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On Fat Partitioning, Fat Covering
and the Union Size of Polygons*

Marc van Kreveld

Abstract

The complexity of the contour of the union of simple polygons with n vertices in
total can be O(n?) in general. A notion of fatness for simple polygons is introduced,
which extends most of the existing fatness definitions. It is proved that a set of
fat polygons with n vertices in total has union complexity is O(nloglogn), which
is a generalization of a similar result for fat triangles [19]. Applications to several
basic problems in computational geometry are given, such as efficient hidden surface
removal, motion planning, injection molding, etc. The result is based on a new
method to partition a fat simple polygon P with n vertices into O(n) fat convex
quadrilaterals, and a method to cover (but not partition) a fat convex quadrilateral
with O(1) fat triangles. The maximum overlap of the triangles at any point is two,
which is optimal for any covering of a fat simple polygon by a linear number of fat
triangles.

1 Introduction

The primary motivation of this research is to determine for what sets of geometric objects
(regions bounded by Jordan arcs), the contour of the union has small complexity. When
the union size is small, many geometric problems can be solved more efficiently and with
simpler algorithms than in the general case.

Upper bounds on the union size have been found for several types of ob jects. Kedem et
al.[13] show that the contour of the union of a set of n pseudo-discs in the plane has linear
description size (a set of pseudo-discs is a set of simply connected regions of which any
two boundaries intersect at most twice). It is easy to see that the contour of the union
of a set of n isothetic rectangles can have Q(n?) connected components, and therefore
quadratic description size, by placing them in a grid-like pattern. Since two isothetic
rectangles intersect at most four times, the question arises what the maximum union size
is of sets of unbounded regions of which every two boundaries intersect at most three

*The research of the author was supported by an NSERC international fellowship. Current address:
Department of Computer Science, Utrecht University, P.O.Box 80.089, 3508 TB Utrecht, the Netherlands.



times. This case was settled by Edelsbrunner et al.[11], who show that the contour size is
O(na(n)), and there are O(na(n)) connected components in the contour (where a(n) is
the extremely slowly growing functional inverse of Ackermann’s function). These bounds
are tight in the worst case.

Recently, computational geometers have become interested in so-called fat objects.
Well-known geometric problems can be reconsidered for cases where the given objects
or subdivision satisfy a certain fatness condition, and more efficient, simpler algorithms
can often be obtained [3, 6, 10, 12, 21, 25]. Fat objects are important in practice, since
generally one does not deal with objects that are very thin. With respect to the contour
size, Matousek et al.[19] observed that for triangles, a quadratic lower bound example
can only be constructed if the triangles have sharp angles. They proved that for a set of
triangles of which any angle is at least §, for some constant § > 0, the union determines

only O(n) holes, and the contour size is O(nloglogn). Notice that two such triangles can
intersect six times.

In this paper we extend the results from [19] to the case of simple polygons. The
fatness condition that each angle is bounded from below by a constant clearly is not
good enough, because the lower bound example with rectangles still holds. To obtain a
necessary and sufficient condition to bound the union size of simple polygons, we make
the following definitions (see Figure 1):
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Figure 1: Example of a d-corridor and a é-wide simple polygon with two corridors indi-
cated.

Definition 1 For any 0 < § < 1, a é-corridor is a convezr quadrilateral Q with vertices
P1, P2, P3, Pa such that Zpipaps = Lpapsps and Lpspspr = Lpapips, and |Pips| = |p5pal =
3 - max{|pzp3|, [P1pal}-

For any 0 < § < 1, a simple polygon P (or any set of edges) is §-wide if for any two
edges e and ¢’ of P, and any four points p,,p; € e and p3,ps € € that are the vertices of
a y-corridor ) such that interior(Q) C interior(P), it follows that v > 4.
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If P contains four vertices as in the definition, then we state that P contains a v-
corridor. If § is a constant, we refer to P as a wide polygon. If P is é-wide, then the
minimum angle at any vertex of P is at least 2arcsin(§/2) > § radians.

Several definitions of fatness have been used in other papers, but most of them do not
apply to simple polygons. We mention three that are equivalent up to a constant factor
to our definition of wideness, and the objects to which they apply: (i) for triangles, if
every angle is at least a constant [19], (ii) for convex polygons, if the ratio of the radii
of the maximum inscribed circle and the minimum enclosing circle is at least a constant
[6], (iii) for convex polygons, if the ratio of the width and diameter is at least a constant.
A fourth definition, for fatness of simple polygons and not equivalent to ours, is given in
[21, 25]. This paper deals with fatness according to Definition 1 above, and the results
also hold for fatness according to the three equivalent definitions just mentioned. To avoid
confusion, we use the term wide for our definition.

Theorem 1 Let S be a set of §-wide simple polygons with n vertices in total. The contour
of the union of the polygons in S has complezity O((nloglogn)/é3). !

The bound generalizes the similar bound for é-fat (or §-wide) triangles proved in [19].
The best known lower bound on the contour size is (n/d + na(n)), so for constant § the
upper bound is close to optimal (a(n) is the extremely slowly growing functional inverse
of Ackermann’s function).

The method we use to obtain the bound on the union size is interesting in its own
right. If we partition a wide simple polygon into O(n) wide triangles, then the result would
follow immediately from the work of Matousek et al.[19] mentioned before. Unfortunately,
such a partitioning does not always exist. However, we can show instead that a wide
simple polygon can be partitioned into O(n) wide quadrilaterals, and also that a wide
quadrilateral can be covered using O(1) wide triangles. We make this more precise.

Definition 2 A set S of quadrilaterals and triangles (only triangles) is a weak Steiner
quadrilateralization (weak Steiner triangulation) of a simple polygon P if S is a partition-
ing of P. The set S is a strong Steiner quadrilateralization (strong Steiner triangulation)
if additionally, no edge of any quadrilateral or triangle contains Steiner points in its in-
terior. A set S of triangles is a k-covering of P if any point in the interior of P lies in
the interior of at most k triangles of S, and the union of the triangles in S is P.

We consider what simple polygons admit partitionings and coverings using wide quadri-
laterals and triangles, using a set S of small size. It is easy to see that a rectangle with
edge lengths 1 and m cannot be triangulated or k-covered with a set S of O(1) wide
triangles when m is large, see Figure 2. The rectangle is not wide, and therefore, we con-
sider partitionings and coverings of §-wide polygons in this paper. Also, a wide convex
quadrilateral exists that cannot be partitioned into O(1) wide triangles, see Figure 2 (we
will show that ((log m) wide triangles are needed).

1A previous version of this paper [14] claimed erroneously that the bound is O((nloglogn)/ ).
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Figure 2: The leftmost wide quadrilateral cannot be partitioned into O(1) wide triangles,
but it can be covered by 3 wide triangles. The rightmost non-wide rectangle cannot be
partitioned or covered by O(1) wide triangles.

Let P be any d-wide simple polygon, and let ¥ = min{d, 1 — %\/ﬁ} (here we do
not assume that é is a constant). We show that P admits a weak Steiner quadrilater-
alization using O(n) v-wide quadrilaterals and triangles. Furthermore, we show that
any é-wide quadrilateral can be 2-covered using O(1) v'-wide triangles, where 7' =
min{§/4, arctan(r/10)}. Consequently, P can be 2-covered using O(n) 7"-wide trian-
gles, where v = min{y, '} = min{4§/4,1 — %\/5} Thus, wide polygons do not admit
a wide triangulation of linear size: bounds must depend on the ratio of edge lengths of
the polygon as well. However, wide quadrilateralizations and wide triangle 2-coverings of
linear size do exist for every wide polygon.

In the remainder of the paper, any polygon is simple by default. Furthermore, we let
a quadrilateral be a convez 4-gon, and all angles are given in radians.

This paper is organized as follows. Section 2 shows that not every wide quadrilateral
can be triangulated using a bounded number of wide triangles. In Section 3 we show
that any simple polygon P with n vertices can be partitioned in O(nlog®n) time into
O(n) quadrilaterals and triangles, such that no é-corridor with § < 1 — 14/3 is created.
Consequently, a §-wide polygon can be partitioned into O(n) y-wide quadrilaterals and
triangles, where ¥ = min{4, 1 — 11/3}. The main construction tool is the Edge Voronoi
Diagram. We show in Section 4 that a §-wide quadrilateral can be 2-covered with O(1)
v-wide triangles, where 1/y = ©(1/§). Section 5 shows that the contour size of the union
of §-wide simple polygons with n vertices in total is O((n log logn)/é%). Applications are
also given in this section. We close with the conclusions and open problems in Section 6.



2 Wide polygons cannot be partitioned into a bounded
number of wide triangles

In this section we give an example of a wide quadrilateral that cannot be triangulated
using a constant number of wide triangles. This immediately shows that wide quadri-
lateralizations are sometimes possible when wide triangulations of bounded size are not.
A question that arises is whether wide partitionings into e.g. pentagons or hexagons are
possible for a more general class of polygons than wide quadrilateralizations. In the next
section it appears that this is not the case.

Intuitively, wide triangulations of bounded size are not always possible for the following
reason. A wide triangle that has one short edge must necessarily have three short edges,
and thus have a small area. This is not true for wide quadrilaterals, pentagons or hexagons,
which provides some intuition why wide quadrilateralizations are possible whenever any
partitioning into wide polygons of constant size is possible.

Theorem 2 Not every wide convex quadrilateral can be partitioned into O(1) wide tri-
angles.

Proof: Consider an equilateral triangle with edge length m, and truncate it by removing
an equilateral triangle with edge length 1 from one of its vertices. Let Q be the resulting
trapezoid, with edge lengths m, m — 1, 1, m — 1, see Figure 3. If m > 2, then Q is clearly
wide.

Let 7 be any triangulation of @ into §-wide triangles, for some constant 0 < § < 1.
We show that 7 consists of (}(log m) triangles. Position @ so that the edge denoted base
with length m and the edge denoted top with length 1 are horizontal, with top above
base. The other two edges of Q are called the left side and right side. We construct a
sequence of small triangles that must be present in 7 by using an active boundary, which
is a polygonal chain that connects left side to right side and has all currently chosen small
triangles above it. "above” refers to being in the polygon bounded by the active boundary
and top.

Initially, we let top be the active boundary, and we repeatedly find a new triangle
that is small, has an edge adjacent to an edge of the active boundary and lies below it.
Let pi,...,p; be the vertices of the present active boundary, where p, lies on the left
side and p; lies on the right side (see Figure 3). We omit all vertices where the active
boundary makes an angle 7. Let L be the length of the active boundary. A triangle of
T is small with respect to the active boundary if and only if it has an edge no longer
than L. Consider the triangle ¢; € T incident to p; and the edge Pips, or a part of it,
and lying below the active boundary. If this triangle is small w.r.t. the active boundary,
we add it to the sequence of small triangles and change the active boundary accordingly.
Otherwise, t; extends past the edge 51p; and therefore the vertex p, is reflex on the active
boundary. Consider the triangle ¢; € T incident to p; and the edge 7zp5. Again, if ¢, is
small we add it, otherwise we continue at the reflex vertex p;. Since p; necessarily is a
convex vertex, the triangle ¢;_, € 7 incident to p;_; and the edge p;—1p; is small if the
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Figure 3: Left: the quadrilateral Q. Middle: an active boundary. Right: the argument of
the proof illustrated.

triangle ¢;_; is not. Therefore, we can always add a small triangle to the sequence (see
Figure 3).

As long as the active boundary has length L < %\/gm, the quadrilateral cannot contain
a point on base, and have exhausted the triangles of 7. Initially, L = 1 (length of top),
and any triangle added cannot add more than L +2L/§ to L by wideness and by choice.
(If a é-fat triangle has an edge of length 1, then it cannot have an edge longer than 1/4.)
Hence, if L(r) denotes the maximum value of L when r triangles have been added, we
have L(0) =1 and

L(r) < L(r - 1)-(2+2/6).

The maximum value of r such that L(r) < 1+/3m is Q(log m), since § is a constant. O

3 Partitioning simple polygons preserving wideness

In this section we show how to construct a weak Steiner quadrilateralization of any wide
polygon, while preserving the wideness in any resulting subpolygon. Since the subdivision
is weak, we may omit all vertices with angle = from the polygon. We give some elemen-
tary properties of J-corridors and segments that are interior to a polygon P, which are
straightforward to verify.

Lemma 1 Two segments of which the supporting lines make an angle o cannot form a
d-corridor with § < 2sin(a/2).

Lemma 2 Let C be a circle whose interior lies completely inside a polygon P. Any

segment pq between two points p and q on C such that p§ makes an angle o with the

tangents to C at p and q cannot create a §-corridor with § < 12_:%
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Lemma 3 Let P be a polygon, let ¢ = UU be an edge of P and let w be a verter of
P. If the interior of Auvw does not intersect P, then the addition of the segment that
bisects o = Zuwv to partition P cannot create §-corridors with § < 2sin(a/4) in the two
subpolygons.

3.1 Partitioning a simple polygon into 6-gons

The Edge Voronoi Diagram inside P of the edges of P, denoted EVD, is a subdivision of
the interior of P into regions where one edge is closest. See Figure 4 for an example. The
EVD is also called the medial azis or internal skeleton.

Figure 4: Left: the EVD of a simple polygon. Right: the tree T' of the EVD with only
nodes of degree 1 or 3.

The arcs and nodes of the EVD form a tree with n leaves, one for each vertex of P.
Any arc is a line segment or paraboloid arc. The arc of the EVD incident to a leaf v
(a vertex of P) is the bisector of the angle of the two edges of P that are incident to v.
In non-degenerate cases, no node of the EVD has degree greater than 3, and there are
exactly n — 2 nodes with degree 3. Each node is the center of a circle that is at equal
distance to 3 edges of P, 2 edges and 1 vertex of P, 1 edge and 1 vertex of P, or 2 vertices
of P. No edge or vertex of P is nearer to that vertex of the EVD. It follows that the
interior of the circle is empty.

We are only interested in the n leaves and the n — 2 vertices of degree 3, which form
a tree T when we identify the two arcs incident to each node of degree 2 (see Figure 4).
T has the property that there exists a vertex v of degree 3 whose removal partitions the
tree into 3 subtrees, each with at most |n/2| leaves of T. We use the largest circle with
empty interior centered at v to partition polygon P into subpolygons, without creating
d-corridors with small 4.



Lemma 4 Let P be a polygon and C a circle such that interior(C) C interior(P) and
which intersects P in 2 points. The two points can be connected with 1 or 2 segments,
such that in either of the two subpolygons no §-corridors are created with § < -;-\/5 -1
If C intersects P in 3 points, then these points can be connected with at most { segments,
such that each of the 3 subpolygons that arise use at most 2 of these segments, and no
8-corridor is created with § < 1 — 1/3. Furthermore, a 1-wide quadrilateral may be
created.

Proof: (See Figure 5.) Let ¢ be the center of C. Assume first that C intersects P in two
points p; and p;. If Zpicps 2> 7/2 then choose the segment pip;. Otherwise, let ¢ be the
point inside C such that p;p,q forms an isosceles right triangle with the right angle at q.

Choose the segments $1¢ and p7g. By Lemma 2, the segments do not create d-corridors
with § < %\/5 - %

Figure 5: Splitting a polygon without creating narrow corridors using empty circles.

Next, assume that C intersects P in three points p;, p;, p3. Assume w.l.o.g. that p; and
p3 are furthest apart. If Zp,cps > 7/3 then choose the segment p773. Connect p; to this
segment by a segment p;q which makes an angle 7 /6 or n/3 or 7 /2 (five possibilities in
total) with the tangent to C' at p,. Choose the possibility for which ¢ € p1p5 and the angle
P2q and P1Ps make is at least /6 (this is always possible because Zp;p,ps > 7/3). Oth-
erwise, if Zp;cps < 7/3, then let ¢ be the point inside C such that p;psq is an equilateral
triangle. Choose the segments p1¢ and p3g. Connect p; to these two segments with two
new segments that make an angle of 7 /6 with the tangent to C at p, (both possibilities).
The four new segments form a %-wide quadrilateral, and all three subpolygons of P use
at most two of the new segments (recall that we omit angles of 7 radians). By Lemmas 1

and 2, the new segments do not create §-corridors with § < 1 — %\/5 O

The following algorithm is used to partition any polygon P with n vertices into 6-gons:



1. Compute the EVD of P using the algorithm of Lee [16] or Yap [26]. Consider it as
a graph, and remove each node of degree 2 by identifying the arcs incident to it to
obtain the tree T'. Select a vertex v in T whose removal gives 3 subtrees which have
at most |n/2] leaves each.

2. Compute the largest empty interior circle centered at v. It intersects P in 2 or
3 points. Add the segments as used in the proof of Lemma 4, to obtain 2 or 3
subpolygons of P (and, possibly, a wide quadrilateral).

3. For each subpolygon that has at least 7 vertices, recursively subdivide it.

Theorem 3 Any §-wide simple polygon P with n vertices can be partitioned in O(nlog?n)
time into O(n) y-wide polygons with at most 6 vertices and v = min{4, 1 — %\/ﬁ}

Proof: Notice that splitting P as in Lemma 4 yields subpolygons with at most 3 new
vertices. Therefore, the above algorithm gives subpolygons with at most |n/2]| + 3 ver-
tices. As long as n > 6, a polygon is partitioned into subpolygons with fewer vertices.
The wideness guarantee of the resulting polygons follows from Lemma 4. The time bound
of the algorithm follows easily from the O(n log n) time algorithms for computing an EVD
[16, 26]. O

3.2 Partitioning 6-gons, 5-gons and 4-gons into convex pieces

Let P be a 6-gon with vertices vy,...,vs. If P is non-convex, we show how to partition
P in O(1) convex pieces. Assume w.l.o.g. that v; is a reflex vertex (see Figure 6, left).
Since Zvevivs + Lusvivg + Lvgvavs + Lvaviv, = Zvgvivy > 7, at least one of the four
angles is > /4. (If any of vs, v4, vs is not visible from v, it can simply be removed from
consideration; the argument still holds with better constants.) We draw a segment from
vy to bisect this angle. The two new angles in the two subpolygons at v; are at least 7/8,
and therefore the largest new angle at v; is at least 7 /8 less than Zvgviv,. We continue
this procedure until every subpolygon of P is convex. The same idea can be used for
non-convex 5-gons and 4-gons. We obtain:

Lemma 5 Any 6-gon can be partitioned into O(1) convez polygons with at most 6 vertices
each, without creating §-corridors with § < 2sin(wx/16). Any 5-gon can be partitioned
into O(1) convex polygons with at most 5 vertices each, without creating §-corridors with
d < 2sin(7/12). Any 4-gon can be partitioned into O(1) convez polygons with at most 4
vertices each, without creating §-corridors with § < 2sin(w/8).

3.3 From convex 6-gons to 5-gons

Let P be a convex 6-gon with vertices v,...,vs. Consider the triangle Av,vsvs, and
assume w.l.o.g. that v, has angle Zvsv,vs > 7/3 (see Figure 6, middle). Therefore,
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Figure 6: Left: one step of the partitioning of a 6-gon into convex pieces. Middle:
partitioning a convex 6-gon. Right: partitioning a convex 5-gon.

Zvzvivg > /6 or Lvgvyvs > w/6. If Zvgvivg > 7 /6, then we bisect this angle with a
segment to obtain a 5-gon and a 4-gon without creating é-corridors with § < 2sin(w/24)
(by Lemma 3). The other case is the same.

3.4 From convex 5-gons to 4-gons

Let P be a convex 5-gon with vertices vy,...,vs. Consider the sequence v,v3v5v5v4, Which
forms the star inscribed in P (see Figure 6, right). The sum of the five angles at the five
points of the star is 7, and hence, at least one the five angles is at least /5. Assume
w.l.o.g. that it is at v;. We bisect the angle Zvzv;v4 with a segment to obtain two 4-gons
without creating é-corridors with § < 2sin(7/20) (by Lemma 3).

The above partitionings lead to the following result:

Theorem 4 A §-wide simple polygon P with n vertices can be partitioned in O(nlog? n)
time into O(n) y-wide quadrilaterals and triangles, where v = min{s, 1 — 1v/3}.

Remark: The partitioning methods of this section do not introduce angles smaller than
7 /12 radians.

4 Covering quadrilaterals by triangles

We show that a d-wide quadrilateral @ can be covered by O(1) y-wide triangles, where
4 = min{d/4, arctan(x/10)}. No three triangles in the covering overlap in a positive area
region.

The first stage of the covering is to separate angles that are smaller than 7/5. Let Q
be a convex quadrilateral, and assume that v is a vertex with angle & < 7/5. Let e and
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¢’ be the edges incident to v with e the shorter one. Let w be the other endpoint of e,
and let w' be the other endpoint of ¢/. Choose point u on € such that Zw'uw is 7 [5+a
radians. Partition Q into the triangle Auvw and a quadrilateral @' which is Q with v
replaced by u. The triangle Auvw has angles 47/5 — a, 7/5 and a. Since |e| < |¢/], the
angle Zvww' > § — §, and therefore, Luww' = Lvww' — Lvwu =5 —§ —§ > %. The
quadrilateral Q' has a vertex with angle o replaced by an angle = /5 + a without creating
an angle less than = /5.

Next we separate all angles greater than 4w /5, without creating angles less than = /5
or greater than 47 /5. Let v be a vertex such that the incident edges make an angle greater
than 47 /5. Let wi,w;, w3 be the other vertices of Q in clockwise order. At least one of
Zwyvwy and Zwvws must be greater than 27 /5; partition this angle by a segment that
splits Q into a triangle and a quadrilateral. It is easy to see that no angles smaller than
7 /5 or greater than 47 /5 are created.

Figure 7: Left: the quadrilateral Q. Right: illustrations of the proof of Lemma 10.

Let Q be a quadrilateral with all angles at least /5 and at most 47 /5. We again
consider the Edge Voronoi Diagram of the edges of Q. The EVD contains two nodes of
degree 3, which are the centers of circles that touch @ in three edges. Orient @ such
that the center of the larger circle is vertically above the center of the smaller circle (see
Figure 7). Label the edge touching only the smaller circle with e;, and label the other
edges with ez, e3 and e4 counterclockwise. Label the vertex incident to e4 and e; with vy,
and the other vertices are vy, vs and v,. Let the circle tangent to ez, es and e4 be Chign
and the circle tangent to e4, €; and e; is Ciow. The center of Chigh 18 Chigh, the center of
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Clow 15 Clow. Furthermore, gz = Chigh N €2, g3 = Chigh N €3 and ¢4 = Chignh N 4. Finally, £,
is the horizontal line through cjow, p2 = €, N ez and ps = £, Ney.

Lemma 6 £, indeed intersects e; and e4.

Proof: Cl.y is a circle that has all three points incident to Q on the lower semi-circle.
Since £, lies above Clow N €2 and Clow N €4 and thus above v; and vq, £, cannot intersect
e;. If e3 and e, intersect £, then, since e3 does not intersect Clow, £v1 + Lvg + Lvg 2 2,
a contradiction. Similar if e and e4 intersect £,. Hence, e; and e4 intersect £, O

Lemma 7 The following triangles have all angles at least 7 [10: Nqagava, Aqaqaqs, Dgavags,
Aviiowpa, Dv200wV1, Dvap2Qiow-

Proof: Since /5 < Zvz < 47 /5, it follows that Zvsgags = Zv3aqaqz > 7 /10 and they
are < 2m/5. Symmetrically, Zv4g3qs and Zvigsgs are bounded by 7/10 and 27 /5. It
follows that Zq2¢3gs > 7 /5. Furthermore, since Zv, and Zv, are at most 47 /5, we get
£q2qavy = Zqaqavz > m/5. Also, these angles are at most 7 /2. Tt follows that Z£q2q4q3
and Zqaq2qs are at least 7/10. This proves the angles of the first three triangles. For the
other three triangles, observe that Goyv1 bisects Zvy and TowT2 bisects Zv;. The bounds
on the angles now follow in a similar fashion. a

The line £, through g; and g4 and the line £, through p; and p4 are horizontal. If £,
lies below £,, then the triangles of the above lemma cover Q with maximum overlap 2,
and we are done.

So assume £, lies above £,. Then psp2qzq4 is a trapezoid R. It remains to partition
or cover R using fat triangles. R can be not wide in one of of two ways. If the distance
between £, and £, is large compared to |gag2|, then R is not wide and this is due to the
fact that also the quadrilateral Q is not wide. On the other hand, if the distance between
£, and £, is small, then also R is not wide, but in this case Q is wide. The latter case
gives potential problems, since @ is wide and should be covered by O(1) fat triangles,
however, T is not wide and may require many fat triangles. To overcome this problem,
we take a new horizontal line £;, below £,, and we partition the trapezoid T" between £,
and £}, (we must partition T in order to obtain a 2-cover of @, since T partially overlaps
with three of the triangles chosen in Lemma 7). If the distance between £, and £, is less
than Z|Pzpil, then we define a new horizontal line £, below £, such that the distance is

210|P'2P'4|, where p; = £, Ne; and pj = £, Nes.

Lemma 8 £, is well-defined, i.e., there exists a horizontal line £, below £, which intersects
e, and eq such that the distance between £, and £, is 35|papl].

Proof: Assume w.l.o.g. that v; lies at least as high as v,. Let £, be the horizontal
line through v;. Let v = £, N e3. Since Zpsciow¥s 2 7 /10, it follows that the distance
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between £, and £, is at least 1[viv}] - tan % > F|vivj|. Therefore, it is possible to choose
£, between £, and £, such that the distance to £, is exactly 2 |pypy|- O

Let T be a trapezoid with edges ey, €3, €3 and ¢4 listed counterclockwise. The vertices
are denoted vy, vg, v3 and v4, counterclockwise, where v, is incident to e4 and e;. Assume
without loss of generality that e; and e3 are horizontal, e, lies below e3, and e3 is at least
as long as e;. Denote by h the thickness of T, which is the distance from e; to es. Denote
by o the angle of the lines supporting e; and eq, and a = 0 if they are parallel. Then the
angle of T at v; and v, is 7/2 + /2, and the angle at vs and v, is /2 — a/2. We have
0 < a < 4/5 by the way T is obtained from Q, and also h > slel.

To solve the 2-covering problem for quadrilateral @, it remains to partition Tifh=
Z e, and to cover (or partition) T if h > %lel.

Lemma 9 The trapezoid T with b = X|ey| can be partitioned into 3 triangles with all
angles at least arctan(7/10).

Proof: Let p be the point in the middle of e3. Then the triangles Avipvs, Avypvy and
Avgusp partition T and every angle is at least arctan(w/10) radians. O

Lemma 10 The §-wide trapezoid T with h > 2|ei| can be 2-covered by 3 triangles with
all angles at least min{arctan(x/10), §/4} radians.

Proof: (See Figure 7.) If |es| < 2|ei|, then partition T as in the previous lemma. If
we set |es| = |es| = 1, then |es| = 4. Furthermore, b = (8 — lex])/(2tan(a/2)) and
sin(a/2) = (6 — |e1])/2, so

tan(p) = 2] = lal-ten(@2) _ lalten(orctnlO D) > 22 4.

Hence, all angles are at least min{arctan(x/10), 6/4} radians.

Otherwise, let p; and p; be the points on es such that 71p1 and e; are parallel, resp.
7377 and e4 are parallel. Then Pio7 and Pz0; intersect in a point ¢, and the triangles
Avipyvs, Avgvapy and Avivag cover T and only the first two overlap. Since |es| > 2|es],
we have a > §/2, otherwise, T is not §-wide. It follows easily that all angles of the three
triangles are at least min{x /5, §/2} radians. 0O

The above lemmas provide all ingredients for the 2-covering of a quadrilateral by
triangles with a guarantee on minimum angles.

Theorem 5 A §-wide quadrilateral Q can be 2-covered by O(1) triangles with all angles
at least min{arctan(x/10), 6/4} radians.

Theorems 4 and 5 yield:
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Theorem 6 A §-wide polygon P with n vertices can be 2-covered by O(n) vy-wide trian-
gles, where ¥ = 2sin(min{arctan(r/10), §/4}/2).

Remark: The algorithms for partitioning into quadrilaterals and covering by triangles
can also be used for the regions of a planar straight line graph or a point set. Firstly,
the Euclidean minimum spanning tree is constructed on the connected components of the
PSLG (see [17, 26]) or point set (see [9, 22]), and its edges are part of the partitioning. It
can be shown that no narrow corridors are added. Secondly, every face of the subdivision
is partitioned as before into quadrilaterals.

5 The contour of the union of simple polygons

The previous sections showed that a §-wide simple polygon can be 2-covered by O(n)
~-wide triangles, where 1/y = ©(§). This result allows us to show a bound on the union
size of a set of §-wide simple polygons. We state the results below:

Theorem 7 Let S be a set of §-wide polygons with n vertices in total. The mazimum
complezity of the contour of the union for S is O((nloglog n)/8%).

Proof: For any polygon P; in S, let Cp, be a linear size 2-covering by y-wide triangles,
where 1/y = ©(1/68). Then the union U{P;| P € S} is the union of the 2-coverings by
triangles U{t|t € Cp,, P: € S}. By [19], the complexity of the union of the triangles is
O((nloglogn)/~?®), which proves the theorem. a

Theorem 8 Let S be a set of 8-wide polygons with n vertices in total. The maxi-
mum complezity of the boundaries of all cells covered by at most k polygons of S is

O((nkloglog(n/k))/48°).

In the remainder of this section, we briefly discuss six applications in which a bound on
the maximum complexity of the contour of the union leads to more efficient and simpler
algorithms. Let § be any positive constant.

Hidden surface removal. Katz, Overmars and Sharir [12] presented an efficient hidden
surface removal algorithm for objects with small union size. They prove that for a set S
of n non-intersecting objects in 3-space and a viewing point v, the visibility map of S as
seen from v can be computed in O((U(n) + k)log? n) time, where U(n) is the maximum
complexity of the union in the projection, and k is the size of the resulting visibility map.
It is assumed that the objects in S are ordered by depth from the viewing point. In [12]
three cases are identified in which the union size is guaranteed to be small: (i) S is a set
of balls, (ii) S is a set of triangles which are wide in the projection, and (iii) S consists of
the set of triangles that form a polyhedral terrain. Applying Theorem 7, we obtain:
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Theorem 9 Let S be a set of polygons in 3-space with n vertices in total, let v be a viewing
point and let a depth order for S ezist and be given. If the projections of the polygons in
S are 8-wide, then the visibility map of S can be computed in O((nloglogn + k)log’ n)
time, where k is the complezity of the visibility map.

Motion planning. The general motion planning problem is to find a sequence of
motions that will take a robot from one position to another, without colliding with any of
a set of obstacles. Often both the robot and the obstacles are modeled by simple or convex
polygons. An important concept in motion planning is the configuration space, and the
subspace of all free placements inside it (i.e., all placements of the robot for which it does
not intersect any obstacle). Assume that the robot R is modeled by a simple k-gon, the
obstacles by a set S of simple polygons Pi, ..., Pn, with n vertices in total, and that the
robot is only allowed to translate. It is well-known that the free placement space has
complexity O((nk)?) in this case, see e.g. [15, 23]. They also give examples to show that
this bound is the best possible. If the obstacle polygons and the robot polygon are §-wide,
then it is easy to prove that the free placement space has complexity O(nk loglog nk).
See also [25] for related results.

Injection molding. In [6], Bose, van Kreveld and Toussaint study the problem of
injection molding under the optimization criterion of minimizing the number of venting
holes needed to ensure a complete fill of the mold. In geometric terms, the problem is to
find an orientation of a polyhedron in 3-space which minimizes the number of local maxima
(in the vertically upward direction). They show that the problem for a polyhedron with n
vertices can be transformed to a covering problem with at most n convex polygons in the
plane, and with O(n) vertices in total, which can be solved in O(n?) time. For polyhedra
that satisfy a regularity condition, the convex polygons in the plane are wide, and the
authors give a more efficient algorithm than for general polyhedra. The second algorithm
runs in time O(U(n, k)log®n), where U(n, k) is the total complexity of all regions of
the plane covered by k or fewer polygons. By the wideness and by Theorem 8, this is
O(nklog? nloglog(n/k)) time, where k is the number of local maxima in the optimal
orientation. In practice, k will be much smaller than n, often a small constant.

Point stabbing. Let S be a set of simple polygons with n vertices in total. The point
containment query problem for S is to preprocess S for the following type of queries:
Given a point g, report all polygons of S that contain it. If S is a set of triangles, then
the problem is related to the simplex range query problem, and complicated solutions
that require O(nlog®® n) storage and O(y/n log®M n + k) query time are known (k is
the output size). Other solutions require O(n? log®® n) storage and O0(log°Vn + k)
query time. See e.g. Chazelle [7] and Matousek [18]. A simple and more efficient solution
for objects with small union size has been obtained by Sharir [24]. Using this result, we
obtain:

Theorem 10 Let S be a set of §-wide polygons with n vertices in total. S can be pre-
processed for point location queries in O((nlog? nloglogn)/8) expected time into a data
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structure of size O(nlognloglogn), such that all k polygons of S that contain a given
query point can be reported in O((k + 1)log n) time.

Ray shooting. Let S be a set of é-wide polygons that lie in horizontal planes in 3-
dimensional space, and let the polygons have n vertices in total. The vertical ray shooting
problem for S is the following: Given a query point g, which polygon of S is hit first if
q is translated vertically downward? An approach similar to the ones of Cole and Sharir
[8] and de Berg and Overmars (5] leads to:

Theorem 11 Let S be a set of §-wide polygons with n vertices in total, which lie in
horizontal planes in 3-dimensional space. S can be preprocessed in O(n log? nlog log n)
time into a data structure of size O(nlog nloglogn), such that vertical ray shooting queries
can be answered in O(log? n) time.

Red-blue intersection detection. Given a set R of red polygons and a set B of
blue polygons with n vertices in total, we wish to decide whether there are a red and a
blue polygon which intersect. The interior is also considered part of a polygon. If Ris a
set of lines and B a set of points, then the problem is called Hopcroft’s problem, and an
O(n*/32000¢’ ) time solution is given by Matousek [18], see also Chazelle [7] and Agarwal
and Sharir [1].

If the sets R and B contain é-wide polygons, then the following relatively simple
solution may be more efficient. Compute the union U(R) of all red polygons. Using
divide-and-conquer and plane sweep for the merge, this requires O(nlog® nlog log n) time.
Preprocess U(R) for efficient point location in O(nlognlog log n) time (see e.g. [9, 22]).
For every vertex v of every blue polygon, test if v € U (R) by a point location query.
If the answer is yes for any vertex, then a red-blue intersection is detected. Otherwise,
we compute and preprocess U(B), the union of the blue polygons, in the same way, and
we query with every vertex w of every red polygon to test if w € U(B). Finally, if all
queries are answered to the negative, then let Sk and Sp be the sets of O(nloglogn)
segments in the contour of U(R) and U (B), respectively. Notice that the segments in Sp
are disjoint, except at the endpoints, and the same holds for Sg. We test if any segment of
Sg intersects any segments of Sp by a standard plane sweep in O(nlog nloglogn) time. If
there is no intersection involving a segment of Sg and a segment of Sp, then we conclude
that there is no red-blue intersection among R and B.

Theorem 12 Let R be a set of §-wide red polygons, let B be a set of §-wide blue polygons,
and let n be the total number of vertices of polygons in R and B. In O(nlog® nloglogn)
time, one can determine if any red polygon intersects any blue polygon.

6 Conclusions and open problems

In this paper we studied the complexity of the contour of the union of a set of simple
polygons. The notion of §-wide polygons was introduced, where the value of § influences
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the contour size. An upper bound on the maximum union contour size was given which
generalizes the results of Matousek et al.[19] on the union size of fat (or wide) triangles.
We also showed that a partitioning of a polygon into wide triangles cannot give the desired
bounds, because too many wide triangles will needed.

The partitioning and covering algorithms presented in this paper require O(n log? n)
and O(nlog?n) time, respectively. It may be possible to improve upon this bound. We
remark, however, that for most applications it is not necessary to perform the actual
partitioning or covering, but instead regard the techniques as a proof that the union size
is not large. To compute the actual union of a set of §-wide polygons, a straightforward
O(nlog? nlog logn) algorithm exists, see e.g. Kedem et al.[13]. A slightly more efficient,
but randomized, algorithm is given by Miller and Sharir [20], see also [19]. A further
speedup may be possible. A third open problem we take from [19]: The maximum union
contour size of n fat triangles is O(nlog log n) and Q(na(n)). There is a gap to be closed.
Also, the dependency of the union size on § is not close to optimal. (Partial progress on
these issues for wedges is made recently by Efrat, Rote and Sharir in [10].) More tight
bounds would immediately give more tight bounds for the union contour size of é-wide
polygons.
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