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Preface to the Report Version

This document is an official deliverable in the ESPRIT III Basic Research Action DRUMS II
"Defeasible Reasoning and Uncertainty Management Systems", Project No. 6156. The
DRUMS Project is concerned with the investigation of symbolic and quantitative (numerical)
methods of representation and reasoning in order to deal with uncertain and defeasible
knowledge. By symbolic methods mostly logical ones are meant, i.e. methods based on some
logic(al formalism), whereas numerical methods are typically based on probabilities and
generalisations of these. Typical problems addressed in the project are belief change, non-
monotonic deduction, inconsistency in reasoning, abduction, algorithmic aspects and dynamic
reasoning with partial models. Altogether, the DRUMS project covers a huge research area with
many specialist sub-areas around the main topics of uncertainty and defeasibility, and many
research institutes and researchers all over Europe working on these topics are involved in the
project. One of the aims is to establish ways of integration and synthesis of the enormous
number of diverse approaches already available in the literature as well as those currently in
development.

The present deliverable is part of work done in the last area: (dynamic) reasoning with partial
models, which includes the study of modal and epistemic logics to capture reasoning with
uncertain and defeasible knowledge. In fact, this deliverable, entitled “Graded Modal and
Epistemic Logics”, is the first one of two planned within the project dealing with relations
between multiple-valued, epistemic and dynamic logics to model non-monotonic reasoning.
This first one deals with various ways of using modal logics for reasoning about knowledge
and uncertainty, both qualitatively and quantatively. As such, part of this work should be
interpreted as employing symbolic (logical) methods to reason quantitatively, thus providing a
partial synthesis between symbolic and numerical methods for reasoning with uncertainty.

The deliverable is organised as follows: First the official body of the document is given,
including a summary, the partners involved, the original description of the topic and aim, a
global description of the results, and other information directed to the ESPRIT organisation,
pertaining to this deliverable. Then in an Annex, the original papers in which the actual work is
done, are provided. For the report version this annex is probably (hopefully) the most
interesting part.

The editors, October 1993.
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Graded Modal and Epistemic Logics

J.-J. Ch. Meyer & W. van der Hoek
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Deliverable Summary

The deliverable contains a survey of various ways of using modal logics for reasoning about
knowledge and uncertainty, including standard S5-based epistemic logic. Furthermore, a study
is made of quantitative and qualitative modalities. In particular, a graded (or numerical) variant
of the epistemic logic S5 is considered, and its logical properties are investigated, such as
completeness, decidability and expressibility. In this logic we can express notions such as
“knowing a formula ¢ modulo at most n exceptions to ¢”. The use of this graded logic for
representing uncertain and defeasible knowledge is indicated. Finally, other quantitative and
qualitative modalities related to probabilistic and possibilistic notions - such as “as least as likely
/ possible as” - together with their logics are studied. As will be shown below we can safely
state the no major milestones have been missed in the execution of this part of WP6.3.

Partners Involved

As planned, this part of WP6.3 was performed by the F. U. Amsterdam - Theoretical
Computer Science site (currently situated at Utrecht University). The intention is that the next
part (deliverable D6.6, to be delivered at the end of the 3 years of the project) will also involve
the FUA - Al Section, Blanes, Linkoping and Warsaw sites, where the results of D6.2 will be
used as some basic groundwork. In fact, there is already work in progress with the Blanes site
on the modal interpretation of the knowledge meta-predicates in MILORD II, and separately
with the FUA-AI-site on the temporal aspects of an epistemically based default logic.

Added Value of Participation in the DRUMS2 Project

Although the work of this part of WP6.3 has been performed by one site (FUA-Theory), as
stated above, we can state that the participation in the context of the DRUMS2 project has
influenced our work considerably and has helped us to complete the planned research in a
satisfactory way. The work in progress was presented at several WP6 / WP3 - workshops,
which provided very valuable feedback, which could be fruitfully incorporated in subsequent
versions of the papers in this deliverable. Also, the many discussions we had with both fellow
logicians and the quantitative-oriented colleagues in the project proved to be very useful for us.
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Also, for us theorists, the DRUMS meetings gave a good view of the more practical issues
involved in devising reasoning systems, which will surely influence further work in WP6.3.

Original Description of the Topic in the Project Proposal

“In graded modal logic it is possible to express that a formula is satisfied in a number of
(accessible) worlds. This may give a tool to ‘quantify’ degrees of knowledge, whereas
traditional (ungraded) epistemic modal logic only treats absolute knowledge: p is known iff p
holds in every conceivable world. Thus, graded logic could contribute to the main objective of
DRUMS 2:i.e. to bridge the gap between qualitative approaches to incomplete knowledge and
quantitative (numerical) ones to uncertain knowledge. Moreover, discarding the exact number
of worlds, one may introduce a qualitative comparison operator ‘@ > \’, which means that
there are more worlds / situations where ¢ holds than where V¥ holds. Such a logic can be
considered a qualitative abstraction of the graded modal logic. With a probabilistic interpretation
in mind, >p' has already been studied in the literature. A link with epistemic logic is given by
W. Lenzen's definition of belief: a formula ¢ is believed if @ >p —¢ holds.”

Original Description of the Aim in the Project Proposal

“Our plan concerning the study of these quantitative modalities is as follows. Firstly, we like to
have a precise description of (the logic of) graded modalities; especially in terms of decidability,
complexity, expressibility, especially for the graded variant of S5. Secondly, we want to
investigate its use for epistemic logic. Especially, we like to make explicit in which situations it
makes sense to base epistemic reasoning on democratic principles (when is it reasonable to
‘believe' p if most of the words verify p?). Another topic we like to study is how this
‘reasoning with exceptions’ in graded epistemic logic is related to defeasible knowledge.
Thirdly, we would like to relate the qualitative operator >’ with these graded modalities as well
as with “>,’. The output of this research will be used in the following research.”

Global Description of Results

The results of the work reported in this deliverable are based on two papers, which are given in
the Annex, viz.

1. W. van der Hoek & J.-J.Ch. Meyer, Graded Modalities in Epistemic Logic. This paper is
submitted to the journal "Logique et Analyse" and contains work on so-called graded modalities
as applied to epistemic logic.

2. W. van der Hoek & J.-J.Ch. Meyer, Modalities for Reasoning about Knowledge and
Uncertainties. This paper was presented in a preliminary version as a tutorial at a forerunner of
a DRUMS Workshop /Summerschool in Linképing, and will appear in a book edited by P.



Doherty and D. Driankov where the papers of the workshop are collected, revised and
expanded.

The material in these two papers addresses the questions that we asked ourselves in the
proposal. In the first paper we consider the use of graded modalities in epistemic logic. We then
obtain the graded epistemic logic Gr(S5). In this logic we can express notions such as K, ¢:
“knowing a formula ¢ modulo at most n exceptions to ¢”. An axiomatization of the logic is
given. Besides foundational topics such as completeness and decidability (finite model
property) the paper contains more practice-oriented issues pertaining to the use of the logic for
plausible or defeasible reasoning. For instance, the following is a derivable theorem of the
logic:

Ka(@ = ¥) (K@ = Kpymy)

which expresses the intuitive idea that when modus ponens is used with uncertain knowledge

the result is even weaker (more uncertain) than its premises. The modalities K,, together with

their dualities M, (=—K,—) give rise to a spectrum of ever decreasing certainty : K (absolute
certainty), Ky, Ky, ..., My, My, My (not an impossibility). Also generalised introspection

properties are discussed such as M;,¢ — KoM, @: if it is known that there are more than n

situation in which @ holds, then it is known (for sure) that it is known that this is the case, or

put differently, the agent is aware of the fact that he considers more than n @-situations

possible. By way of examples, it is shown how in the logic a democratic principle of belief
(based on more than half of the situations are known to satisfy the assertion of concern) and the

infamous lottery paradox can be treated. It is indicated how so-called numerical syllogisms can

be represented and proved in the logic. Finally relations with other approaches such as concept

languages and probabilistic logic are indicated.

The second paper is of a more survey-like nature. It collects well-known ways of using modal
logics for reasoning about knowledge and uncertainty, as well as a survey of own results.
Discussed are:

* standard modal (S5-like) epistemic logic including: the notions of both knowledge and belief
and their interaction, the problem of logical omniscience of belief, epistemic states and honest
formulas;

* modal approaches to reason about quantities, such as graded modalities and probabilistic
modalities;

* qualitative modalities, that use quantities in an indirect, implicit way, such as e.g. “at least as
many as” (based on counting), “as least as likely as” (probabilistic), "as least as possible as”
(possibilistic). |
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In conclusion we may say that our most of the ingredients of our initial plan of research has
been carried out and no problems were encountered in the execution of this work part. we have
given a precise description of (the logic of) graded modalities; we have investigated the issues
of completeness, decidability and expressibility for the logic Gr(S5). We have studied how
Gr(S5) might be used as a logic for plausible / defeasible knowledge. In the logic it can be
extended such that a belief of p if most of the worlds verify p, can be expressed. Finally,
several relations of graded modalities with quantitative and qualitative modalities, as they appear
in probabilistic and possibilistic logic, are established.
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Graded Modalities in Epistemic Logic’

W. van der Hoek
J.-J. Ch. Meyer*

Free University, Amsterdam
Department of Mathematics and Computers Science
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

ABSTRACT

We propose an epistemic logic with so-called graded modalities, in which certain
types of knowledge are expressible that are less absolute than in traditional epistemic
logic. Beside ‘absolute knowledge’ (which does not allow for any exception), we are
also able to express ‘accepting @ if there are at most n exceptions to ¢’. This logic
may be employed in decision support systems where there are different sources to
judge the same proposition. We argue that the logic also provides a link between
epistemic logic and the more quantitative (even probabilistic) methods used in Al
systems. In this paper we investigate some properties of the logic as well as some
applications.

1 Introduction

‘Infallible’ computers are computers that have multiple processors (usually each from a
different company and programmed in a different way using different programming languages)
to check and double-check on the results. Decisions are taken on a kind of democratic basis: the
results that come up most often as the results of a certain calculation, are the ones that matter
and are used to make a decision. The idea is just based on statistics: the chance that n
independent processors are faulty at the same time is p" for an already very small probability p.
Typically, infallible computers are used in situations where the failure of a computer would
have disastrous consequences, such as the stock exchange, certain security situations, and the
so-called flying-by-wire (i.e. using a steering computer) of an airplane like the Airbus A320.

Decision Support Systems working on infallible computers, and devices with several input
sensors in general, may have knowledge that is source-dependent. In this paper we will
propose an epistemic logic that can deal with knowledge (or some may prefer the term belief
here) that is not absolutely true in all worlds, but may have exceptions in the sense that there are
worlds in which the assertion (that was believed) is nevertheless not true, such as in the case of
a faulty processor or sensor in the situation described above.

* This work is partially supported by ESPRIT III Basic Research Action No. 6156 (DRUMS II).
# Also at the University of Nijmegen, Dept. of Math & Comp. Sc., Toernooiveld, 6525 ED Nijmegen.



Consider an agent getting input from three different sources wi, wy and w3. Suppose further-
more, that two types of information are relevant for this agent, say p and q. All the sources
agree on p: they mark p as true. Finally, in wy and wp, q is true, whereas in wa, it is false.
When using ‘standard’ modal logic to model epistemic notions (cf. [MHV91] for an overview),
one would consider the resources wj (i < 3) to be worlds in an S5-Kripke model (cf. [HC68]
for an introduction to modal logic), and observe that the agent knows p, i.e. Kp holds, but does
not know q or —q, since he considers both alternatives to be possible: Mg A M—q holds.

This is about the limit of the expressibility of standard modal epistemic logic (we will formalize
this claim in the next Section), where the only operators that are available are K and M, to
express ‘truth in all accessible worlds’ and ‘truth in some accessible world’, respectively. Since
the favourite system for knowledge (S5) may be interpreted on Kripke models in which the
accessibility relation is universal (cf. [HM85, MHV91]), we may leave out the reference to this
relation, leaving one with a system in which one can associate ‘K’ with “all (worlds)’ and M
with ‘some (world)’ (cf. [GP90]).

However, in the above example, it might be desirable to be able to express that the agent has
more confidence in q than in —q. (For instance, a robot which (who?) is searching for block A,
may choose to first look for it on block B, if two of its sensors tell him it is there—while the
third sensor tells him it is on block C.) One way to achieve this is to add a qualitative modality
>’, enabling the agent to judge (9 > —q), as is done in [Ho91a] (and, in a specifically
epistemic context, see also [Le80]). Here, we will take an alternative approach, in which we
add quantitative modalities to the language (My, n € N), with the intended meaning that more
than n successors verify ¢. Then, in the above example, we can describe the agent’s point of
view in a more precise manner, like for instance the fact that he considers exactly two g-
alternatives possible (‘input-sources’), and exactly one —q-alternative.

Actually, adding such ‘graded modalities’ to the modal language is not new. We refer to
[Ho92a] for some history, and a first investigation into the expressibility, decidability and
definability of this graded language. An application of those graded modalities, especially of the
graded analogue of S5, has been studied in the area of Generalized Quantifiers, (cf. [HoR91]).
In this paper, we try to explain how the greater expressive power of graded modalities may be
used in epistemic logic. We already showed in [HoM92] how these new modalities may help to
make some issues in the field of implicit knowledge explicit. However, there, the graded
modalities are motivated to establish some properties on a ‘meta-level’; adding them to the



language enables one to more precisely define accurate models for implicit knowledge; in
particular, we showed how one can employ graded modalities to define the intersection of
accessibility relations. Here, though, we try to use the new operators directly in the object
language in order to obtain a more fine-tuned epistemic logic. We think that, using the enriched
language, one has an appropriate tool to deal with notions like ‘uncertain’, or ‘almost certain’
knowledge (or belief). The new operators may then be helpful to reason with degrees of
acceptance. In fact, one may distinguish as many degrees of belief as there are graded
modalities. To support our claim, we will sketch some directions in which such modalities
might be employed.

The rest of this paper is organised as follows. In the following Section, we will introduce our
main system, together with its natural semantics. In Section 3, we investigate how this system
of Section 2 can be interpreted epistemically. Then we give some examples in Section 4 and
conclude by indicating some further directions of research in Section 5.

2. The system Gr(S5)

Before plunging into the definitions of the graded language and the formal system, it may be
useful to keep in mind how standard modal logic (together with its semantics) is used to model
knowledge. There, Ko (¢ is known) is defined to be true in a Kripke model (M,w) iff in all
worlds v accessible from w, (#,v) is a model for . Also, Mg is defined to be —~K—¢, which
will be true in w iff @ is true in some accessible world v.

Now, consider the following Kripke model My = <W, R, 1>, where W = {wi, wa, w3, ...
wk} (k24), R=W x W and n(p)(w;) = true for all i < k; m(q)(wj) = true iff i ¢ {2, 3};
m(r)(wj) = true iff i € {1,3} (cf. Figure 1 below).

[
P4r  p4qA P4&r  pak  p.aX D, q, §
o ® ® ® @ 0 ceriscsesseciessececenns ®
Wl W2 W3 W4 W5 wk
\—
Figure 1

At the end of this Section, we will demonstrate, in a precise way, that in all purely modal
formulas that are true in this model, one may freely interchange the role of q and r. In other



words, despite the fact that q is true ‘almost everywhere’ in the model, and r is false ‘almost
everywhere’, the modal language is too weak to express this difference between q and r. We
claim that, both in the cases where worlds are interpreted in one-one correspondence to
counterparts in the physical world (e.g. like sensors —Section 1) and where worlds correspond
to possible (but made up) situations for some agent, a tool to distinguish ‘g-statements’ from ‘r-
statements’ in the above model is highly desirable.

We provide such a tool by adding graded modalities Mg, My, ... to the modal language. The
intended interpretation of M@, (n € M) will be that there are more than n accessible worlds
verifying ¢. By defining Kp@ = -M—,¢, Kn0 is true iff at most n accessible worlds refute 0.
In terms of epistemic operators, note that Ko boils down to K@, so that we may interpret Ko
as our (certain) knowledge operator. Generally, K, means that the agent reckons with at most
n exceptions for ¢. Dually, M@ then means that the agent considers more than n alternatives
possible, in which ¢ is true. Now, what would be the appropriate properties of these
‘defeasible’ necessity operators? For instance, what kind of introspective properties are
desirable? Many possibilities present themselves at this point, but for the time being we will
remain on solid ground by considering the graded analogue of SS5.

Our language L is built, in the usual way, from propositional atoms pP.q, ..., € P, using the
standard connectives L, T, A, v, =, = and <. Moreover, if ¢ € L, then so is My (n € N).
From now on, we will assume that n, m, k € N. We use Kp as an abbreviation for —M,—.
Finally we introduce the abbreviation M!,¢, where M!pp = Kg—9, M!nh¢ = (Mp-19 A =M;0),
if n > 0. From the definitions above, it is clear that M!, means ‘exactly n’.

2.1 Definition. The system Gr(S5) is defined as follows (cf. [HoR91]). It has inference
rules Modus Ponens and Necessitation:

RO Fo ooy y
Rl Fo¢=F Kpo
It has also the following axioms (for eachn € N):

AO  all propositional tautologies

Al Ko(@ = y) = (K@ - Kpy)

A2 Kpo - Kp+10

A3 Ko(@ A y) > (Mo A MIny) = Mlpm(@ v )
A4 —Kp9 — Ko—Kpo

A5 Kop—o



Before elaborating on the impact of the axioms on our intended epistemic reading of the
operators, which we will do in the following Section, let us pause for a moment to sharpen our
understanding of the postulates as such. The system with rules RO and R1, axioms AO - A3 is
the graded modal analogue of K, the basic modal system—so let us refer to it with Gr(K). In
Gr(K), Al is a kind of ‘generalized K-axiom’ (cf. 2.3), A2 is a way to ‘decrease grades’ in the
possibility operator (A2 is equivalent to Mp4+1¢ — Mp@) and using A3, one can go to ‘higher
grades’. To ensure that the definitions work out rightly, we take proposition 2.10 from
[Ho92a]:

2.2 Proposition. The following are derivable in Gr(K) (and hence in Gr(S95)):

@) Mn(¢ A W) = (M@ A Mpy)

(ii) Mo AMlipo— L (n #m)
(iii) Kn—¢ < Mlpp VMo V... VM!L,0) (V denotes ‘exclusive or’)
(V)  —Mn(@ Vv y) - =Myo

(v) Mn+m(® v ) = (Mp® v M)

(vi) Mo AMpo — L (m=n)
(vii) Mi(@ A W) A Mm(@ A =Y) = Mptm+1¢

(viil)  (Ko—(¢ A §) A (Mn® A M) = Miam+1(Q v W)

To see the system in action, we will give a derivation of a theorem which is a generalisation of
the K-axiom from standard modal logic.

2.3 Proposition. The following is derivable in Gr(K) (and in Gr(S5)).
Kn(® = V) > (Km¢ = Knsmy).
Proof. We implicitly use the (Gr(K)-derivable) rule of substitution: - o, <> B=>F oo

@[%/p]. Then, observe that - Al <> (Ko(® = ¢) = (Mpo = Mpy)) (*). To see this, note that -
Ko(o = v) & Ko(—y = =), and - Mpo - Mpy) & (Kp—y = Ky—9).

L F =y = (@AY v (=0 A—y) A0
2 F Ko~y = (@A—y) V(=@ A—y) R1,1
3 F MutmoW = Mpm((@ A =) v (=@ A —y)) (*),2
4 F Mom((@ A =¥) V (=@ A =) = Mp(@ A =) v Mn(—¢ A —y) 2.2(v)
5 F @AY > =0 W) A (=9 A —y) = —0) A0
6 F Mn(@ A=) = Mp—(¢ = ) A Mm(—9 A —¥) = Mp—0) RL1, Al
7 F Mptm—=Y = (Mp—(¢ = ¥) v Mp—0) Al, 34,6
8 F =Mm—(¢ = V) = (=Mp—¢ — —Mpm—y) A0,7
9 F Ka(® = ¥) - (Km® = KnsmV) Def Ky,8



Note that, by taking n = m = 0 in 2.3, we get the K-axiom in Gr(S5). In the presence of the
necessitation rule, this means that K is a ‘normal’ modal operator. In fact, the axioms A4 and
AS5 are graded versions of Euclidicity and reflexivity, respectively. Before making this explicit,
we give the definition of the models on which we want to interpret formulas of L.

2.4 Definition. A Kripke structure M is a tuple <W,nt,R>, where W is a set (of ‘worlds’ or
‘states’), T a truth assignment for each w € W and R a binary relation on W. If R is both
reflexive and Euclidean (i.e. Vxyz((Rxy A Rxz) — Ryz)), we say that Me S5 It is easily
verified that the accessibility relations R of Me S5are equivalence relations. A model Me $5is
known to be a model of (standard) S5 (cf. [MHV91]).

2.5 Definition. For a Kripke structure M we define the truth of ¢ at w inductively:
@) (Mw) = piff n(s)(p) = true, for all p € P.

(ii) (Mw) E —@ iff not (M,w) E @.

(i)  (Mw) E @ v yiff (Mw) E @ or (M,w) E .

iv)  (Mw)E Myoiff {w'e WIRww' and (M,w") & ¢0}/>n,ne N.

2.6 Remark. Note that (M,w) = Ko iff [{w' € W | Rww' and (M,w") E —@}] < n. Also,
note that the modal operators M and K (in the literature also written as M and L, or ¢ and O)
are special cases of our indexed operators: Mo = Mg and K¢ = Koo.

2.7 Definition. We say that @ is rrue in M at w if (M,w) = . If such an M and w exist for
@, we say that @ is satisfiable. Formula @ is true in M (M= ¢) if (Mw) = ¢ for all w e W,
and @ is called valid (= @) if M= ¢ for all M. If Cis a class of models (like $5), Ck ¢ means
that for all Me C, MF .

With these semantic definitions, we can formalize our claim about the model of Figure 1. For
two propositional variables x and y, let [xeyl@ be the formula obtained from ¢ by
interchanging the x and y in @. (This can be defined in terms of [*/y] @, substitution of u for v
in @, as follows: [xe2yle = [¥/,] [*/y1[?/x]¢, where z is some atom not occurring in ¢.) We
suppose that the accessibility relation in the model of Figure 1 is universal, i.e. for all w and v
we have Rwv.

2.8 Theorem. Let ¢ be a (non-graded) modal formula, and M the model of Figure 1. With
the definition of [x = y]@ given above, we claim that M @ < M= [qer]e.



Proof. The theorem follows from the following observation. Let f: W — W be the following
function: f(w1) = wi; f(w) = wo; f(w3) = wy, f(x) = w3 for all x e W\ {wq, wp, w3}. Then,
we claim, that for all w € W and all non-graded modal formulas Q: (Mw) E ¢ & (Mf(w)) E
[qerle. This claim is established using a simple induction, of which we demonstrate the modal
case @ = My suppose that (M,w) = My. By the truth-definition of M, there must be some v €
W such that (M,v) = y. By the induction hypothesis, we obtain (Mf(v)) E [qer]y. Since R is
universal, we have (M, f(w)) k= M[qer]y which is of course equivalent to (M,f(w)) &
[qerIMy, ie. (Mf(w)) = @. The converse of this claim is proven similarly. The proof of the
theorem then proceeds as follows: M @ < there is some w such that (Mw) F - < there is
some w such that (Mf(w)) F [qer]—@ <> there is some w such that (ML(W)) E =[qer]e <
MK [qer]e.

We end this introduction to Gr(S5) by recalling the following results:
2.9 Theorem. (Completeness: [Fi72], [FC88]). For all ¢ € L, Gr(S5) + ¢ iff 55F ¢.
Thus S5is also a class of models characterizing Gr(S5).

2.10 Theorem. (Finite models: [Ho92a]). Any ¢ € L is satisfiable iff it is so on a finite
model.

2.11 Theorem. (Freedom of nestings: cf. [HoR91]). In Gr(S5), each formula is equivalent
to a formula in which no nestings of (graded) modal operators occur.

Related to the last theorem, a popular slogan in modal logic is that in S5, ‘the inner modality
always wins’, we have e.g. KM@ = Mo, MK = K¢ and MMo = Mg in S5. However, in the
case of Gr(S5) this is not always sufficient: we do have M3M5¢ = Mso, but instead of MsM3@
= M3¢ we now have MsM3¢ = MsT A M3, accounting for the fact that MsM3¢ implies that,
so to speak, 5 worlds are around.

3 Epistemic Reading

Returning to the main point of this paper: how can Gr(S5) serve as an appropriate starting point
to study epistemic phenomena? To start with, RO and AO express that we are dealing with an
(extension of) classical propositional logic: we may use Modus Ponens and reason ‘classically’
(A0). By taking S5 as a ‘standard’ system for knowledge, the observations in the preceding
Section suggest that we interpret Koo as ‘o is known’ (by the agent: for the moment, we focus
on one-agent systems, although graded modalities do not prevent us from studying multi-agent
systems—on the contrary, cf. [HoM92]).



Then, RO, R1, AO and AS5 find their motivation in the same fashion as the corresponding
properties in S5, i.e., we may use Modus Ponens, the agent knows all (Gr(S5))-derivable
facts, we are dealing with an extension of propositional logic (A0) and moreover the agent
cannot know facts that are not true (AS5).

In order to interpret the other axioms, we need to have some intuition about the meaning of
Kn®. The semantics suggest, that it should be something like ‘the agent reckons with at most n
exceptional situations for ¢’, or ‘the agent “knows-modulo-n-exceptions” @’. Thus, the greater
n is in Ky, the less confidence in ¢ is uttered by that sentence. The latter observation
immediately hints at A2, Ky@ — Kp+19: if the agent foresees at most n exceptions to @, he also
does so with at most n+1 exceptions. Of course, the generalisation of A3, for n > 0; Kno >0
is not valid: if the agent does not know ¢ for sure, i.e., if he allows for exceptions regarding o,
he cannot conclude that ¢ is the case. Thus K¢ expresses a form of “uncertain knowledge”.

In standard S5, we have the axiom —K¢ — K—Kg, expressing the agent’s negative
introspection: if he does not know a given fact, he knows that he does not (this is of course an
‘over-idealised’ property of knowledge, especially if we have in mind capturing human
knowledge; see [MHV91] for a short discussion and further references). We may write this
introspection axiom equivalently as

1 Mo — KMg,

saying that the agent has awareness (see [FH88] or [HoM89] for a discussion on this
‘awareness’—defined in a technical sense) of what he considers to be possible. Now that we
have at hand a more fine-tuned mechanism to distinguish between * grades’ of possibility, it
seems straightforward to strengthen the bare introspection formula (1) to

(2) My¢ — KoMy,

saying that the agent is aware of the fact that he considers more than n @-situations possible. (2)
is equivalent with our axiom A4. Note that (2) is at the same time the ‘most general’ way to
generalise (1): it implies, (using A2 m-1 times) for instance Mpo - KnMpo.

In the same spirit, we can interpret A1: if the agent knows that ¢ implies \, then, if he believes
that there can be at most n exceptions to ¢, he will not imagine more than n exceptions to ,
since every exception to W will be an exception to ¢ as well, i.e. Ko(® = ) — (Kno = Kpy),
or equivalently (cf. 2.3), Ko(¢ — ) - Mpo — Muy) (A1"). In epistemic logic, the K-axiom,
K(¢ = y) - (K¢ — Kv), has been considered a source of logical omniscience ([FH88] or



[Ho92c]), which yields too idealistic a notion of knowledge (and certainly of belief). It would
mean that the agent is capable to close his knowledge (belief) under logical implication.
However, now that we allow for weaker notions of knowledge, it appears that the K-axiom is
only valid for Ko, which we may consider as a kind of ‘ideal’ knowledge. Instead of a K-
axiom for each Ky, we have the much more realistic (cf. 2.3)

(3) Kn(® = ) = Kn® = KpsmV).

This seems very reasonable (suppose n, m > 0): if the agent has some confidence that ¢ implies
V, and also has some confidence in ¢, his conclusion that y holds should be stated with even
less certitude than that of the two assertions separately. This is reminiscent of plausible
([Re76]) or defeasible reasoning, where reasoning under uncertainties is also the topic of
investigation. Note that (3) guarantees that, the longer the chain of reasoning with uncertain
arguments, the less certain the conclusion can be stated by the agent. Moreover, note that,
although (3) holds, if n > 0 we do not have Kn(¢ = y) = (K¢ — Kyy): this makes it
questionable to call K, a modal operator (if n > 0). However, here we do so because of the
interpretation of such operators in Kripke models.

Finally, to understand A3, we must recall that M!,,¢ means that the agent is aware of exactly n
possible situations in which @ is true. But then, A3 simply states this property of additivity: if
the agent knows that @ and y are mutual exclusive events, and he is thinking of exactly n
situations in which ¢ is true and, at the same time, m situations in which y is true, altogether he
has to reckon with (n + m) situations in which one of these two alternatives is the case.

Up to now, we have been deliberately slightly vague about what Mp¢ and M!ho exactly should
mean. For instance, is this index n within the scope of the agent’s knowledge? That is, does the
agent know himself of (exactly) n concrete situations in which @ holds, and if so, is it possible
that there are still other situations he does not know about where ¢ holds as well? This makes
sense in situations in which the agent has to make decisions that depend on rules that allow for
exceptions. The alternative interpretation is, that these n situations are only known to the
reasoner using the system at a meta-level, interpreting K, as some abstract n-degree of
knowledge (or perhaps belief, if n is greater than some threshold)? We believe that the logic can
be used in both these cases, and will not fix the interpretation in this paper.

It is argued (cf. [HM85]) that the axiom which distinguishes knowledge (K) from belief (B) is
(K9 — ¢). Instead of (B — @), for belief, the weaker axiom —B. is added. Now that we
have (infinitely) many operators around, we might see how they behave in this respect. In
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Gr(S5), —=KpL (meaning that more than n possibilities are reckoned with) is derivable only for
n = 0. If we would have (add) —KpL, implying that he allows for more than n possibilities and
hence he ‘does not know too much’ (if n is big). And indeed, as long as the agent considers at
least one possible world, it means that he does not know contradictions (—K_L). In case he has
no epistemic alternative left his knowledge is all encompassing but inconsistent (K¢, for any
¢). This is of course excluded in S5 (and hence in Gr(S5)), but so far, there was no way to
exclude the extreme case of an ‘omniscient knower’, i.e., one for which (K¢ < ¢) holds.
Semantically speaking, there was no way to define the class of Kripke models in which each
world had more than one successor. Using graded modalities this can be enforced by adding
MiT to any system.

4 Examples

When interpreting Ky, as an ‘n-degree of knowledge’, we recall that the higher the degree, the
less certain the knowledge. The picture is denoted in the following chain:

Koo - Ki9o—> ... Ky 5 Kp19 ... = ... Mp+190 = Mpo — ... > M9 - Mgo.

Here, the ‘—’ denotes logical implication. If, semantically speaking, the number of alternatives
is infinite, the sequence is an infinite one, and ‘=’ denotes implication, in the sense that all M;-
formulas are logically weaker than all the Kj-formulas. We could, as argued above, interpret the
strongest formula in this chain (‘Ko®’) as “@ is known”, and the weakest (‘Mp®’) as “@ is not
impossible”—but even as “@ is believed”, cf. [HoM89].

If, however, the number of alternatives is finite, say N, we get the sequence

Ko¢ (=MN.19) = K19 EMN2¢) = ... Kn® (= MNn-19) = ... KnL10 (= Mog) — KN (=T)

In fact, this is the case in the situation of the introduction, where the agent is capable to sum up
a complete description of the model by listing a (finite) number of possible situations
determined by some finite set of propositional atoms.

The property that each formula of L is equivalent to one in which no nestings of the operator
occur (2.11), supports to consider an S5model to be a collection of ‘points’ (worlds) that can
have certain properties (summarized by the atomic formulas that are true in each world), the
language L being sufficiently expressive to sum up the quantitative distribution of those
properties over the model. Alternatively, identifying worlds with truth assignments to primitive
propositions, as is usual in standard S5models, we can view a Gr(S5)-model as a multi-set of
truth assignments rather than a set of these as in standard, ungraded modal logic. A special
case, of course, is that situations (= truth assignments) occur only once in a description. We
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shall refer to these models as simple (referring to the original Latin meaning of this word). Note
that in simple models it is still sensible to use graded modalities, since an assertion (even a
primitive proposition) may nevertheless hold in more than one situation, as e.g. p in the
situations {p is true, q is false} and {p is true, q is true}.

To be more specific, let us consider a simple example. Suppose we are given that the agent
knows (p v q) and also (p v 1). Since q and r are ‘independent’ propositional atoms, we try to
formalise our intuition that the agent has more confidence in p than in q (or r). Given the three
propositional atoms, the agent will consider five of the eight (a priori) possible worlds: the
worlds in which (=p A (—q v —r)) is true, left out. Thus, assuming that we have a simple
model in the sense above, we get (M!sT A Ml4p A M!3q A M!3r), indicating that indeed, pis
the ‘most frequent’ atom. (This is perhaps more appealing when interpreting the premises as
(—q — p) and (—r — p), expressing that there are two (independent) reasons for p.)

Michael Freund has proposed a formal system for defaults, in which the number of worlds
refuting some default is important when imposing an order on such defaults. In Freund’s
words: “... if we have to choose between two assertions of A that are in conflict, our natural
move is to drop the one that is violated by the greatest number of worlds...” (Cf. Fr93)).
Graded modalities provide a tool to explicitly reason with such numerical values. However, in
Freund’s general approach, the worlds themselves may have attached weights to them, so that a
full treatment seems to be out of scope here; in our set up, all worlds would have the same
weight (although generalizing this to arbitrary weights seems to be feasible).

The following example is well known in the literature on probabilistic reasoning ([Pe88]) and
on non-monotonic reasoning ([Gi87]) where it is called the lottery paradox. It deals with the
situation of a lottery with n tickets, numbered 1 ... n. Let w; denote ‘ticket i will be the winning
ticket’ (1 < i < n). Many default theories (cf. [Gi87]) allow one to obtain the defeasible
conclusion —wj for each i < n, using a default rule expressing “if you can assume that —w;,
conclude —w;”. In particular, one derives (—w1 A ... —=wy), raising the question why we call
the happening a lottery, if we can derive on forehand that no ticket will (probably) win.

In our graded language, we would model the situation as follows, using the premises P1-P2:

Pl Ko—(wiA wj) (i #j) no two tickets will win simultaneously
P2 M!IZ)7TAMIwW;(i<n) of all n possibilities, there is one in which ticket i wins
From these premises, one safely deduces that Ko(wi v wa v ... v wn), and even Kg(wq V wp
V ... V.wp) (with V standing for exclusive or) expressing that exactly one of the tickets will
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win. Moreover, one deduces K1—wj, expressing, that, except for (at most one) possibility,
ticket i will not win. One should compare this with ungraded modal approaches, in which it is
possible to express P1 together with the fact that there are at least n possibilities (the latter is
done by adding [M(W1 A =W2 A mW3 A ... A =Wp) A M(=W] A W2 A —W3 A ... A —Wp) A ...
AM(=wW1 A =W3 A =W3 A ... A Wp)] but in which there is no way to guarantee that there are at
most n of such worlds (adding copies to the ‘intended model’ is never excluded).

In the example of the introduction, the number of worlds (sources) was fixed. This gives rise to
considering Grk(S5), with fixed k € N, which is obtained from Gr(S5) by adding MT to it.
Let

k*=min{me N |m>3k}.

Using a preference modality (use belief in the sense of Perlis [Pe86]) expressed by operator P
as in [MH91], we may express the democratic principle of infallible computers in Gri(S5),
with k denoting the number of computers, as P < K¢, that is, ¢ is preferred (is a
practical/working/use belief) iff it is true in more than the half of all sources. Note that there is

no logical omniscience in this respect, in a way resembling the local reasoning approach of
[FHS88].

However, note that here, P is not a normal modality as it is in [MH91], since, as follows from
our discussion about the K-axiom, P(¢ — y) — (P@ — Py) is not valid. To illustrate this,
consider the case of an airplane with three sensors w1, wo and w3 in which “it is foggy” (o) is
true according to w; and wy (and not according to w3), and “permission to take off” (y)
according to sensor w1 only. Then we have that both P(¢ — ) (since @ — Y is true in wq and
w3) and Po (since ¢ is true in wq and w»), thus both ¢ and (¢ — ) are working beliefs,
without the conclusion “permission to take off” () being one.

One might contrast this with the situation where rules are added to the system (in the form of
(certain) knowledge: cf. [MH91)). For instance, in the above example, Ko(¢ — —y) might be a
rule (it is known by the decision support system, independently of the information supplied by
the sources, that fog is sufficient to deny permission to leave). If in addition, P would be the
case (the systems supposes ¢ based on the information of its sources), it would take as a
working belief —, i.e. there is no permission to fly! (This follows directly from axiom Al:
Ko(® = —=y) = (Kkn¢ = Kxn—y), ie., Ko(@ = —y) = (Po — P—y).)

Recall that Grk(S5) = Gr(S5) + M!T. Using Proposition 2.2 we see that for any @, M!lpop V
M!1¢ V... V Mo is derivable in Gr(S5). Here, a formula of the form M!n@ is rather
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informative, since we know the relative number of occurrences of ¢. This is close to adding
probabilities to (modal) logic. In the literature, there have been several attempts to do so (Cf.
[FH89, HR87]). In order to avoid the problem of losing compactness (cf. [Ho92b]) it was
suggested to allow only for a finite number of probabilities ([FA89, Ho92b]). We will give the
main idea now.

Let us denote the language with graded modalities with L¢ (a language for counting). The
language L (a language for probabilities) is like Lg, but instead the operators My, we now add
operators P7, for each r € [0,1]. The intended meaning of P7¢ is, that the probability of ¢ is
greater than r. Two interpret this language, we assume to have a finite set F, such that {0,1} c
Fcl01]and Vrs(te FAse FAr+s<1)= (r+se F). Now, a Probability Kripke model
M over F is a tuple <W, =, R, P>, where W is a set of worlds, & as before, R is a serial
relation on W (Vw3vRwv) and Pg: W x AW) — F is a function from the powerset of W to F,
for each w € W, satisfying:

- XNY =0 = Pp(w,X UY) =Pgr(w,X) + PR(W,Y) X,Ye AW)
- Pr(w,{vIRwv}) =1

The truth definition for Lp formulas is obtained straightforwardly, with the modal case

(M,w) E P7@ iff Pr(w,{v | Rwv and (Mv) £ ¢}) >

We denote the class of all these models by PXg. In [Ho92b] a logic PgD is given, such that we
have PED |- ¢ & PXg = ¢.

Let Gri(K) be Gr(K) + M!T. This class is obviously sound and complete with respect to %,

the class of Kripke models in which each world has exactly k successors. Moreover, let

012 k
Fk={O=E’ vk ’E=1}

Given a model M, = <W, 1, R> € %, we straightforwardly associate a model 9\{}, =<W, r, R,
Pri> € PXpk with it by stipulating that Prg(w,v) = § if Rwv holds, and Pgg(w,v) = 0
otherwise. The relation between the classes of valid formulas of those two models is as
follows. Let T: L¢ — Lp be a translation from graded to probabilistic formulas, distributing over
the logical connectives and such that T(Mn9) = L if n 2k and t(M,0) = P;1(@), with r = E if n
<k. We claim that for all ¢ € L¢, (M, w) = o iff (.‘MP,W) E 1(p). Conversely, we define o: Lp
— Lc as a translation that distributes over the connectives and for which moreover o(P;¢) =
M;0(9), where n = max {m | 2 < r}. In this case, we have for all ¢ € Lp, (Mp,w) F @ iff
(M w) = o(9). Note that, although in general ©(0(9)) # ¢ and o(1(@)) # @, we do have MPI=
¢ & T(o(9)) and M, E @ <> S(T(QP)).

The above observation immediately ties up the ways to reason about relative occurrences with
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ways to reason about probabilities, at least for the minimal graded modal logic Gri(K).
However, we argued that the natural graded system to reason epistemically with (or about)
numbers, is Gr(S5). So what is the counterpart, in the sense of the paragraph above, of $5,
the semantic class of Grg(S5)? Models for Gri(S5) are M = <W, 7, R> in which R is an
equivalence relation, and for which Vw(I{v | Rwv}| = k). But, by an argument using generated
models (which still holds for the graded cases, cf. [Ho92a]), we can also conceive them as
models in which R is universal (VwvRwv) and for which Vw(I{v | Rwv}l =k). In such a
model, there is no need to explicitly refer to the relation R. So let Uy = {M = <W, > | W] =
k}, where (Mw) E M@ iff I{ve W | (4v) = @}I > n. Then we have that Gr(SSH + ¢ & Uk
E .l

On the side of probabilistic models , we add the following constraint in order to compare them
with Ug. The class PKUy is a subclass of probabilistic PX-models M= <W, 7, R, Ppx> in
which Pgg is such that Vwv(Pgg(w,v) = %). In particular, we have a kind of reflexivity:
Prk(w,w) = % We claim that we have, forall p € L¢: U ¢ & P T(¢) and forall g €
Lp: Uk o(@) © PXi = .

We now proceed by mentioning the use of graded operators to express the ‘numerical
syllogisms’ as introduced in [AP88]. In the following, the left hand side is our translation of
the numerical syllogisms on the right hand side.

1 Mld exactly 7 days of the week are known

2 Mls(wad) I know 5 of them to be working days

3 Mja(sad) at least 4 days are shopping days

4 - Mi(WAs) - I'know at least 2 days to go working and shopping.

To prove such a conclusion formally, it turns out to be worthwhile to split up the set of
formulas (the formulas in d, w and s), in to a set of partitions (cf. Figure 2).

The formal derivation now reads as follows (note I = {q, B,V 0, ¢, 0, }):

)] Ml(yvdvovm) translation of 1 (cf. Figure 2)
2) M!5(8 v 1) translation of 2
(3) M3(¢ v ) translation of 3
“4) Ko—=((¢ vm) A (YV §)) definition of T
©) —M7(yvdvovm) (1), def. M!

Iwe will not prove this here, but the result is easily obtained by combining results of [Fi72] and [HR91].
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6  —Ms3(yvd) 2.2.(viii), (3), (4), (5)
(7 Ko(® — (yv 8)) > M30 - M3(1V 8))) AKo(8 — (Yv 8)) Al'and AO, R1
®) —M3d AO, (6), (7)
) M!pd v M!18 v M1 (8), 2.2.(iii)
(10) —=Mjm— M!on v M!im) 2.2.(iii)
(1) Ko—(B Am) — [(M!pd v M!18 v M128) A Mg v M!ym)) —

Mo v ) v M!S v ) v Ml(S v )] A0, A3
(12) -Mir-> M@ vm)v MG vr)vMH@ v (9)(10)(11), F Ko—(8 A )
(13)  [Mlp@vm) v M!S vr)vMh@vr)] —-My@dvn) AO,def. M!
(14)  M!5(8 v m) = My v m) A Ma(d v 1) = Ma(d v r)) def. M!, A2 twice
(15) (=M@ vm) AM!5@vT) =L A0, (14)
(16) (MimAM!s@vm) > L A0, (12), (13), (15)
(17) (2), (16)
(18) (17), A1’

For example, it is understood that w <
(avdvevm). If T={a,B,7V,8,¢, 0,
1}, then, for all different x1, ..., xke T

2<k<sT)
M F=EIA... AXK)

Figure 2

We round off this Section by mentioning a link between the graded formalisms presented here
and so called terminological or concept languages, used for knowledge representation (cf.
[DLN91] for these languages, and [HoR92] for a deeper analysis of the connection with graded
modal systems). Such languages provide a means for expressing knowledge about hierarchies
of sets of objects with common properties. Expressions in such languages are built up using
concepts and roles. Compound expressions are then made using a number of constructs.

Typical examples of such constructs are intersection, complement and restricted quantification,
yielding examples like the concept ‘mathematicians whose pupils are all clever’ (m M ALL pc,
with the modal counterpart (m A [Rplc), where [Rp] is the necessity operator for the relation
Rp). Many of such concept languages also allow for number restriction, as in the concept
‘mathematicians who have at least 4 clever pupils (m N >4 p c). Obviously, here the graded
modalities come into play: the latter concept would translate into the formula (m A <Rp>30),
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where <Rp> is the dual of [Rp]. In [HoR92], one can find several results on relating several
concept languages in the hierarchy of concept languages to (some fragment of) some graded
modal logic.

5 Conclusion

We have argued that extending the modal language with graded modalities (taking into account
the number of accessible worlds) gives some interesting options for epistemic logic. We
provided some examples of how this new language can be used in an epistemic context.
Particularly, we indicated how these operators can be used in the context of a fixed number of
sources. It thus provides us with a framework for reasoning with exceptions.

We think the graded modalities are especially useful in ‘laboratory-like situations’, where
explicit bounds are prescribed. Areas of application that may be worthwhile may therefore
typically be found in situations where numbers of counter-examples have a clear evidence and
meaning. Typical examples (that have not been worked out by us, yet) may thus be found in
‘laboratory situations’ like (reasoning about) a voting or in a legal context (where for instance a
petition is granted when at least » requirements are met) or more generally, intelligent databases
of which the quantities of the data matters (cf. [Ho92c], for several examples).

We see two lines of future work. Firstly, we may transfer some standard questions from
‘standard’ epistemic logic to the graded language. For instance, it might be interesting to study
the introspection properties more systematically, like was done e.g. in [Ho91b]. Secondly, we
think that several of our proposals have natural generalisations. For instance, where the P-

operator models the notion of ‘more than-a-half’, we could have such operators Py, for ‘more
than-an-n-th’.
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0 Introduction

In this chapter we will discuss other ways (than using partial logic explicitly) to deal with the
‘gap’ in truth values. Recall from the chapter by T.Langholm that, apart from the possibility to
represent this gap in a partial model, an alternative way to deal with it is by considering a class
of complete models (or, as T.Langholm call it, complete possible scenarios) It is important to
note, that if we like to think about proposition r as unknown, this does not mean that one thinks
about r as having no truth value; it rather happens to be the case that this value is unknown.
However, until now we had no way in our object language to distinguish between those
possibilities; until now it was impossible to express that r is unknown, although of course it is
either true or false.

In this chapter, we will deal with ways to express explicitly that something is known or not
known. Here, we do this by adding simply a (modal) operator K to the language, with intended
meaning of K¢ that ¢ is known. We are then allowed to re-embrace classical tautologies like
(Kp v —Kp), without trivialising knowledge: i.e. we do not have (Kp v K—p).

With modalities, we refer to their formal definition and use in the area of (philosophical) logic.
Modal logic is the logic of ‘must be’ and ‘may be’ (according to one of the standard
introductions ([HC68]) to this field); the logic of necessity and possibility, (as another standard
introduction ([Ch80]) puts it). The ‘standard’, or ‘neutral’ symbols for necessity and possibility
are ‘0’ (“box”) and ‘0’ (“diamond”), respectively. They are considered ‘dual’ in the
following sense; Op = —0—p, i.e. “necessarily p” is equivalent to “not possibly not p”.

This is indeed the standard, or ‘philosophical’ (cf. [Ga82]) notion of modality, which gives us
a way to distinguish between facts that are ‘accidentally’ true—Ilike “it is raining” (r)—and
those that are necessarily true—like “necessarily, all events have a cause” (Oc). This standard
modality has been studied since Aristotle, and was fully recognised by Kant in his ‘Kritik der
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University of Amsterdam.
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Reinen Vernunft’; however, the subject of modalities was rigorously expelled from the field of
formal logic by Frege, using the argument that when we say that a proposition is necessarily
true, we only give an impression of the reasons for our judgement. And, according to Frege, it
is only the content of a judgement that is logically relevant.

As is clearly exposed in [Ga82], the ‘philosophical’ modalities were re-introduced through the
backdoor to cope with the problems that several logicians had with the fact that, around 1925,
the material implication was declared to be the implication for formal logic. Logicians (but also
logicians-to-be, as may be confirmed by everyone who has taught an introductory course in
logic) have had problems with the paradoxes of this material implication which come to surface
in tautologies like (p — q) v (q — p), (“of any two assertions, at least one implies the other”); p
— (q — p) (“true facts are implied by anything”); —q — (q — p) (“false facts imply anything”).
As we know, the material implication (p — q) is nothing else but —(p A —q): it is not the case
that p and —q happen to be true simultaneously. Many attempts to strengthen the material
implication ‘—’ to a ‘strong implication’ (say ‘—» ") follow the idea that (p — q) should not just
mean that (p A —q) happens to be untrue, but rather that it is impossible for p and —q to be true
at the same time: i.e. (p — q) =—0(p A —q) or, equivalently: (p — q) =0(p —= q). Thus, we
return to our classical necessity operator to model “p (strongly) implies q” by “necessarily, p
implies q”.

One of the most appealing features of modal logic is, we think, its very natural semantics. In
previous chapters, hints were already made at modelling the ‘truth gap’ as follows. Suppose we
know p, we know also —q, and we are not sure about r. One way to model this is by “splitting’
our model of the world into two alternatives: one in which (p A —=q A1) is true, and one in
which (p A —q A —r) holds. If we are also uncertain about s, we again split our two
alternatives; however, if we do know that (r — s) holds, of the four a priori alternatives, we
discard (p A —q A 1 A —s). In modal logics, such alternatives for the world are called possible
worlds (and a collection of such worlds is a Kripke structure), and, as our example suggests, to
know ¢ then boils down to ¢ being true in all possible worlds! So, what happens is, that we
simply collect all the ‘possible scenarios’ for a formula in one structure, and enrich our
language to allow us to explicitly reason about them.

Recall the observation of T. Langholm that ‘... the interest in models was influenced strongly
by a wish to capture precisely a notion of entailment: ¢ entails  if y is never false whenever (0}
is true’. This should be compared with the argument to re-introduce modalities in order to
bypass the problems with implication, and the suggestion to replace it by O(p — q)- Recalling
that the latter formula is true in a Kripke structure exactly iff (p — q) is true in all (possible)
worlds, we recognise two rather similar attempts to capture a notion of entailment by taking into
account a collection of models (or worlds).

When the modal operator ‘D)’ is interpreted in the standard way, i.e. as ‘necessity’, we say that
we are dealing with alethic modalities (the Greek word alétheia means truth). It is interesting to
observe that in such diverse areas as linguistics, philosophy, computer science and artificial
intelligence, it was recognised that there exists a great variety of modalities (differing from the
alethic ones, each in its own way). To give some examples, apart from the alethic interpretation
of ‘O’ (must be) we may give it others, like temporal (always),; deontic ( ought to be); dynamic



(true after every execution of an action); arithmetical (provably); default (normally); epistemic
(known) or doxastic (believed).

In this chapter, we show that modal logic is useful when studying notions like knowledge,
belief, assuming by default, supposing, considering ... (for simplicity, we will call all such
notions ‘epistemic’, here). In Section 1, we will give the formal definitions for the basic modal
systems, and enrich them with operators to model knowledge and belief. Then, in Section 2,
we will deviate from those classical systems, and introduce modal operators to deal with
uncertainty. The ways we deal with those uncertainties can be characterised as ‘quantitative’. In
Section 3 we then pay attention to some ‘qualitative’ modal operators; in Section 4 we round off
with some conclusions.

1 Modal Epistemic Logic

1.1. Modal Systems

We start out by defining our modal language. In general, given a set P of propositional atoms
and O of operators, such a language is the smallest set L(P,0) 2 P which is closed both under
infix attachment of A, v, —, and <, and prefix placing of — and operators O € O. If 10l > 1, we
say to have a multi-modal logic. To present the minimal modal logic K, we will assume that O =
{O}. In the introductory Section, we already mentioned the variety in possible interpretations
for this operator ‘0’. We now present a uniform mathematical interpretation for it.

A Kripke model M for a modal language L with one modal operator O is a tuple <W,R, >,
where W is a non-empty set of worlds, R ¢ W x W a binary relation, and 1: W — P — {true,
false} a truth assignment to the propositional atoms for each world w € W. The truth definition
(TD) for ¢ € L at w, written (M,w) = ¢, is defined inductively as follows:

(Mw) E p iff m(w)(p) = true
(Mw) =y Ay iff (Mw) F y and (Mw) E
(Mw) = -y iff not (Mw) = v

TD@) (Mw) = Oy iff for all v for which Rwv, (M,v) & .

We say that an operator that is defined like O for R, is a necessity operator for R. For any
modal operator O, we define ¢ = —0—. ¢ is called the dual of O or, alternatively, the possibility
operator for R. Furthermore, we say that ¢ is satisfiable if @ is true at some world w in some
model M, @ is true in model M (ME @) if (M,w) = ¢ for all worlds of M, and, finally, ¢ is
valid (F @) if it is true in all models. For any class C of models, we write k= ¢ @ if ¢ is true in all
models in C. The class of all Kripke models % is denoted by X

As is easily verified, we have (= ¢ = = O¢) (but not = @ — O¢!) and (= O@—>vy)— 00—
Oy)). The latter property formalises a kind of Modus Ponens over all possible worlds.
Moreover, we observe that, for any propositional tautology ¢ (this may be read in a broad
sense, including formulas like (Op v —Op)) we have = ¢@.

The above notion of validity can be axiomatised in the logic K as follows. Since modal logic is
just (another) logic, we first add a propositional basis to our system:



Al)  Any axiomatisation of the propositional calculus
Rl) FoFooy=Fwy.

On top of that, the following modal axioms A2 and rule R2 for ‘0’ are added:

A2) O(p—-vy)— Qo —>0y) Distribution
R2) +o¢=+0O¢ Necessitation

An operator that satisfies A2 and R2 is called a modal operator. If a modal logic L satisfies A1
and R1, together with A2 and R2 for all operators in some set O, we say that L is normal over
O. The following rule is derivable in K and all its extensions we will deal with in this chapter:

Lemma 1.1. Let [*/g]¢ be any formula, which arises from ¢ by substituting any
occurrence(s) of B in ¢ by o. Then the following rule of substitution Sub is derivable in K and
its extensions:

Sub) F o B=F ¢ o [*ple

This substitution rule should be clearly distinguished from - (ot <> B) = (¢ & [%/B]@), which
is not true! We are tempted to say that modal logic is so to speak invented to avoid the latter
property: it is exactly what extricates modal logic from being extensional: indeed, if
propositions p and q have the same truth value, we do not want to conclude that knowing p is
equivalent to knowing q, or that the claim that always p is the same as always q (take for p:
Clinton is president; q: it is raining). Modal logic replaces this principle of extensionality by that
of intensionality, expressed by the lemma above: it guarantees that we are allowed to substitute
formulas that are equivalent in all contexts. (Note that - (ot <> B) implies - O(a. < B).)

Comparing our observations following the truth-definition with the axioms and rules of K, we
immediately see that K is sound for %; but in fact we even have completeness:

Proposition 1.2. Forall pe L,k ¢ & F« .

1.2. Knowledge and Belief

It is customary to use the symbols ‘K’ and ‘B’ if the intended interpretation of the box is
epistemic or doxastic, respectively. As will be clear by now, the modal language by itself
already provides us with a powerful mechanism to reason about knowledge and belief. For
instance, there is no restriction on the scope of the operators, enabling us to write down
arbitrary nested formulas—a feature that is provided by the bare modal language, but the
epistemic use of the operators also gives a natural justification to allow such nestings.
Theoretically, this feature naturally invites one to analyse (the suitability of) a variety of
properties (like Kp — KBp, or -Bp — K—Bp—an exciting venture, for which some buoys are
set out in [Ho92a]).

Formally, in this subsection we consider languages L(P,0), where O c {K, B}. Since here we
are not interested in the (explicit or distributed) knowledge in a group of agents, this suffices



for our purposes. Semantically, the operators K and B receive the same truth definition as [I:
they are both interpreted as a necessity operator with respect to two accessibility relations R and
S, respectively. Thus, the relation R gets the following interpretation when it has a knowledge
operator K as its necessity operator: Rxy if the agent considers world y as an epistemic
alternative for world x. Obviously, this relation should then be an equivalence. This time, we
will present the formal semantics once we have given the logical systems for knowledge and
belief.

As far as axiomatisations are concerned, we define the following systems:
Definition 1.3. The modal system S5 is normal over {K} and has, on top of that, the
following axioms:

A3) Ko—oo

A4) K¢ — KKo
Next, KD43 is normal over {B}, has the axioms A4, and A5 (with ‘B’ instead of ‘K’) and the
axiom D:

D) -BLl

Finally, KB is the logic one obtains by combining the $5-axioms for K, the KD45-axioms for
B and the following interaction axioms:

A6) K¢ —Beo

A7) B¢ — KBe.

In words: knowledge is understood to be veridical (A3), and satisfies positive as well as
negative introspection (A4 and A5, respectively). Belief, on its turn, is not assumed to be
veridical, but satisfies the weaker property that beliefs are consistent (D). Finally, knowledge is
to be understood stronger than belief (A6) and one is conscious about one’s beliefs (A7).

As far as completeness is concerned, the crucial thing to notice is, that when we add properties
for Kor B (on top of A2), it has consequences for the accessibility relations R and S,
respectively. For instance, let us consider the axiom A3, K¢ — ¢. If this formula has to be
valid on our Kripke models, it says that for all ¢, if @ is true in all accessible worlds y (for
which Rxy), it should be true in world x itself. This is guaranteed if we know that R is
reflexive, since then we have Rxx. We say that axiom A3 corresponds to reflexivity. We leave
it to the reader to check that in the same way, A4 corresponds to transitivity (Vxyz(Rxy A Ryz)
— Rxz)), and A5 to Euchdlclty (Vxyz(Rxy A Rxz) — Ryz). Furthermore, the scheme D
corresponds to seriality (Vx3JySxy). Finally, A6 corresponds with S < R and A7 with
(Vxyz(Rxy A Syz) — Sxz)). For a systematic treatment of such correspondences, the reader is
referred to [Ho92a).

Definition 1.4. Let KD45 be the class of Kripke models M = <W R,m> such that R is serial,
transitive and euclidean. 557is the class of models in which R is an equivalence. Finally, X8 is
the class of models <#M,R,S,mt> such that <M,R,m> € S5, <M,S,t> € XD45 S =R and, for
allx,yandz e W, ((Rxy A Syz) — Sxz)

Proposition 1.5. For all ¢ € L(P,{K}), 55 ¢ & Fss@; forall g € L(P,{B})kp4gs ¢ <
E x5 @; forall g e L(P{K,BY) Fkp o & & xB Q.



Remark 1.6. The proof of Proposition 1.5 is by now folklore in the modal literature (Cf.
[Ch80, HC68]), and most often done using a Henkin-style procedure. For future reference, we
sketch the idea behind it. In such a proof, a (so-called canonical) model Mc is build for a
consistent formula ¢ as follows. The worlds of such a model are maximal consistent sets I
Propositional formulas are governed by the condition n¢(I")(p) = p € T. Then, a relation R€ is
defined using the clause (R°TA « for all 03 € T, we have o € A). Then, to round off the
completeness proof, one has to establish the following coincidence or truth lemma:

For all formulas vy, (M) F vy ye T.

This is sufficient to prove satisfiability of our given consistent @: its consistency implies that ¢
€ @ for some maximal consistent set, and thus ¢ is satisfied in M at world ®. It is important to
note that the definition of R€ is the same for several modal logics: the axioms of the logic (that
determine the behaviour of maximal consistent sets) steer the properties of this accessibility
relation. For instance, when A3 is an axiom of the logic, R¢ will be reflexive: if Oy e T then
(because of A3) also T', so R°TT.

It turns out that these systems are rather well-behaved. For instance, from [Ho92a] we learn
that in fact nesting of the modal operators are, logically speaking, superfluous:

Theorem 1.7. [Ho92a]. Let X, Y € {K, B, =} and Xbe a sequence of X’s. Let ¢ be any
KB-formula. Then kg X Y@ <> (—)Y®, where the ‘=’ is present if the number of ‘—’ in X
is odd.

Moreover, as far as the system S35 is concerned, we have the following.
Proposition 1.8. Let U be the class of Kripke models M = <W,R,t> in which R is
universal (i.e., for all x,y € W, Rxy). Then 55 ¢ < ¢ o.

The latter proposition guarantees that we can think of SS5-models as just a non-empty collection
of complete propositional models. In particular, in such a collection M we then have M= R
Vw: (Mw) E ¢ & Vw: (M,w) E Ko © Tw: (Mw) = K. As a consequence, we may
assume that for each w and w' € W, t(w) # n(w"), allowing us to identify a world w with its
truth-assignment 7t(w). In such a case (i.e., when we may identify worlds with their truth-
assignment), we call the model normal. In such a model, a universal relation can be conceived
as characterising exactly what an agent knows, which then, on its turn, is generated by the
propositional kernel of his knowledge. (We will briefly address this further in 1.3.) Since in a
model M= <W,R, > € U the relation R is always W X W, we also write M= <W > in such
a case. In that case the truth definition for K@ in w boils down to the fact that ¢ is true
everywhere. Summarising, if NORMAL = {M = <W,n>| W is normal} then we have 55 ¢

< EaprMac 9.

We end this subsection by mentioning some draw-backs of the epistemic notions developed so
far. Recall from 1.1 that A2 and R2 together are equal to saying that ‘0’ is a modal operator.
Having an epistemic interpretation of ‘0’ in mind, the question of whether these notions are
captured adequately and realistically breaks to surface. There is indeed a problem with the



notions so far, known as the problem of “logical omniscience”. This problem pertains to a kind
of too idealistic notion of knowledge and belief. Consider for instance the property that beliefs
are closed under logical consequences. Especially for a notion of belief, which should be more
fallible if human everyday beliefs are to be captured, this property is obviously not true. On the
other hand, this property holds for the S5-notion of knowledge and the KD45-notion of belief.
But there are also other (related) properties that are not very realistic, which nevertheless hold in
S5 / KD45. We list some of them (for KD45-belief) below, including the one mentioned
already:

(LOD) B A B(¢p —» y) > By (Closure under implication)
(LO2) E ¢ =k Bo (Belief of valid formulas)
(LO3) FQ—->y=kF Bp—>By (Closure under valid implication)
(LO4) Foey=kFEBp o By (Belief of equivalent formulas)
(LOS) (Bo A By) > B(g A y) (Closure under conjunction)
(LO6) Be - B(pvy) (Weakening of belief)
(Lon Bp - —B-¢ (Consistency of beliefs)
(LO8) BBy — ¢) (Belief of having no false beliefs)
(LO9) B true (Believing truth)

We briefly mention two ways to get around this problem. One approach that certainly deserves
mentioning in this volume, is by allowing the worlds to be partial themselves (cf. [Th92, Le84,
Wa89]! In some sense, one thus obtains two ways of modelling ignorance: the modal and
partial approach (for some motivation for combining them in one system, cf. the chapter of
Jaspars and Thijsse in this volume). By choosing a partial logic without any tautologies (cf.
[Th92]) one obviously avoids, for example, the properties LO2 and LO6. Moreover, by
choosing a multi-valued logic in which p, (p — q) ¥ g, one can avoid most of the problems
mentioned above.

In the second approach, a notion of awareness is introduced. This is related to the denial of
axiom AS5: it is claimed that not knowing ¢ (for example when one is not ‘aware’ of @) is not
sufficient to conclude that one knows that ¢ is not known. A (syntactically defined) notion of
awareness then can limit this kind of inferences. It also solves LO6 and LO2: if the agent is not
aware of p, he will not believe (p v —p). For more on this, see [Th92, FH88a, HM89].

1.3. Circumscribing Epistemic States

In this section we shall be concerned with the characterisation of the epistemic state of an agent,
that is to say, a description of what the agent knows and what he does not. So we are interested
in describing both the knowledge and ignorance of the agent. This is very much related to
autoepistemic logic ([Mo85]) and the logic of “All I know” of [Le90], but here we follow a
treatment of this subject by Halpern & Moses [HM84]. They proposed an elegant mathematical
treatment of this phenomenon, using the notions of a stable set of epistemic formulas and S5
Kripke models. In this section we shall briefly discuss some ingredients of their approach.

Definition 1.9. A set T of epistemic formulas is stable if it satisfies the following:
(St1) all instances of propositional tautologies are elements of 3;
(St2) ifpeZandp > ye Xthenye I;



(St3) oeXZ=Kope X
(St4) ¢oeXe —-KpeX
(St5) Zis propositionally consistent.

Here (St 5) means that from X one cannot derive a contradiction (1) by means of Propositional
Logic (A1, R1) only. Keeping in mind that a stable set has to model an agent’s knowledge set
X ={o| Ko holds}, St 1 is related to the Necessitation rule of S5; St 2 to S5-axiom A2; St 3 to
A3 and A4; St 4 to A3 and AS and, finally St 5 is related to A3 again.

We now give some well-known properties of stable sets (cf. e.g. [Mo85]). By an objective
formula we mean a formula in which there are no occurrences of the K-operator.

Proposition 1.10. A stable set of epistemic formulas is uniquely determined by the objective
formulas it contains.

Proposition 1.11. Let X, X' be stable sets such that X c X'. Then X = X'.

PROOF. Suppose that X, X' are stable such that £ — X' and X # X'. Then there is a formula ¢
such that @ € X' and ¢ ¢ Z. By (St 3) and (St 4) it then holds that K¢ € X' and —K¢ € X.
Since £ X' and X # X', also —K¢ € X', so that both K¢ and —K¢ are elements of X'. This
contradicts (St 5).

Now, suppose that @ is a formula that describes all the facts that have been learnt by the agent.
What then is the epistemic state of the agent if she “only knows ¢”? Clearly, this epistemic state
has to contain ¢, but what else? The state must be minimal in some sense. However, it is not
the minimal stable set with respect to set-inclusion that contains ¢, since different stable sets are
incomparable with respect to <, due to Proposition 1.11 above. However, by Proposition 1.10
a stable set X of epistemic formulas (which we identify with an epistemic state) is uniquely
determined by the purely propositional formulas that it contains. We denote by Prop(Z) the
subset of X that exactly contains all purely propositional formulas. Now we may try as the
“least” epistemic state containing ¢ the stable set that contains ¢ and for which the purely
propositional part is the least (with respect to ).

Such a least stable set is not defined for every formula ¢: consider for example ¢ = Kp v Kq.
Every stable set T that contains ¢, has to contain either p or g, for suppose p ¢ and q ¢ Z. By
St 4, we conclude that —Kp and —~Kq € Z; which contradicts St 5 and the fact that ¢ € .
However, there are stable sets X, Z, such that @, p € Z2i,q¢ Z,and @, qe Iy, pe X;.
Thus Prop(Z;) N Prop(Z,) contains neither p nor q. So there is no stable set X that contains ®
such that Prop(Z) < Prop(Z) and Prop(Z) c Prop(X,).

The example above is justified by our intuition that an agent who says that she only knows Kp
v Kq s, in some sense, not konest: the only reason to know that you know p or that you know
q seems to be that you know at least one of p and q, which is stronger than knowing only Kp v

Kq. We call a formula ¢ for which it makes sense to say that you only know @ an honest
formula:

Definition 1.12. A formula @ is honestg if there is a stable set 9 that contains @ and such



that for all stable sets X containing ¢ it holds that Prop(Z®) < Prop(Z).

The intention is that ¢ denotes the stable set representing the epistemic state of the agent who
“knows only @” (if ¢ is honest). We can characterise this notion by means of NORMAL S5
Kripke models. If M = (S, w) is a normal S5-Kripke model, then K(M) is the set of facts that
are known in M: K(M) = {¢ | ME ¢} = {¢ | M= Ko}. K(M) is called the theory of M or
knowledge in M. Moreover, if M= (Sy, T;) and M, = (S,, T,) are two such models, their
union is defined as: M) L M, =(W; U Wy, Ty U Ty ), where (1] U Tp)(w) = my(w) if w €
W1, and = mty(w), if w € W, (since we identified worlds with their truth assignments, this is
always possible). We define the subset relation by: M; c 94 iff W; < W,

Lemma 1.13. K(%) is a stable set.

Proposition 1.14 ([HM84]). Every stable set T of epistemic formulas determines an S5
Kripke model M5 for which it holds that X = K(M). Moreover, if P is a finite set, then M is
the unique $5Kripke model with this property.

Corollary 1.15. Stable sets are closed under S5-consequences.

Which Kripke model is associated with the epistemic state of an agent that “only knows ¢”?
The bigger the model the less is known. Therefore we take the union of all (normal) S5-models
M= (S, ) in which it holds that K¢: My = U {#M| = Ko}. It appears that this ‘big model’
is not always a model of K¢, i.e. not always MP E Ko! This is seen as follows: let us consider
again @ = Kp v Kq. Let M) = {s | n(s)(p) = true} and M, = {s | n(s)(q) = true}. Clearly, M; F
K¢ and M, = Ko. Obviously, there is some s; € M such that (M,s1) = —q and some s; €
M, for which (Ma,s7) = —p. Let us now consider My, with s some state in Mp. Since s1 and
52 are states in Mg, we have (My,s) = —Kp A —Kq, i.e. Mp * Kp v Kq.

Definition 1.16. ¢ is honestyy © ¢ € K(:M(p).

Theorem 1.17 (Halpern & Moses [HM84]). For any epistemic formula @ it holds that:
(1) @ is honestg <> @ is honesty,
(i) ¢ is honestg = K(D\'Lp) =30

On the basis of epistemic states we can associate an entailment relation b between honest
formulas and arbitrary formulas as follows. The relation @ indicates which consequences
can be derived by the agent if he only knows the honest formula .

Definition 1.18. Let ¢ be honest. Then we define: ¢ + y < y € 9.

It is interesting to study the behaviour of this entailment relation. For instance, one immediately
sees, that it is reflexive: for any honest formula @, ¢ ~ ¢. We end this Section by giving some
examples of L., implying that this relation is moreover a non-monotonic one: this follows from
items iii and v below. In [MH93] we moreover demonstrate that L is cumulative. We return to
this in chapter [MH93] of this volume.
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Example 1.19 Let p and q be two distinct primitive propositions. Then:

@ pkp (v pr(PVPAKPVQY
(i) pkKp (vi) pvqkK(pvaq
(i) pk —Kq (viii) pvqhk —-Kp A =Kq
(iv) paqkKq (ix) parqkrKpaKq
(v) pagqi —Kq x) pa(p—o9hkKq

2 Modalities for Quantities

Consider an agent getting input from three different sources w1, wz and w3. Suppose further-
more, that two types of information are relevant for this agent, say p and q. All the sources
agree on p: they mark p as true. Finally, in w1 and wy, q is true, whereas in ws, it is false.
Using standard modal logic, one would consider the resources wj (i < 3) to be worlds in an S5-
Kripke model, and observe that the agent knows p, i.e. Kp holds, but does not know q or —q,
since he considers both alternatives to be possible: Mq A M—q holds.

This is about the limit of the expressibility of standard modal epistemic logic. To be more
precise, consider the following Kripke model Mg = <W, R, ©>, where W = {wq, w2, w3, ...
wk} (k24), R =W x W and n(p)(w;j) = true for all i < k; m(q)(w;j) = true iffi ¢ {2, 3};
n(r)(wi) = true iff i € {1,3} (cf. Figure 1 below).

[
p’q’r P,q,i\ p’(X’r P,q,k p’q9x paq’\
o ® ® ® @  ceressecrescescsssensaes Py
Wi Wa w3 Wy Ws Wy
\—
Figure 1

In [HM93], we demonstrate that in all purely modal formulas that are true in this model, one
may freely interchange the role of q and r. In other words, despite the fact that q is true ‘almost
everywhere’ in the model, and r is false ‘almost everywhere’, the modal language is too weak
to express this difference between q and r. We claim that, both in the cases where worlds are
interpreted in one-one correspondence to counterparts in the physical world (e.g. like sensors)
and the case in which worlds correspond to possible (but made up) scenarios for some agent, a
tool to distinguish ‘q-statements’ from ‘r-statements’ in the above model is highly desirable.

In this Section we will treat two such tools; the first is obtained by adding numerical (or graded)
modalities to the language, in the second approach we will focus on probabilistic modalities.

2.1 Graded Modalities

First, we will discuss a way to add quantitative modalities My, (n € IN), to the language, with
the intended meaning of Mu¢ that more than n successors verify @. We refer to [Ho92b] for
some history, and a first investigation into the expressibility, decidability and definability of this
graded language. An application of those graded modalities, especially of the graded analogue
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of S5, has been studied in the area of Generalized Quantifiers, (cf. [HR93a)). In [HR93b], a
link was provided between the graded formalisms presented here and so called terminological
or concept languages, used for knowledge representation. Such languages provide a means for
expressing knowledge about hierarchies of sets of objects with common properties. Here, we
try to explain how the greater expressive power of graded modalities may be used in epistemic
logic.

We showed in [HM92] how these new modalities may help to make some issues in the field of
implicit knowledge explicit. However, there, the graded modalities are motivated to establish
some properties on a ‘meta-level’; adding them to the language enables one to define more
accurate models for implicit knowledge. In particular, they enable one to modally define the
intersection of accessibility relations. Here, though, we try to use the new operators directly in
the object language in order to obtain a more fine-tuned epistemic logic. We think that, using
the enriched language, one has an appropriate tool to deal with notions like ‘uncertain’, or
‘almost certain’ knowledge (or belief). The new operators may then be helpful to reason with
degrees of acceptance.

As already mentioned, the intended interpretation of M, (n € IN) will be that there are more
than n accessible worlds verifying ¢. By defining Kp@ = =M—,¢, K0 is true iff at most n
accessible worlds refute @. In terms of epistemic operators, note that Ko boils down to K¢, so
that we may interpret Ko as our (certain) knowledge operator. Generally, K,¢ means that the
agent reckons with at most n exceptions for ¢. Dually, M@ then means that the agent considers
more than n alternatives possible, in which ¢ is true. Since we are mainly interested in
epistemic systems here, for the time being we will remain on solid ground by considering the
graded analogue of S5. In this Section, our language L(Gr) = L(P,0) is built from a set of atoms
P and operators O = {M,, | n € IN}. Apart from K, we introduce the abbreviation M!h0, where
M!o@ = Ko—@, M!y¢ = Mp-1¢ A —=Mp©), if n > 0. From the definitions above, it is clear that
M!;, means ‘exactly n’.

Definition 2.1. The system Gr(S5) is defined as follows (cf. [HR93a]). It has inference
rules Modus Ponens and Necessitation:

RO FotFooy=y
Rl Fo=F Koo
It has also the following axioms (for each n € IN):

Al all propositional tautologies

A8 Ko(@ — ¢) = (Kn® = Kny)

A9 Kn® — Kn1¢

Al0 Ko—(9 A ) = (MIh¢ AM!my) = Mlpim(9 v )
All =Kp0 = Ko—Ky o

Al2 Koo —> o

The system with rules RO and R1, axioms Al, A8 - A10 is the graded modal analogue of K,
the basic modal system—so let us refer to it with Gr(K). In Gr(K), A8 is a kind of * generalized
K-axiom’ (cf. 2.3), A9 is a way to ‘decrease grades’ in the possibility operator (A9 is
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equivalent to Mp41¢ — Mp®) and using A10, one can go to ‘higher grades’. To ensure that the
definitions work out rightly, we take proposition 2.10 from [Ho92b]:

Proposition 2.2. The following are derivable in Gr(K) (and hence in Gr(S5)):

@) Mn(¢ A ¥) = (Mp® A Mpy)

(ii) Mo AaMnpo—- 1 (n #m)
(iii) Kn—¢ ¢ Mlgp VM0V ... VML 0) (V denotes ‘exclusive or’)
(iv)  —Mp(® Vv ¥) = -Mpo

v) Mp+m(® v ¥) = Mo v Mpy)

(vi) Mo AMpo — L (m2=n)
(vii) Mn(® A W) A Mp(@ A =) = Mpym+19

(vii)  (Ko—(® A ¥) A (Mn® A M) = Mp4m+1(@ V )

For a Kripke model M we extend the truth definition of ¢ at w for our new operator as follows:
(TD M,) (M,w) = Mpo iff |{w' € WIRww' and (M,w") = @}|>n,ne N.

Remark 2.3. Note that (M,w) = K¢ iff [{w' € W | Rww' and (M,w") = =@} < n. Also,
note that the modal operators M and K (or ¢ and O) are special cases of our indexed operators:
Mo = Mo and K¢ = Koo.

We end this introduction to Gr(SS5) by recalling the following results:

Theorem 2.4. (Completeness: [Fi72], [FC88]). For all ¢ € L(Gr), Gr(S5) ¢ iff S5 ¢.
Thus $5is also a class of models characterizing Gr(S5).

Theorem 2.5. (Finite models: [Ho92b]). Any ¢ € L(Gr) is satisfiable iff it is so on a finite
model.

Theorem 2.6. (Freedom of nestings: cf. [HR93a]). In Gr(S5), each formula is equivalent to
a formula in which no nestings of (graded) modal operators occur.

Related to the last theorem, a popular slogan in modal logic is that in S5, ‘the inner modality
always wins’, we have e.g. KMo = Mg, MK = K¢ and MM¢ = Mo in S5. However, in the
case of Gr(S5) this is not always sufficient: we do have M3Ms¢ = M5, but instead of MsM3@
= M3¢ we now have M5sM3¢ = MsT A M3, accounting for the fact that MsM3¢ implies that,
so to speak, 5 worlds are around.

How can Gr(S5) serve as an appropriate starting point to study epistemic phenomena? To start
with, RO and A1 express that we are dealing with an (extension of) classical propositional logic:
we may use Modus Ponens and reason ‘classically’ (A1). By taking S5 as a ‘standard’ system
for knowledge, the observations in the preceding Section suggest that we interpret Koo as ‘@ is
known’. Then, RO, R1, Al and A12 find their motivation in the same fashion as the
corresponding properties in S5, i.e., we may use Modus Ponens, the agent knows all
(Gr(S5))-derivable facts, we are dealing with an extension of propositional logic (A1) and
moreover the agent cannot know facts that are not true (A12).
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The semantics tells us, that Ky@ should mean something like ‘the agent reckons with at most n
exceptional situations for ¢’, or ‘the agent “knows-modulo-n-exceptions” ¢’. Thus, the greater
n is in Kp@, the less confidence in ¢ is uttered by that sentence. The latter observation
immediately hints at A9, K;¢ — Kp41¢: if the agent foresees at most n exceptions to @, he also
does so with at most n+1 exceptions. Of course, the generalisation of A10, for n > 0; Kn¢ — ¢
is not valid: if the agent does not know ¢ for sure, i.e., if he allows for exceptions on @, he
cannot conclude that @ is the case. Thus Kp¢ expresses a form of “uncertain knowledge”.

Axiom A8 says that if the agent knows that ¢ implies y, then, if he believes that there can be at
most n exceptions to @, he will not imagine more than n exceptions to \, since every exception
to y will be an exception to @ as well, i.e. Ko(@ — ) = (Kp¢ — Kpy). Recall from Section
2.1 that the K-axiom, K(¢ — y) = (K@ — Ky), has been considered a source of logical
omniscience. However, now that we allow for weaker notions of knowledge, it appears that the
K-axiom is only valid for Kg, which we may consider as a kind of ‘ideal’ knowledge. Instead
of a K-axiom for each K;,, we have the much more realistic

*) Kn(@ = ) = (K9 = KnmV).

This seems very reasonable (suppose n, m > 0): if the agent has some confidence that ¢ implies
V, and also has some confidence in @, his conclusion that y holds should be stated with even
less certitude than that of the two assertions separately. This is reminiscent of plausible
([Re76]) or defeasible reasoning, where reasoning under uncertainties is also the topic of
investigation. Note that (*) guarantees that, the longer the chain of reasoning with uncertain
arguments, the less certain the conclusion can be stated by the agent. Moreover, note that,
although (*) holds, if n > 0 we do not have Ky(¢ — y) = (Kp¢ = Kyy): this makes it
questionable to call K;, a modal operator (if n > 0). However, here we do so because all the
operators receive some natural interpretation in Kripke models.

When interpreting K, as an ‘n-degree of knowledge’, we recall that the higher the degree, the
less certain the knowledge. The picture is denoted in the following chain:

Kop =2 K10 - ... K@ = Kp419 ... = ... Mp410 > Mpo — ... > M9 = Myo.

Here, the ‘—’ denotes logical implication. If, semantically speaking, the number of alternatives
is infinite, the sequence is an infinite one, and ‘=’ denotes implication, in the sense that all M;-
formulas are logically weaker than all the Kj-formulas. We could, as argued above, interpret the
strongest formula in this chain (‘Kg®’) as “@ is known”, and the weakest (‘Mg®’) as “@ is not
impossible”—but even as “@ is believed”, cf. [HM89].

If, however, the number of alternatives is finite, say N, we get the sequence
Ko (=Mn-19) = K10 EMN20) = ... Kn@ EMN-19) — ... KN-19 (= Mpo) = Kno (=T)
In fact, this is the case in the situation of the introduction to this subsection, where the agent is

capable to sum up a complete description of the model by listing a (finite) number of possible
situations determined by some finite set of propositional atoms.
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Identifying worlds with truth assignments to primitive propositions, as is usual in standard S5
models, we can view a Gr(S5)-model as a multi-set of truth assignments rather than a set of
these as in standard, ungraded modal logic. A special case, of course, is that situations (= truth
assignments) occur only once in a description. We shall refer to these models as simple
(referring to the original Latin meaning of this word). Note that in simple models it is still
sensible to use graded modalities, since an assertion (even a primitive proposition) may
nevertheless hold in more than one situation, as e.g. p in the situations {p is true, q is false}
and {p is true, q is true}. For a deeper discussion on this and some specific examples, we refer
to [HM93].

In several examples, the number of worlds (sources) may be assumed to be fixed. This gives
rise to considering Gri(S5), with fixed k € N, which is obtained from Gr(S5) by adding M ! T
toit. Letk”=min{m € IN | m > 0.5 k}. Using a preference modality (use belief in the sense of
Perlis [Pe86]) expressed by operator P as in [MH91]}, we may express a democratic principle in
Grk(S5), as P <> Ky, that is, @ is preferred (is a practical/working/use belief) iff it is true in
more than the half of all sources. Note that this operator P does not obey the Distribution
Axiom (A2): in this sense it contributes to solving some aspects of logical omniscience. Of
course, other tresholds (than 0.5) might as well be taken.

2.2 Probabilistic Modalities

Recall that Gr(S5) = Gr(S5) + M!T. Using Proposition 2.2 we see that for any ¢, M!lgpp V
Ml V... V Mo is derivable in Gr(S5). Here, asserting M!,@ is informative, since we
know the relative number of occurrences of . This is less the case when the number of worlds
is not finite, fixed, or known. In such a case, it seems more appropriate to add probabilities to
(modal) logic. In the literature, there have been several attempts to do so (Cf. [FH89a, HR87]);
we will compare them after we have informally introduced a language for a system that we will
explore here.

Whereas probability theory on itself is a quite well-understood area in mathematics, its
applications in Al and computer science in general justify the study and analysis of our
reasoning about probabilities. In spite of the existing (and fastly growing) literature on
probabilistic reasoning, (cf. [Ni86] allowing truth values to range between 0 and 1) we know
of few endeavours of defining a logic enabling explicit reasoning about probabilities.

The logic PgD, as introduced in [FA89], is essentially modal. Instead of interpreting the modal
(possibility) operator as a ‘likelihood operator’ (as is done in [HR87)), it is a logic designed for
reasoning with (exact) probabilities. Formally, this logic contains operators P} (in our notation)
for each r € [0,1]. The intended meaning of P; ¢ becomes “the probability of ¢ is strictly greater
than r”. In terms of this operator, operators Pf, P? Pf and P; can be defined, with self
explanatory meanings. Pj is identified with the classical possibility operator M (or ‘0”). This is
the bridge between probability and modal logic.

We think PgD is a good starting point for studying the interrelations between ‘probabilities’ and
‘modalities’. With our semantics, we are able to interpret the above logics that deal with both
modalities and probabilities, in one and the same (formal) semantics. In order to evaluate P;o at
world w we assume to have a function Pg for w which assigns a probability to each formula. A
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peculiar property of PeD is that it only allows probability measures (for each world, on the set
of formulas) that have a finite range (F). This assumption restores compactness for our logic of
probabilities, as we will explain in the sequel.

Although restricting ourselves to a finite set F of granted measures (not eliminating the
possibility to reason about and express properties of arbitrary probabilities) is a serious logical
restriction, we think it allows for interesting applications. Taking F = {0,1} gives us ordinary
modal logic. If 0.5 € F, we might represent Lentzen’s logic of Belief ([Le80]). Letting F have 9
elements might be suitable to model Driankov’s linguistic estimates impossible, extremely
unlikely, very low chance, small chance, it may, meaningful chance, most likely, extremely
likely, certain (cf. [Dr87]. Also more general applications to fuzzy reasoning seem interesting.
We think that in many occasions, to let an agent reason about probabilistic events, the
granularity of F can be chosen conveniently.

We now proceed with providing some formal details of the logic PED. The (uncountable)
language L(Prob) of PgD is L(P,{P; Ir € 0,1]}. We also write (o V) for (o v y) A—=(0 A
V).

2.7. Definition. A set F is a base (for a logic PgD) if it satisfies:

1. F is finite

ii. {0,1} cFc [0,1]

iii. F is ‘quasi-closed under addition’: r,s€ F& (r+s)<1=(r+s)e F.

iv. F is ‘closed under taking complements’:re F= (1-r) e F.

PgD is given relative to a fixed base! F = {rg, ..., r,} < [0,1]. We assume that r; < rj,1, if i <

n (implying 0 = rg, 1y = 1). We will now give the axioms for PgD, as they are given in [FA89).
However, we use a slightly adapted notation. Basic operator in [FA89] is M;, with intended
meaning of M;@: ‘@ has a probability strictly greater than r’. We denote the latter with P;¢.
Moreover, we will use the following abbreviations (for all s, r € [0,1]):

defl P?(p = —'P1>-r'—‘(P

def2  Pfo=P]—o

def3 P§(|J = _IP1<_r"l(p
defd Pio=—Fo¢A-Fo

PgD has inference rules R1 and R2 and axioms A1, A13 - A18:
R1 Modus ponens: From ¢ and ¢ —  derive .

R2 Necessitation: From ¢ derive PIZ(p.

Al Propositional tautologies.

A3 P(@— V) > (B0 - Py) A (P79 — PRy) A (Brp — By)] re [0,1]
Ald PR > y) o (Fo — By) r,s€ [0,1]ands<r
Al5  P5o

Al6  PI(ovy) — (Fov Py r,s € [0,1] such thatr +s € [0,1]

1 Although properties iii and iv are not explicitly mentioned in [FA], in the following it will be obvious that
they are necessary.
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Al7 P%—.((p AY) = (Fo A Pf\p) - PI(ov ) r,s € [0,1] such thatr +s € [0,1]
Al8  Po—>PZ0 i<n

Before reflecting on the definitions and axioms of this logic, we prove a small lemma:
2.8. Lemma. The following are derivable in PgD:

a. PFo

b.  Plo P

2.9. Remark. Although the definitions defl - def4 all are very straightforward in our
notation, it is not made explicit until 2.12 that they have the desired properties; for instance, that
Pro equals (P;¢ v P7g). By 2.8.b, R2 is equivalent to (-¢ = P{@), which explains the name
‘Necessitation’. Axiom 7 is the axiom where our finite set F comes into play. The axiom
forbids any formula to have a probability which is not in F: if the probability for ¢ is greater
than some rj € F, it is at least the next value of F, viz. rj+1. Axiom A17 resembles additivity: cf.
Axiom A10 of Section 2.1. Axiom A16 explains how the probability of a disjunction is
‘distributed’ over its disjuncts. A1S5, together with lemma 2.8 and 2.12, where we show that
P, Pf, P? and Py are well-defined) guarantees that probabilities are in a proper range: (POZ(p A
Pls(p). Axiom A13 implies that the probability of the consequent of any necessary implication is
always at least the probability of the antecedent. It also records that ‘greater than’ implies ‘at
least’. Finally, A14 is the only axiom with which one can change from one probability to a
smaller one. Although A14 is, like A13, stated for necessary implications, in this case we can
weaken it to:

Al4' P29 —>Po,r,s€e [0,1]ands<r.

To see that this implies A14, we reason as follows: PIZ((p =Y A P?(p =A13 P?\u =Al14' P?\y

The name ‘Necessitation rule’ for R2 suggests a connection with classical modal logic. We can
make this relation explicit as follows; for a proof, we refer to [Ho92c].
2.10 Proposition. Let, by definition, O¢ = P7¢2. Then:
a. () Feo=+0O0
() FO(e—->y)—> Qe—0y)
* 0L
b. We say that a formula € L is modal if it is built from atomic propositions, using only the
logical connectives and the modal operator 0. KD is the modal logic K + axiom D (Cf.
Definition 1.3). We claim, that for all modal formulas @: PED - ¢ iff KD I- ¢.

2.11. Definition. We say that a logic £ (PgD \ A18) is permitting a probability-
assignment (is ppa) if for each L-consistent set I" and each formula ¢ there is some r € [0,1],
such that I" U {P7@} is L-consistent.

It is obvious that the property of permitting probabilities is necessary to allow models that
assign probabilities to formulas. It can be shown that PgD is ppa (Cf. [Ho92c]). It is this
property that will guarantee completeness with respect to our semantics. In [Ho92c] it is
demonstrated, that for PgD, this completeness is obtained in a very straightforward way; this
completeness proof should be compared with the one given in [FA89], in which these

Zby lemma 2.8, this is equivalent to stipulating 0 ¢ = Fo.
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probabilities are obtained in a rather indirect manner. However, where the benefit of axiom A18
is that each formula has a probability, its drawback is that each formula has a probability in the
finite set F, as we shall see. This is, of course, a serious restriction.

2.12. Theorem. The following are PrD-theorems for all @, y in the language and all 1, s €
[0,1].

a.  Pioo (FovFg) APp o (Frov Fp)
b. P9VFipVPe

c — (Ko A F59) (r#5)

d. (Koo Po) A (—Fe o Pg)

e. Pioo (PoAPg)

f.  (PFe—>P) (s<1)

g  PiooPi—e

Proof. See [Ho92c].

Theorem 2.12 does not state remarkable properties: it just says that the defined operators have
their intended properties.

2.13. Definition. A Probabilistic Kripke model M is a tuple <W, R, P, V> where W, R and
V are as in standard Kripke models but now P: W x AW) — [0,1] is a function from the
powerset of W to F, for each w € W, called a probability measure over W.

i P(w,2)=0

i P(w,{vIRwv})=1

iii ~ Letforie countable I, X; e AW). Then (i#j= X;N X; =) = P(Uie1 X)) = ie IP(X))
If condition iii holds only for finite index sets I, we say that P is finitely additive, else countably
additive. We will also write Py, {v} and Py[¢] instead of P(w)({v}) or P(w)([@]), respectively.
The truth definition for PED formulas is obtained straightforwardly, with the modal case
TD(P}) (M,w) = P iff Pp(w,{v | Rwv and (M,v) F @}) >t

We denote this class of models with % (for probabilistic Kripke models). If the range of P is
some base F ¢ [0,1], then we also write <W, R, Pg, V> and say that M is a Relativized
Probabilistic Kripke model. PXg is the set of probabilistic models with a finite base, in which
the measures P are moreover finitely additive.

Note that we have a truly recursive truth-definition, and that we no longer need a separate
clause for P?(p as was needed in [FA89]. We might allow some more generality in the definition
of Kripke models. For instance, we might leave out the accessibility relation R as a primitive
and define Rwv & Pp(w,{v}) > 0 (cf. [Ho91]). Also, instead of forcing the range of P to be
F, we might weaken this to

Pp(w,X) € F for each X that is the denotation of a formula ¢

In [Ho92c], a Henkin-style completeness proof is given for this logic PrD with respect to the
semantics of Definition 2.13. Note that, in the canonical model (Cf. Remark 1.6) one now also
has to specify Pr(I",Q2), for any maximal consistent set I" and set of maximal consistent sets .
In fact, P is determined by specifying it for all singletons Q, and to do so, the fact PgD is
permitting probabilities is crucial. This property, on its turn, is proven using the fact that the
formula
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PoVPLoV ... VPLo

(recall that F = {0 =rg, 1y, ..., Iy = 1}) is derivable in PgD. As an immediate consequence, we
obtain:

2.14. Corollary. PgD is ppa; if T is PED-consistent, then for each ¢ € L there is ar € [0,1]
such that I" U {P7o} is also PED-consistent.

It appears, that to really exploit the formula above (it says that any formula ¢ must have some
probability in F) we have to manipulate formulas in the canonical model rather than arbitrary
maximal consistent sets. This is achieved by doing the Henkin construction using only finite
maximal consistent sets: then, one can identify A with the conjunction of its members A, so
that, in order to decide on Pg(I",{A}), one can use the fact that PRAVPLAV ... VPR A s
derivable, and hence, consistent with T"; this means that we can assign a probability to A (and
hence to A). This procedure can be consistently extended to all T" and A (Cf. [Ho92c] for more

details).

Given this definition of Probability model, we elaborate a bit on the problem of compactness

for PED-like systems, and the role of A18 in this. Axiom A18 is a logical compromise. On one

hand, it restricts us to probability measures with finite range, on the other hand, it guards us

against some serious logical complications. To be more precise, consider PED \ A18, and let
I'= {-Pqlre [0,1]}.

Our first claim is that I" is consistent (see [Ho92c] for a justification). Our next claim is that we
can use I" to show that PgD \ A18 is not compact. For, although I" is not satisfiable if we
interpret Py as “the possibility of @ is greater than r”, (i.e., not satisfiable on Probabilistic
Kripke Models (PX): models similar to those of P&, but allowing F to be R) each finite subset
of I is (in fact each proper subset I" of T" is). Stated equivalently: although (for each s € [0,1]),
N\{P;p}k F5o, (in which we mean by ‘=’ PX-validity) there is no finite subset I" N\{P;o}
such that I'" = P5o.

It seems that the only way to resolve this (at least to avoid consistency of I') is to admit an
infinitary logic, for which (5 ;1P7¢ holds, i.e., guaranteeing that each assertion has a
probability. We only know of one attempt of allowing an infinite rule that guarantees such a
property, viz. in a logic for an operator ‘P;’, as done in [Al91].

We conclude this Section be briefly mentioning some other approaches to probabilistic logics.
Two recent papers in the area of Al, “A Logic for Reasoning about Probabilities” ([FHM90])
and “Uncertainty, Belief and Probability” ([FH89b]) present a profound investigation and a
framework to systematically reason with probabilities. In their formalism, a formula is typically
a Boolean combination of expressions of the form ajw(@1) + ... agw(@g) = ¢, where ay,...ax, ¢
are integers. PgD is, in some sense, at least as expressive, as is shown in [Ho92c].

However, in the formalism of [FH89b] and [FHM90], the ¢’s must be purely propositional,
thus omitting ‘higher order weight formulas’ ((FHM90]). Moreover, they do not allow ‘w-free
formulas’ disabling expressions like “p is true, although its probability is less than 0.1”. These
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restrictions do not apply to PrD. Moreover, as is also explained in [Ho92c], the logics of
[FH89b] and [FHM90] are not compact.

Also, in the two approaches mentioned, the formal system explicitly postulates as axioms all
valid formulas of linear inequalities, and the completeness proofs heavily rely on results in the
area of linear programming. Finally, in both contributions it is claimed that, if (the
interpretations of) primitive propositions is measurable, their semantics is equivalent to that of
[Ni86], in which a probability is given to each 2!¢! different assignments (worlds) of the
primitive propositions in @, implying that they use a finite set of primitive propositions3, and,
more importantly, thus discarding ‘features of worlds that are not captured by primitive
propositions’ ([FH89b]).

3 Qualitative Modalities

A common objection against the approaches of the previous Section is summarised in the
question: Where do the numbers come from? People (and, more specifically, experts, like
doctors or engineers), are often reluctant in expressing their opinions in exact probabilities.
They rather give their judgement in a qualitative manner: instead of a doctor saying “Given the
symptoms of patient x, I think he has disease A with probability 0.716”, a more realistic
utterance is “Given his symptoms, I rather think patient x has disease A than B”. Such
qualitative judgements are often sufficient in every day life. An engineer confronted with a
failing car will not bother about exact estimates for the possible causes of this unpleasant
situation. He merely reasons as follows: “In most situations like this, it is the battery. If that is
o.k., I'll better check the wires. If they are fine too, there is the—a priori small possibility—
that the tank is empty. If that is untrue too, I'll better get my check-list”. This list, on its turn, is
probably organised along the same principle: from often occurring causes to very rare ones.

What we do in this Section is augment the language of modal logic with a binary operator >’
The formula @ >y can be read as ‘@ is at least as likely, probable, or trustworthy as v is’. We
present a logic for this operator 2. Then, we provide it with two semantics, both based on
Kripke structures. The first semantics is based on the idea of counting worlds, as in Section
2.1. In the second semantics, one has to compare the measures that are assigned to the ¢-
worlds and the y-worlds. In fact, historically, the second semantics preceded the first one, but
to be in line with the presentation in Section 2, we first present the—conceptual more easy—
semantics based on counting.

The rest of this Section is organised as follows. In Subsection 3.1 we introduce the logic QM
for <, which has an infinite axiom scheme B = {B(m) | m € IN} on top of a set of simple
axioms. We derive some of its properties and introduce its first semantics: Kripke models with
finitely many successors. In 3.2, we recall the notion of probability model and state that the >-
theory of those models is exactly the same as that of the models from Section 3.1. We shortly
discuss the scheme B as well as some other qualitative operators in 3.3.

3.1 At Least as Many as
The language L(QM) = L(P,{2}) for our logic QM, (for Qualitative Modalities), has a two place

3Although this assumption is made explicit in {FH], in [FHM] the starting point of their system seems to be an
infinite set of propositional atoms!
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modal operator ‘>’. Using that, we can define the operators ‘>’, ‘<’, ‘<’, ‘~’ and ‘O’
straightforwardly: the formula y < ¢ is defined as @ =y, @ > y as (¢ 2 W) A —(y = @)). (Y <
¢) means (¢ > ) and we use ¢ ~  for (W < ¢) A (¢ 2 ). The one place operator O is defined
as 0@ = (¢ 2 true) A (true 2 ¢). O = —0—. We assume that the binding power of the
connectives is weaker than that of the operators: Y < ¢ A ) means (Y < @) A X.

3.1 Definition. The class of models FXD is the set of Kripke structures M = <W,R,m>, for
which R(w) is non-empty but finite for all w € W. We write R(w) for {vi Rwv} and [¢] for {wl
(M,w) = @}. The truth definition for > is

TD(2) (Mw)E o2y iffIRWN[@] |2 IRw N [y] ]

JFXD stands for Finite Kripke models verifying the scheme D, guaranteeing that each world has
at least one successor.

3.2 Definition. AX consists of the following rules and axioms.

R1 modus ponens, ie. - Q& 9>y =+ .

R2 necessitation, i.e. - ¢ =+~ 0¢.

Al all propositional tautologies.

A9 DO QADWOY) > @2y ¢ 2y)

A20 o2yvyz2o

A21 ¢ 2 false

A22 true > false

A23 P2YAYZ2YL—02Y

A2 [O~(@ AN AOSW A= [(02y) o (¢ VX)) 2V

The axioms of AX all look rather reasonable, keeping in mind the meaning of ‘>’. We first give
a result in the spirit of Proposition 2.10: AX can be considered to be (an extension of) normal
modal logic: it has necessitation (R2) as a rule of inference, and the K-axiom as a theorem
(3.4.v). Recall from Definition 1.3 that KD is the modal logic K, with the axiom D: 0T. We
say that @ € L(QM) is modal if it does not contain <, <, >, 2, or ~.

3.3 Proposition. For all modal ¢, 7XD & ¢ iff KD + ¢.

The following proposition not only shows that the K-axiom is AX-derivable (3.4.v), but also
that 2’ is a kind of intermediate for this property (3.4.iii and 3.4.iv).

3.4 Proposition.

i. AXF o2y & (QA-Y) 2 (0 AY)

ii. AXF o2y oy 2—0

iii AXFO@—->y) > y2e

iv. AXFwy2¢— 0O¢—o0vy)

v. AXFO(e-y)—0Oe—0y)

Proof. We prove i, as an example. For complete proofs, see [Ho91].

By necessitation, we have O[=[(® A =) A (@ A Y)] A =[(—=0 A W) A (p A Y)]]. Applying A24
to this yields (@ A =) 2 (=@ A Y) & [(@ A =Y) vV (9 A W] 2 [(=0 A W) v (¢ A W)]. The left
hand side of the latter inequality is equivalent to @; its right hand side is equivalent to . Using
A19, we get the equivalence (¢ A =) 2 (—Q A Y) & Q2 V.



21

The properties expressed in proposition 3.4 are perhaps more appealing in the semantics of our
operator. Propositions iii - v relate set inclusion with set magnitudes. Moreover, if #) is the
numbers of worlds verifying 7, then 3.4.i amounts to #¢ > #y iff #¢ - #(Q A W) 2 #y - #(P A
V) and ii to #¢ > #y iff #T - #y 2 #T - #¢. However, until now, we have stated no
completeness result. In fact, the system AX is still too weak for such.

3.5 Definition. Let I (of length m) = y1,...,Ym be a sequence of m formulas. let Nj(I')
express that exactly i elements of T are true, for eachi < m. So No(I) ==y1 A=T2A ... A
—Ym, NI(D)= Y1 A=T2A ... A=mYm) V(Y1IAT2A 0 A “Ym)V ... V(EYIATN2ZA LA
—Y¥m-1 A Ym), and so on. We say that two sequences I" and A of length m are balanced, ' E A,
iff

TEA VZINi(T) A Ni(A)],

that is, I" E A iff the number of formulas of I" that are true is exactly the same as the number of
true A-formulas. Finally, we say that I" and A are balanced everywhere, I' E A, iff O(T E A).

So, E and E are a kind of generalized equivalence. For instance, ¢ E y = 0(¢ <> ). Now we
are able to formulate the additional scheme that we will need:

3.6 Definition. Given the operator E and m € N, we define
B(m) 01, OmE W1, Wm 2 [(@1 2 YD A ... A (@1 2 Ym-1)] = Ym 2 Pm

Read semantically, B(m) expresses that if each of the accessible worlds verifies equally many
@’s as it verifies y’s (if they are ‘balanced’ in the ¢@’s and the y’s), and if the amount of
successors that verifies @; is at least the amount of successors that verifies y for the firsti € {1,
..., m-1}, then (to ‘keep the balance’) there cannot be more @p-successors than Ym-
successors, hence there should be at least as many Yy-successors as @py-Successors.

3.7 Definition QM is the logic AX together with the scheme B(m), for all m.

3.8 Proposition. The axioms A23 and A24 follow from the other QM-axioms.

Proof.

A23: Observe that @,y,x [E ,X,9 is a (propositional) tautology. Next, apply B(3) to this.

A24: O—(@ AX) ADO=(W AX) =a1 DV INI(@,(¥ v X)) A Ni(W,(@ v X))
=350,V E y(evY) =B2)(@2Y¥)>(@VvY)2(WVY).
O=(@ A X) ADO=(WAX) =a1 OOV INI(@ v 2).%) A Ni((y v 0),0)])
=35@V.VE (Wv),0 =p2@v2WvY > (©@2Y).

That B(m) does not follow from the other axioms, is shown in [Ho91].

From proposition 3.3 we know that the modal theory of FKD is exactly that of XD, the theory
of K + seriality. This was because the truth definition we gave for O and the ‘usual’ definition
for the necessity operator coincide on finite models. Let us conclude this Section by observing
that the operator 2 is not modally definable, like we did for the graded modalities using Figure
1. To do this for 2, let W = {u,v{,v2}, W' = {u',v'} and consider the frames F=<W ,W X
W> and F = <W', W' X W'>, denoted in figure 2.
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It is easily verified that the mapping f: F— , with f(u) = u' and f(v1) = f(vp)=V'isa
function that can be used to demonstrate that, for all modal formulas ¢: (Fu) = ¢ = (Fu) E
@ (Cf. [Ho91]). However, this is not true for arbitrary L(QM)-formulas. For instance, let y be
(p > =p) V (—=p > p). Then although (Fu) = y, we have (F.u) ¥ y.

figure 2

3.2 At Least as Likely as
Segerberg ([Se71]) and Girdenfors ([G&75]) interpreted the logic QM on countably additive
Kripke models € PX(cf. Definition 2.13). The truth definition then is

TDE) (Mw)E ¢ 2V iff Py[¢] 2 Pyy].
Note that we immediately have (M,w) = 0@ iff Py[@] = Py[T] Gff Py[o] = 1).

Without proof, we state that QM is sound with respect to PX; i.e. QM - ¢ = PXF ¢. For the
axiom B(m), we refer to [Se71b]. Note that, on such probability models, although sets (of
worlds) may be infinite, their measure now is always finite, even bounded. A probability model
need not have an accessibility relation, but note that each world has a non-empty set with
measure > 0. That is the reason that we will be able to make a connection between FXD and
PX: in FKD each world has at least one successor.

3.9 Proposition.

i. For each M = <W,R,nt> € FKD there is a U(M) = <W,F,n> € PX, the uniform
probability model over M, such that W < W' and for all w € W, (M,w) E o iff
(U(M)w) E 0.

ii. For all ¢ € L(QM), PKF ¢ = FKDFE ¢.
Proof. In [Ho91].

Both Segerberg and Girdenfors prove the following:
3.10 Theorem. If QM ## ¢ then (M,w) = —@ for some finite probability model M.

Together with the remark about QM’s soundness for PX; this theorem implies that we have that
PKis determined by QM: QM + ¢ < PXF . But it says more: each QM-consistent formula
has a finite PX model. This implies that in the definition of probability measure, we might as
well have required finite additivity instead of countable additivity. It is this property of having
finite models for each satisfiable formula that was exploited in [Ho91] to get a completeness
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result for FXD. The main pillar of that proof is the following lemma, which was referred to as
the rationalising lemma. The lemma guarantees that if there is a probability measure P: HA) —
[0,1] where A is a finite set, there will also be a rational probability measure P": RA)—->NO
that agrees with P for as far as 2 is concerned, i.e. for which for all X, Y ¢ A: P(X) 2 P(Y) &
P'X) = P'(Y).

3.11 Lemma (Rationalising). Let A be finite, and P: A(A) — [0,1] a probability measure.
Then there is a function P': AA) — [0,1] N Q such that

i. P' is a probability measure.

ii VX, YcA: P(X) = P(Y) © P'X) = P'(Y).

iii VX, YcA: P(X) < P(Y) & P'X) < P'(Y).

Proof. in [Ho91]

3.12 Theorem.
i. For all ¢ € L(QM), PKF ¢ & FKDF ©.
ii. QM ¢ & FXDE o.

As was pointed out before, the axiom scheme B(m) is necessary to guarantee completeness
with respect to the class of probability models. De Finetti conjectured that the conditions
expressed by the axioms of AX (section 2) were necessary and sufficient for the existence of a
probability measure (on a powerset A(A)) that agreed with 2. However, it was shown by Kraft,
Pratt and Seidenberg ([KPS59]), by giving a ingenious counterexample, that they were not
sufficient. They also showed that adding the scheme B did the job. Segerberg ([Se71]) and
Girdenfors ([Gd75]) put this result of [KPS59] to work to obtain their completeness proof of
QM with respect to PX;

There are, in general, two ways to increase the expressive power of a system. One way to do
50 is to shift to a richer language, as was done in the approach of [FHM90] for probabilistic
modal logic. Another way to bypass the scheme B is to add additional inference rules to the
system. We briefly speculated on this in [Ho91]. We will not digress on this here, but instead
mention that there has been a great variety of proposals (each with its own specific rules) for
systems with qualitative axioms that guarantee the existence of a probability measure (that
agrees with a qualitative ordering) (cf. [Do69] or [SZ76]). This has also been done for
conditional probabilities ([D069, SZ82]. In [SZ89], also conditions on upper and lower
probabilities are given that are necessary and sufficient for a probability measure.

3.3 At Least as Possible as.

We conclude this Section by mentioning a binary modal operator ‘2’ in the field of possibilistic
logic ([DP88, CH91)). In this Qualitative Possibility Logic (QPL), the interpretation ofp2vy
is: ‘@ is at least as possible as y’. QPL consists of our axioms A19-A23 and moreover replaces
our additivity axiom (A24) by a property called disjunctive stability:

A24' (p2y) > (v 2(WVY)

By choosing ¥ = =\, we obtain that (¢ 2 y) = (¢ v —¥) 2 T) is a tautology. If we now take
@ =y, we get (—y 2 ¥) = (—y 2 T) as a tautology. So we see, (since A20 is also valid for
this “possibilistic >, yielding (=¥ 2 ¥) v (¥ 2 —y)), that for each formula v, either y itself or
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its negation is at least as possible as any tautology.

We conclude by mentioning some analogies between probabilistic (qualitative, modal) logics
and possibilistic (qualitative modal) logics. Like Kraft, Pratt and Seidenberg ([KPS59]) gave
sufficient conditions for a relation >’ on ®W) in order to correspond with a probability
measure on W, Dubois ([Du86]) gave such conditions for >’ on AW) in order to correspond
with a possibility relation on W. And, like Segerberg and Gérdenfors ([Se71, G475]) used the
result of [KPS59] to obtain a qualitative probabilistic modal logic, Dubois and Prade ([DP88])
used Dubois’ result to obtain a qualitative possibilistic modal logic. Farinas del Cerro and
Herzig ([FC91]) then showed that the latter result is equivalent to a conditional logic introduced
by Lewis [Le73]). Moreover, in [CH91], some natural alternative semantics are given for
qualitative possibilistic logic (sphere semantics), and possibilistic modal logic (multi-relational
models). Since we think that given the two interpretations for ‘>, possibilistic modal logic is
the natural counterpart of graded modal logic, it seems interesting to find the graded analogue of
this multi-relational semantics.

4 Conclusion

We discussed several means to enrich the modal language with quantitative and qualitative
operators. We showed, in a technical sense, that they indeed extend the modal language, and
we also gave several examples to use this greater expressiveness. Those examples all had an
epistemic flavour: the modalities were used to reason about knowledge and uncertainties. Other
applications of the graded modal language are to be found in the field of generalized qauntifier
theory ([HR93a]), concept languages ([HR93b}), or to obtain results on expressibility of trees
([Sc92]) or in computational semantics ([Be87)).

Although probability theory is a well developed discipline in mathematics, not many approaches
have been given to employ a logic that enables one to explicitly reason about probabilities. We
discussed some way to embed this in a modal framework, and we mentioned some problems.
The qualitative modal operator ‘>’ can be defined on kripke models in which the primitive
underlying feature is either ‘counting’ or ‘measuring’: for the logic of ‘>’, this makes no
difference. If we relate it to a notion of ‘possibility’, however, the behaviour of ‘2’ changes.
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