 3 and 9, we can summarize the results of this section
in the following theorem.

Theorem 2 Let T be a free tree with n vertices, | leaves, and critical height h*.
The area required by a 1-visibility representation of T is ©(h* -l +n). Also, a
1-visibility representation of T with O(n +1-h*) area can be computed in O(n)
time.

4 2-Visibility Representations

In this section we consider the problem of constructing 2-visibility representa-
tions of free trees. We present linear time algorithms for this problem and show
that the required grid size is asymptotically optimal.

Every leaf v of a free tree has only one neighbor u. Hence, only S(u) can
intersect one of the strips (above, below, right, or left) defined by S(v). This
observation yields the following lemma.
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Figure 8: Tllustration of Step 4 of Algorithm DRAW-PATH, where a unit rectangle
sq is replaced with I'(Q), (a) before the replacement; (b) after the replacement.
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Lemma 10 Let T be a free tree with | leaves. A 2-visibility representation of
T requires area Q(I2).

Proof: Each leaf uses at least one grid point. Hence, for every leaf at least one
vertical and one horizontal strip are wasted, i.e., no rectangle of another vertex
can intersect them. Notice that each leaf defines two horizontal (vertical) strips
on every row (column) of the grid. Hwcne, the area of the grid containing a
2-visibility representation has to be at least [£]- [4]. m

Similarly, we can prove that for every vertex of degree 2 at least one vertical
or horizontal strip is wasted. Let k be the number of vertices of degree 2, then
in every 2-visibility representation the height or width has size at least |'§'|.
Combining this result with Lemma 10 gives the following lemma.

Lemma 11 Let T be a free tree with n vertices and | leaves. A 2-visibility
representation of T requires area Q(I - n).

Proof: Drawing the leaves already requires [] columns and [+] rows. The

vertices of degree 2 also require [£] columns or [£] rows. The sum of the
degrees of all vertices is 2(n — 1). Let p be the number of vertices with degree
at least 3, then p = n — k — I. It follows that [ + 2k + 3p < 2(n — 1), thus
p<1—2 Hence2(n—1)>1+2k+3p>2k+4p+22> 4p+2. This yields
p<=2=2=2_1<|2| Thusk+1!2>[%], which completes the proof. O

Next we will describe an algorithm for constructing a 2-visibility represen-
tation of a free tree T'.

Algorithm 2-FREE TREE

Input: Free tree T with n vertices and [ leaves.

Output: 2-visibility representation of T with area O(n - I).
1. Root T at an arbitrary vertex v.

2. Enumerate the leaves of T from left to right in increasing order by assigning
an integer i, 1 < ¢ <.

2. Draw each leaf ¢ as a vertex rectangle S(i) = ([2i,2i + 1], [24, 20 + 1]).
3. Number the internal vertices of T in post-order v;41,...,Un.

4. Visit the vertices v; (I +1 <4 < n) in increasing order; let v;, ...v;; be the
children of v; from left to right; Draw v; as a vertex rectangle S(v;) =
([IBL (vil )7xR(U‘ik )]1 [21’7 2+ 1])

end Algorithm.

Figure 9 shows an example of a 2-visibility representation obtained by Al-
gorithm 2-FREE TREE.

15
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Figure 9: Illustration of Algorithm 2-FREE TREE.

Lemma 12 Let T be a free tree with n vertices and | leaves. Algorithm 2-FREE
" TREE constructs in O(n) time a 2-visibility representation for T with O(n - 1)
area.

Proof: The algorithm can be clearly implemented to run in linear time. It is
easy to see that the area of the drawing is (2 — 1) - (2n — 1). To show that the
drawing is indeed a 2-visibility representation, we observe that S(v;) lies in the
horizontal strip between ordinates 2i and 2i + 1. Hence no two rectangles can
see each other in the horizontal direction, so that visibility is only in the vertical
direction. Using an argument similar to the one in the proof of Lemma 2, we
conclude that the drawing is a 2-visibility representation. |

By combining Lemmas 11 and 12, we obtain the following theorem.
Theorem 3 Let T be a free tree with n vertices and | leaves. The area required
by a 2-visibility representation of T is Q(n-1). Also, a 2-visibility representation
of T with O(n -1) area can be computed in O(n) time.

5 Conclusions and Open Problems

In this paper we have studied the area required by 1- and 2-strong visibility
representations of trees. We have provided linear-time algorithms for construct-
ing 1- and 2-visibility representation of trees with asymptotically optimal area.

16



While our results have been proved under the strong visibility assumption, they
also hold under the e— and weak-visibility assumption.

Open problems include:

o Characterize the class of graphs that can be represented by a 2-strong vis-
ibility representation. It is not even known whether series-parallel graphs
or planar graphs are in this class.

e Find the best possible constant factors in the asymptotic area bounds.

e Characterize the graphs that admit a 2-¢ visibility representation where
no two (visibility) edges cross. We recall that Wismath [28] proved that
every planar graph admits a 2-e visibility representation. However, the
(visibility) edges in Wismath’s construction can cross.
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