Linear Election for Oriented Hypercubes

G. Tel

RUU-CS-93-39
December 1993

Utrecht University
02X S,

3 2 -
§ Department of Computer Science
5 Padualaan 14, P.O. Box 80.089,

K5 3508 TB Utrecht, The Netherlands,
Tel. : ... + 31 -30 - 531454

Dism

Linear Election for Oriented Hypercubes

G. Tel

Technical Report RUU-CS-93-39
December 1993

Department of Computer Science
Utrecht University
P.0O.Box 80.089
3508 TB Utrecht
The Netherlands

¢ Oriented Hypercubes

ok

el hyvporenbe, where

he The adg

in thig ars
ench edar ds aw
exchanmpes DN me
A ravdowseed v
Shme bowuls, b

)
e

froduction

T The elennon prob

o oThat 1)

oo e dise of th
VP ‘ X ‘

Bk
¥

£y oryent

w1 o

g2 44

P
o
s

r— o3 ® d-leader

.....

O entry node

O —é — message in
direction d

d-dimensional d-dimensional - forward message
hypercube hypercube to d-leader

Figure 1: Message forwarding in the tournament.

the d-cube so that the entry node can forward the message in d steps. This announcement
would cost 2¢ — 1 messages, leading to an O(N log N) overall complexity of the election.
Similarly, it is too expensive to have to entry node broadcast the tournament message
through the d-cube; this would also cost 2¢ — 1 messages.

3.2 The Match-Making Technique

The forwarding of the message can be seen as a match-making problem (see Mullender
and Vitanyi [MV88]) and can be solved using O(v/2%) messages and in d + 1 time (which
is optimal).

To make a match between the d-leader and the entry node, the d-leader announces its
leadership to all nodes in a |d/2]-dimensional face, referred to as the leader’s row. The
entry node broadcasts the tournament message through a [d/ 2]-dimensional face called its
column. As each row intersects each column in exactly one process (as will be shown be-
low), there is one process, called the match process, that receives both the announcement
from the d-leader and the tournament message. The match process forwards the tourna-
ment message further to the d-leader via the spanning tree induced by the announcement
messages.

Definition 3.1 Consider the hypercube of dimension d.
The row with index u|4/2|.-Ud—1 1S the subset of nodes {To..T|a/2)-1U|d/2 wUg_1}.
The column with indez ug..u|a/2) — 1 is the subset of nodes {uo..uld/zj_lxtd/QJ..xd_l}.

Lemma 3.2 Each node belongs to ezactly one row and to ezactly one column. Any row
intersects any column in exactly one process.

Proof. Node % = ug..u{q/2|-1%d/2] - Yd—1 belongs to the row with index w|a/2|..U4—1 but
not to any other row. This node belongs to the column with index ug..ua/2)-1.

Row u|4/2)..uq—1 and column ug..u[4/2)—1 intersect in process uo..u|a/z]-1%|d/2| -Ud—1,
which is the only process that belongs to both subsets.

Algorithm 2 shows how to broadcast the (ann,d) message through a row using only
214/2] 1 messages, and without using the canonical node labels. Each process stores the
link through which the message was received (variable fath,), thus building a spanning
tree of the row.

var fath, : ~-1l.d-1;
To initiate a broadcast:
begin fath, := —1; broad(|d/2], d) end
Upon receiving (ann,d) via link i:
begin fath, := i ; broad(i, d) end
procedure broad(i):
begin if i > 0
then send (ann,d) through link ¢ — 1 ; broad(i — 1, d) end
end

Algorithm 2: BROADCASTING IN A ROW.

Lemma 3.3 Alg. 2 broadcasts the message (ann, d) through a row using 2l4/2) — 1 mes-
sages, and builds a spanning tree of the row, rooted at the initiator, of depth |d/2].

Proof. We first show the following by induction on i: if broad(i, d) is executed by
process i = Uo..Uq—1, the message (ann,d) is received exactly once by the processes in
{To..Ti_1ui..ug—1} \ {#}, and a spanning tree on these nodes is built of depth <.

Case i = 0: Execution of broad(0, d) is a skip, so no process will receive anything; indeed,
{ug..ug_1} \ {@} is the empty set.

Case i + 1: Execution of broad(i + 1, d) by i first sends an (ann,d) message via link ¢,
that is, to node W = Ug..Ui_1 TiUipq.-Ug. (T; is the complement of »;.) By induction,
the subsequent execution of broad(i, d) in u and w’ (the latter upon receipt of the
(ann,d) message from u) results in all processes in

{Zo--Tic1Uitiy1.-Ug—1 } \ {#} and {Zo--Tim1Tithitr-Ua—1} \ {J’}

receiving the message once. Consequently, all processes in

{xo..mi_lxiuiﬂ..ud_l} \ {’J}
receive the message exactly once.
The recursive calls both build a spanning tree of depth ¢, but one is rooted at u' and

hence become hooked in at depth 1, which brings the overall depth at ¢ + 1.

Thus, the initialization of a broadcast causes all processes in the initiator’s row to receive
the message exactly once. The message complexity is ZL*/*] = 1 because all processes in
the row except one receive (ann,d) once. O

A similar procedure is used to broadcast the tournament message through the column
of the entry node. This broadcast takes 2¢/21 — 1 messages.

The tournament between the two d-leaders is organized as follows.

1. A d-leader p sends a (tour,p,d) message via link d.

2. A d-leader announces its leadership in its row by calling broad(|d/2], d).

