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2 Background and Prelimi-
naries

The main features of the logic-based approach to
information disclosure will be highlighted as it
provides the integrating framework for the ideas
presented in this paper.

2.1 The Language of Index Ex-
pressions

Consider a set O of information objects. To fa-
cilitate their disclosure, each object in O is char-
acterized by a description of its contents. In this
paper, it is assumed that these descriptions are
expressed in the language of index expressions.

Informally speaking, an index expression con-
sists of a number of terms, separated by means
of connectors modelling the relationships be-
tween these terms. Terms are taken from a given
set T' of terms and correspond to nouns, noun-
qualifying adjectives and noun phrases; connec-
tors are taken from a set C of connectors and are
basically restricted to the prepositions and the
so-called null connector. More formally, the lan-
guage L(T,C) of index expressions over T' and
C is defined by the following syntax:

Expr — €| Nexpr

Nexpr — Term {Connector Nexpr}*
Term — t,teT

Connector = ¢,ce C

where € denotes the empty index expression.
Examples of index expressions are people in need
of information and effective o information o re-
trieval; in the latter index expression o denotes
the null connector.

The description of an information object O €
O is drawn from the language of index expres-
sions and is denoted as x(O); an index expres-
sion in x(O) is called an aziom of O. For details
of how index expressions can be automatically
derived from the titles of information objects,
the reader is referred to [Bruza, 1993].

Building on the notion of index expression, we
introduce the notion of power index expression:
the power index expression of an index expres-
sion is the set of all its index subexpressions.
More formally, the power index expression of an
index expression i, denoted as P(i), is the set

Pl)={j|j &}

where & denotes the is-subexpression-of rela-
tion. The power index expression of a given
index expression forms a lattice where the un-
derlying ordering is &; the top of this lattice
is the index expression itself and the bottom is
the empty index expression €. As an example,
Figure 1 depicts the power index expression of
effective o information o retrieval.

effective o information
o retrieval

information
o retrieval

effective o
information

effective information

€

Figure 1: An Example Power Index Expression

For a set of information objects, a core set
7 of index expressions is generated. Each ele-
ment from this set gives rise to a power index
expression. These power index expressions may
have some non-trivial overlap. Now, by forming
the union of all these power index expressions,
that is, by taking |J;c7 P(i), a lattice-like struc-
ture is yielded. This structure will be termed
a lithoid. As an example, Figure 2 shows the
lithoid yielded by the power index expressions of
the expressions effective o information o retrieval
and people in need of information.

2.2 Strict Inference and Plausible
Inference over Index Expres-
sions

Information disclosure relative to a set of infor-
mation objects O is driven by a request ¢ of
a searcher; the aim of the disclosure is to find
all information objects O € O that are rele-
vant to this request. To this end, g is expressed
in the language of index expressions L(T,C)
just as the object characterizaions are, that is,
q € L(T,C). The problem of disclosure is ap-
proached by applying so-called inference rules
for deriving the request from object descrip-
tions. We distinguish between rules of strict in-
ference and rules of plausible inference.
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Figure 2: An Example Lithoid

Modus continens is a rule of strict inference;
it may be looked upon as deduction by contain-
ment. Consider two index expressions ¢ and j
in £L(T,C). Then, if j is an index subexpres-
sion of ¢, j can be derived from 7 through modus
continens, denoted as

i Fme J

If a request ¢ can be proven from the set of ax-
ioms of some object O by applying modus con-
tinens, then we are sure that O deals with, or is
about, q. In that case, O is relevant with respect
to ¢ and should be returned in response. Note
that the lithoid constructed from a core set of in-
dex expressions constitutes all index expressions
derivable from this core by applying modus con-
tinens. For other rules of strict inference, refer
to [Bruza, 1993].

If a request g cannot be (strictly) derived from
the set of axioms of an information object O,
this does not necessarily mean that O is not rel-
evant to ¢: it only means that the axioms of O
are too weak to establish relevance of O with re-
spect to ¢. It will be evident that applying only
rules of strict inference results in an imbalance
between relevance and derivability. To alleviate
this imbalance plausible inference is used. Plau-
sible inference strives to generate high probabil-
ities of relevance for those relevant information
objects that escaped the strict inference mech-
anism. If for a given object the probability of
relevance is high, then it might be returned in
response to the request g after all.

Inference by refinement is a rule of plausible
inference. Refinement of an index expression is
making it more specific by adding a connector-
term pair to it. As an example, consider the in-

dex expression information. This expression can
be refined into the index expression need of infor-
mation which can in turn be refined into people
in need of information; these refinements result
from the inverse @-relation over the language of
index expressions and therefore are determined
by the underlying lithoid.

Refinement can be taken as the basis for plau-
sible inference: by applying refinement inference
is rendered plausible in the sense that the deriva-
tion introduces index expressions that are no
part of the original description of an object’s
contents and are not derivable through strict in-
ference. Consider two index expressions i and j
in L(T,C). Then, if i can be refined into j, j can
be plausibly derived from i through inference by
refinement, denoted as

i MpR j

Note that inference by refinement applies to a
single index expression as is true for modus con-
tinens. From this observation, it follows that a
derivation employing modus continens and in-
ference by refinement takes the form of a se-
quence of transformations on an index expres-
sion transforming it into another one. An im-
mediate consequence is that the relevance of an
object with respect to a given request can be es-
tablished by deriving the request from a single
index expression in the object’s description.
Modus continens and inference by refinement
drive a contezt-free inference mechanism: in ap-
plying these rules, major parts of the context
provided by an initial index expression from an
object’s description are discarded. It therefore
is not possible to distinguish between the follow-



ing two derivations:

information o need Fjpc  need

b pr need of information

information o need Fjc need

pr need of food

because the initial context mentioning the need
being an information need is discarded and
therefore cannot be used further in the deriva-
tion. In the next section, we propose a context-
sensitive rule of plausible inference over index
expressions that is able to discriminate between
the above two derivations. This rule is founded
on probabilistic inference within a so-called be-
lief network.

3 A Belief Network for
Plausible Inference

Halfway through the 1980s, the belief network
framework was introduced for plausible reason-
ing in knowledge-based systems. It provides a
formalism for representing knowledge about a
problem domain, or to be more precise, a for-
malism for representing knowledge concerning a
joint probability distribution on a set of vari-
ables discerned in the said domain. In addi-
tion, the framework provides a set of algorithms
for reasoning with knowledge represented in the
formalism. For a general introduction to the be-
lief network framework, the reader is referred to
[Pearl, 1988]. Here, the discussion is restricted
to its use in information disclosure.

3.1 A Belief Network of Index Ex-
pressions

For the purpose of plausible inference for infor-
mation disclosure, a belief network of index ex-
pressions is presented. Informally speaking, a
belief network comprises two parts:

® a qualitative part taking the form of an
acyclic directed graph depicting the vari-
ables discerned in a domain as vertices
and their probabilistic interdependencies as
arcs, and

® a quantitative part taking the form of a
set of (conditional) probabilities quantify-
ing the dependencies between the variables
discerned.

These two parts taken together define a unique
joint probability distribution over the variables
discerned; this probability distribution reflects
the (in)dependencies between the variables por-
trayed by the qualitative part of the belief net-
work, [Van der Gaag, 1990].

In constructing the qualitative part of a belief
network of index expressions, the variables in-
volved in the problem of information disclosure
and their interdependencies have to be identi-
fied. To this end, the lithoid is taken as a point
of departure. A searcher may exploit a lithoid
for information disclosure by navigating over it,
[Bruza, 1990]. In such a search, some of the in-
dex expressions in the lithoid are possibly rele-
vant and some are not. Each of the index expres-
sions of the lithoid may therefore be viewed as
defining a probabilistic variable that takes one
of the values true, that is, relevant, or false, that
is, not relevant.

As to the dependencies between these vari-
ables, recall that the index expressions in
the lithoid are partially ordered by the is-
subexpression-of relation @. It follows that the
probabilistic variables corresponding with these
index expressions are partially ordered by this
relation as well. As the lithoid captures this re-
lation, its edges designate the dependencies be-
tween the variables. The topology of the lithoid
can therefore be taken as the underlying graph
of the qualitative part of the belief network. The
edges of this undirected graph are assigned a
direction using the inverse G-relation, express-
ing that belief in the relevance of an index ex-
pression is dependent upon the belief in the rel-
evance of the index subexpressions it is built
from. To conclude, we observe that the empty
index expression may be omitted from the be-
lief network as it is not information bearing. As
an example, Figure 3 depicts the directed graph
constructed from the lithoid shown in Figure 2.

In specifying the quantitative part of the be-
lief network, the strengths of the dependencies
between the variables discerned have to be as-
sessed: for each variable in the qualitative part
of the belief network, several (conditional) prob-
abilities have to be provided describing the in-
fluence of values of the (immediate) predeces-
sors of the variable on the probabilities of its
own values. For specifying the required proba-
bilities, we begin by looking at variables having
no incoming arcs in the directed graph. Note
that these variables correspond to single terms.
For such a variable prior probabilities on its val-
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Figure 3: An Example Digraph

ues have to be specified. For the directed graph
shown in Figure 3, for example, the prior prob-
abilities

Pr(effective)

Pr(information)

Pr(retrieval)

Pr(people)

Pr(need)

have to be assessed; the complementary proba-
bilities follow from Pr(-t) =1 — Pr(t), for any
term ¢. In the context of information disclosure
relative to a given set of information objects O,
it is reasonable to assume that a term that oc-
curs frequently has a higher probability of being
in a relevant object than a term that occurs in-
frequently. The prior probabilities on the values
of a term variable may therefore be computed
from the occurrence frequency of the term rel-
ative to O. This approach to estimating the
probability of relevance of a term is common in
information retrieval, [Wong & Yao, 1990).

We now turn to variables in the qualitative
part of the belief network having predecessors
without any incoming arcs. These variables cor-
respond to binary index expressions which are
constructed from two terms via the addition of a
connector. For such a variable, we have to assess
the conditional probabilities of its values given
values for its predecessors. One of the proba-
bilities we have to specify is the probability of
the binary index expression being relevant given
that we know that its constituting terms are rel-
evant. For the directed graph shown in Figure 3,
for example, we have to assess the probabilities

Pr(effective o information | effective, information)
Pr(information o retrieval | information, retrieval)
Pr(people in need | people, need)

Pr(need of information | need, information)

Assessment of these probabilities may be based
on an analysis of the frequencies of occurrence
of connectors in binary index expressions. Re-
cently such an analysis has been carried out on

the titles of the Cranfield document collection,
[Rosing, 1991]. This analysis revealed the con-
nector probabilities shown in the (incomplete)
table in Figure ??. Note that using these con-
nector probabilities provides only rough esti-
mates of the probabilities required.

| Connector | Probability |

o 0.5366
and 0.0492
as 0.0004
at 0.0348
between 0.0052
by 0.0061
for 0.0327
from 0.0039
in 0.0632
of 0.1529
on 0.0370
or 0.0026
over 0.0066
through 0.0035
to 0.0170
with 0.0248

Figure 4: Some Connector Probabilities

Beside the probabilities of binary index ex-
pressions being relevant given the relevance of
their constituting terms, we have to assess three
more conditional probabilities for each binary
index expression: the probabilities of relevance
given that one or both of its constituting terms
is definitely not relevant. For example, for the
binary index expression effective o information,
we have to assess the additional probabilities

Pr(effective o information | —effective, information)
Pr(effective o information | effective, minformation)
Pr(effective o information | —effective, minformation)



These probabilities are necessarily equal to zero
as a result of harbouring maximal belief in the
consequences of the strict inference mechanism.
For a formal proof of this property, the reader
is referred to [Bruza & van der Gaag, 1992].

To conclude, attention will be focused on
variables representing n-ary index expressions,
n > 3. From the construction of the lithoid it
will be evident that an n-ary index expression
is formed by combining two index expressions of
degree n — 1 that overlap in n — 2 terms. For
such a variable, we have to assess the condi-
tional probabilities of its values given values for
its predecessors. For the probabilities of rele-
vance of an n-ary index expression given that
one or both of its constituting index subexpres-
sions of degree n—1 is definitely not relevant, the
property mentioned above applies once more:
these probabilities are equal to zero. So, only
the probability of relevance given relevance of
the constituting subexpressions remains to be
assessed. For the directed graph in Figure 3,
for example, we have to assess the conditional
probabilities

Pr(effective o information o retrieval |
effective o information, information o retrieval)

Pr(people in need of information |
people in need, need of information)

The analysis of the titles of the Cranfield docu-

ment collection cited above revealed the follow-
ing property: if two index expressions of degree
n — 1 having an overlap in n — 2 terms combine
into an n-ary index expression, n > 3, then this
expression they combine into is unique. So, for
two index expressions 4 and j of degree n — 1
combining into an index expression k of degree
n, the probability of k given i and j equals
1. Note that for larger document collections
this probability assessment may not be accu-
rate. However, it is expected that for larger sets
of information objects there equally exists some
small value of n such that for probabilistic vari-
ables representing n-ary index expressions the
probability assessment mentioned above is ap-
propriate.

The point has now been reached that for all
variables discerned a set of (conditional) proba-
bilities has been specified. These sets of proba-
bilities and the directed graph constructed from
the lithoid together constitute the index expres-
sion belief network. We conclude by observing
that the approach presented differs from the one
proposed in [Turtle & Croft, 1990] in the respect
that in our approach the belief network exists

purely within the realm of the object character-
ization language.

3.2 The Index Expression Belief
Network and Plausible Infer-
ence

The basic idea now is to take the index expres-
sion belief network built from a core set of in-
dex expressions as outlined before and associate
with it a rule of plausible inference for infor-
mation disclosure. To this end, the set of al-
gorithms provided by the belief network frame-
work is exploited.

Associated with a belief network are two algo-
rithms for making probabilistic statements: an
algorithm for computing probabilities of interest
from the network, and an algorithm for prop-
agating evidence, that is, for entering a piece
of evidence into the network and subsequently
updating all probabilities given this evidence.
These algorithms are taken to define the rule
of plausible inference called inference by prob-
abilistic deduction. Consider two index expres-
sions 7 and j in the language £(T,C). Then,
if Pr(j | i) > 0, j is derived from i through
inference by probabilistic deduction, denoted as

i ~pp j

Inference by probabilistic deduction is easily
combined with modus continens: modus conti-
nens is implicitly embedded in the index expres-
sion belief network. In fact, i Fpc j implies
that Pr(j | i) = 1. This property follows from
the topology of the graphical part of the belief
network being obtained from the lithoid which
in turn defines the set of index expressions deriv-
able through modus continens from a. core set of
index expressions, and the way the probabilities
in the network are defined.

4 Index Expression Belief
Networks in Practice

Recently some preliminary experiments have
been carried out to test the suitability of the be-
lief network approach to plausible inference for
information disclosure presented in the previous
section. In performing these experiments, the
IDEAL system was used: a domain-independent
environment for building and reasoning with



probabilistic belief networks, supporting sev-
eral different algorithms for computing proba-
bilities and for propagating evidence, [Srinivas
& Breese, 1990]. We outline how the experi-
ments were conducted.

The experiments have been performed using
the Cranfield document collection. A lithoid
was constructed from the first twenty-five docu-
ment titles and the first three queries from this
collection. The resulting lithoid comprised 1007
index expressions; 120 index expressions were
shared, 114 of which comprised at most three
terms. From this lithoid the qualitative part
of the index expression belief network was con-
structed as described before. In assessing the
prior probabilities for the term variables, the
first five hundred titles of the Cranfield docu-
ment collection were analysed; the probabilities
thus acquired ranged from 0.000264 to 0.0397,
for the probabilities Pr(accuracy) and Pr(flow),
respectively. The other probabilities were as-
sessed as outlined before.

For relevance judgement of objects, the prob-
ability of relevance of an object O with respect
to a request ¢ defined as

Prei(0,q) = maz{Pr(q | )| i € x(0)}

was used. Several alternative definitions are
conceivable; in fact, the experiments suggested
taking relative change in belief into account. It
will be a matter of further experimentation to
decide on the most appropriate scheme for rele-
vance judgement.

The basic idea of applying inference by prob-
abilistic deduction is to enter an index expres-
sion from an object characterization as evidence
into the belief network and propagate its impact
on all other variables; thereafter, the (updated)
probability of the request is computed from the
network. This approach requires for a single re-
quest performing evidence propagation all over
again for each index expression appearing in an
object description. As evidence propagation is
costly from a computational point of view, an-
other approach was used in the experiments re-
quiring only one evidence propagation for a sin-
gle request: instead of entering an index expres-
sion from an object description as evidence and
examining the probability of relevance of the re-
quest, the request was entered as evidence and
the probabilities of the index expressions were
inspected. Note that for a request ¢ and an in-
dex expression 4 this approach delivers the prob-

ability Pr(i | ¢) instead of the desired probabil-
ity Pr(q | i). However, Pr(q | i) may be com-
puted from Pr(i | q) using Bayes’ Rule:

Pr(i| q) - Pr(q)
Pr(z)

provided that the prior probabilities Pr(:) and
Pr(q) of the index expression i and the request
g, respectively, are known. In the experiments,
these prior probabilities were computed from
the belief network whenever needed. For prac-
tical application, however, it will be more effi-
cient to compute all prior probabilities before-
hand and store them with the variables in the
network.

From the experiments, it was concluded that
the plausible inference mechanism based on the
index expression belief network seems to foster
precision. The results obtained from the prelim-
inary experiments are discussed in more detail
in [Bruza, 1993].

A big question mark left by the experiments
was whether the belief network approach to
plausible inference as discussed above can be
scaled to real-life information disclosure appli-
cations. Even with the restricted belief network
(the result from the first optimization discussed
below), propagation of a request took approxi-
mately forty minutes in the IDEAL system. The
stark reality is that real-life information disclo-
sure applications would be based on index ex-
pression belief networks containing hundreds of
thousands, if not millions, of variables. It was
concluded that for belief networks of this size
straightforward use of the existing algorithms
will not yield an efficient enough plausible infer-
ence mechanism for realistic information disclo-
sure: if belief networks are to be employed, very
efficient, special-purpose algorithms need be de-
vised. The groundwork for such algorithms will
be laid in the following section.

Pr(g|i) =

5 Lessening the Computa-
tional Expense

Fortunately, an index expression belief network
exhibits some special properties that can be ex-
ploited to lessen the computational expense in-
volved in plausible inference. These properties
arise from its embedding the strict inference
mechanism.

Two optimizations of the basic inference
mechanism are proposed. The first optimization



is to restrict the size of the index expression be-
lief network. As described in Section 3, the qual-
itative part of the belief network is constructed
from the lithoid of index expressions; the proba-
bilities constituting its quantitative part are as-
sessed from an analysis of the titles of the Cran-
field document collection. Now recall that this
analysis revealed that if two index expressions
i and j of degree n — 1 combined into an n-
ary index expression k, n > 3, then they did so
uniquely, leading to the probability assessment
Pr(k | i¢,5) = 1 for the corresponding variables.
Since the probability assessments for all these
variables are the same, there is no need to rep-
resent them separately and explicitly in the net-
work. This observation suggests restricting the
belief network to variables representing small in-
dex expressions only: in such a restricted net-
work evidence propagation is much faster as it
involves less variables. A simple scheme is then
used for computing probabilities of relevance for
larger index expressions exploiting the special
properties of their accompanying probability as-
sessments.

The effect of restricting the size of the in-
dex expression belief network can be envisioned
by the lithoid as follows. A lithoid resembles a
mountain range, each peak corresponding to a
power index expression. Restricting the lithoid
to index expressions of, for example, three terms
or less implements lopping off the peaks of this
mountain range leaving only a common base.
This common base in fact captures the part of
the lithoid that is most interesting for plausible
inference as it contains roughly 95% of shared
index expressions, [Bruza, 1993]; shared index
expressions allow spreading of evidence through-
out the associated belief network. This opti-
mization was applied to the lithoid of 1007 in-
dex expressions constructed in our experiments;
the restricted lithoid comprised 393 index ex-
pressions, only.

The second optimization proposed is to limit
evidence propagation to a relevant subnetwork
of the index expression belief network. This
optimization was motivated by the observation
that index expression belief networks are much
larger in width than they are in height. This fea-
ture suggests that the number of variables whose
probabilities are affected by evidence propaga-
tion is small compared to the number of vari-
ables whose probabilities are not affected; in
fact, in an experiment with the Cranfield docu-
ment collection the ratio of numbers of affected

and unaffected variables equalled 0.05. Because
it will suffice to update the probabilities of the
affected variables only, much computational ef-
fort in evidence propagation can be saved pro-
vided that these variables can be identified efhi-
ciently.

Consider a request g. The set of variables in
the index expression belief network whose prob-
abilities are affected by entering ¢ as evidence is
defined as

victims(q) = {i | Pr(z | ¢) # Pr(i)}
The set of unaffected variables is defined as
immunes(q) = {i | Pr(i | ¢) = Pr(i)}

Note that for each variable ¢ in the belief net-
work, we have either i € wvictims(g) or i €
immunes(q). The aim now is to identify the set
victims(q) from the qualitative part of the index
expression belief network only, that is, without
any probabilistic computation.

It will be evident that by entering the request
g as evidence into the belief network, its own
probability of relevance will be set to 1. From
the strict inference mechanism being embedded
in the belief network it follows that for all in-
dex subexpressions of ¢ the probability of rel-
evance will be updated to unity. So, for each
variable corresponding to an index expression
i € P(q)\ {€}, we have that Pr(i | ¢) = 1; in the
sequel, we will consider each such index expres-
sion as a piece of evidence. It is concluded that
P(q) \ {€} C victims(q). In addition, all vari-
ables corresponding to index expressions that
can be obtained through refinement from an in-
dex expression i € P(q) \ {€} belong to the set
victims(q). It can be shown that all other vari-
ables are independent of the request ¢ and are
therefore included in the set immunes(g). To
conclude, the set victims(q) equals

victims(q) ={j |i ~ pr J, t € P(g)\ {€} }

This set can easily be computed using the is-
subexpression-of relation . The basic idea of
the set victims(q) is schematically represented
in Figure 5.

For updating the probabilities of the values of
the variables in the set victims{q), a standard
algorithm for evidence propagation can be used.
However, the probability assessments associated
with the variables in the index expression be-
lief network and the interdependencies between
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Figure 5: A Subnetwork for Limited Evidence Propagation
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Figure 6: Efficient Evidence Propagation

these variables once more allow for more efficient
computation of probabilities of relevance.

Referring to Figure 6, consider a variable k €
victims(g). The only evidence that pertains to
k directly, originates from the vertices in the set
P(z)\{€}; all other vertices in P(q)\{e} have no
direct influence on k because k is independent
of them. By exploiting the fact that the strict
inference mechanism is embodied in the belief
network, it can be proven that

Pr(k)
Pr(z)

Pr(klq) =

Using this result means that there is a single
computation involved for updating the proba-
bility of each victim k of ¢. So this optimization
yields a time complexity of plausible inference
that is linear in the number of victims of a given
request. A paper presenting full details on this
optimization is in preparation.

In conclusion, we observe that the optimiza-
tions proposed exploit the features of the strict
inference mechanism to a large extent and there-
fore cannot be applied to more general belief
networks; in fact, evidence propagation can have
far reaching effects in general.

6 Conclusions

In this paper, a context-sensitive plausible in-
ference mechanism for information disclosure
has been proposed, based on the index ex-
pression belief network. The results obtained
from the preliminary experiments with this in-
ference mechanism are encouraging. These ex-
periments, however, are too small-scaled to pro-
vide real insight into the potential effectiveness
of our approach; we hope to report on larger ex-
periments in the near future. The feasibility of
the belief network approach for driving plausi-
ble inference in information disclosure remains
an area of continuing interest.
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