Convex Grid Drawings of

3-Connected Planar Graphs

M. Chrobak and G. Kant

RUU-CS-93-45
December 1993

Utrecht University

03 So
f (2 Department of Computer Science
)
% 3] Padualaan 14, P.O. Box 80.089,

)
477['8\ 3508 TB Utrecht, The Netherlands,
Tel. : ... + 31-30-531454

Convex Grid Drawings of

3-Connected Planar Graphs

M. Chrobak and G. Kant

Technical Report RUU-CS-93-45
December 1993

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 0924-3275

Convex Grid Drawings of 3-Connected Planar Graphs

M. Chrobak* G. Kant!

Abstract

We consider the problem of embedding the vertices of a plane graph into a small (poly-
nomial size) grid in the plane in such a way that the edges are straight, non-intersecting line
segments and faces are convex polygons. We present a linear-time algorithm which, given an
n-vertex 3-connected plane graph G (with n > 3), finds such a straight-line convex embedding
of G into a (n — 2) x (n — 2) grid.

1 Introduction

In this paper we consider the problem of asthetic drawing of plane graphs, that is, planar graphs
that are already embedded in the plane. What is exactly an asthetic drawing is not precisely
defined and, depending on the application, different criteria have been used. In this paper we con-
centrate on the two following criteria: (a) edges should be represented by straight-line segments,
and (b) faces should be drawn as convex polygons.

Féry [6], Stein [14] and Wagner [18] showed, independently, that each planar graph can be
drawn in the plane in such a way that the edges are straight-line segments. Recently, there has
been a lot of interest in algorithms that construct such embeddings, which are often referred to as
simply straight-line embeddings. Straightforward algorithms that follow the proofsin [6, 14, 18] can
be efficiently implemented, but they require floating-point arithmetic, which leads to a number of
problems. First, small numerical errors can lead to an incorrect embedding, e.g., line intersections
may not be detected. Second, when the embedding has to be drawn on a raster device, real vertex
coordinates have to be mapped to integer grid points, and there is no guarantee that a correct
embedding will be obtained after rounding.

It would be more convenient and practical to map the vertices into a small integer grid using
only integer arithmetic, thereby avoiding roundoff errors and facilitating display on a screen. Also,

"Department of Computer Science, University of California, Riverside, CA 92521. Email: marek@cs.ucr.edu.
Research supported by NSF grant CCR-9112067.

tDepartment of Computer Science, Utrecht University, Padualaan 14, 3584 CH Utrecht, the Netherlands. Email:
goos@cs.ruu.nl. Research supported by ESPRIT Basic Research Actions of the EC under contract No. 7141
(project ALCOM II).

this approach guarantees, automatically, that the resulting picture has fairly good proportions.
We will refer to such embeddings as grid embeddings or grid drawings.

Rosentiehl and Tarjan [10] posed the question of whether it is always possible to find such an
embedding into a polynomial-size grid, and in [5] de Fraysseix, Pach and Pollack indeed gave a
method that embeds an n-vertex planar graph into the (2n —4) x (n — 2) grid in O(nlogn) time.
Chrobak and Payne [4] provided a linear-time implementation of their method. Schnyder [12]
discovered a different method, based on so-called barycentric representations of graphs and some
interesting combinatorial interpretation of vertex coordinates. His algorithm can be implemented
in linear time and reduces the grid size to (n — 2) x (n — 2). Schnyder also pointed out [11] that
the method from [4] can be modified to yield a smaller embedding into the (n — 2) x (n—2) grid.
(Throughout the paper we assume that n > 3.)

As for the lower bound, de Fraysseix, Pach and Pollack [5] present an example of a plane graph
that requires a grid of size at least 2n/3 x 2n/3. A major open problem in this area is whether a
cn X cn grid can be used for this purpose, for some ¢ < 1.

The algorithms discussed above assume that the input graph is triangulated. If we want to
use them to draw an arbitrary plane graph G, we have to extend it to a triangulated graph G’,
embed G, and then remove the added edges. The resulting faces can have very complex, irregular
shapes. A more wsthetic embedding can be obtained by drawing faces as convex polygons. This
can always be done if G is 3-connected, as proved by Tutte in [16]. In fact, it can be done even
for some plane graphs which are not 3-connected, see [15, 16, 17]. Chiba et al. [3] developed a
linear-time algorithm that draws convexly all planar graphs for which it is possible. For arbitrary
2-connected graphs, Chiba et al. [2], presented linear-time algorithms for producing ssthetic
drawings that make the resulting picture “as convex as possible”, in a sense that is precisely
defined in [2]. On the other hand, it is NP-complete to decide whether a biconnected planar
graph can be drawn with at least K convex faces [9].

Recently, Kant [8] developed a method for constructing convex grid drawings of 3-connected
plane graphs in linear time. His algorithm, related to those of [5] and (4], uses a (2n —4) x (n—2)
grid.

In this paper we will show how to construct convex drawings of 3-connected plane graphs into
a smaller, (n — 2) x (n — 2), grid in linear time. Our algorithm has been inspired by the ideas
from [4, 5, 8, 11]. It is very easy to implement and, in fact, in the paper we present a Pascal-like
description of the algorithm.

A different convex embedding method for 3-connected planar graphs, using the (n—1) x (n—-1)
grid, was announced recently by Schnyder and Trotter [13].

2 Algorithm for Convex Drawings

We introduce first the concept of a canonical decomposition, which generalizes canonical orderings
defined in [5] for triangulated graphs.

Canonical Decompositions. Let G be a fixed, but arbitrary, n-vertex 3-connected plane graph
with an edge (vi,v;) on the external face. Let m = (V;,...,V,,) be an ordered partition of V,
that is, ViU...V,, =V and V,NV; = 0 for i # j. Define G} to be the subgraph of G induced by
Vi U...UV,,, and denote by Cj, the external face of G;. We say that 7 is a canonical decomposition
of G with bottom edge (vy,v;) if:

(CD1) V; is a singleton, {2}, where 2 lies on the outer face and z, ¢ {v;, v, }.

(CD2) C, is a face of G, and each Cy is a cycle containing (v, vs).

(CD3) Each Gy is 2-connected and internally 3-connected, that is, removing two internal vertices
of G}, does not disconnect it.

(CD4) For each & in {2,...,m — 1}, one of the two following conditions holds:

(a) Vi is a singleton, {2}, where z belongs to Cy and has at least one neighbor in G — G

(b) Vi is a chain, (2, ...,2:), where each 2; has at least one neighbor in G — Gy, and where
21 and 2, each have one neighbor on Cy,, and these are the only two neighbors of Vj
in Gk+1.

Throughout the rest of the paper we will simply call 7 a canonical decomposition, since the bottom
edge (v, v,) will always be understood from context.

In Figure 1 an example of a canonical decomposition of a triconnected planar graph is given.

m Vi
1 1
2 2
3 3
4 4
5 5,6
6 7
7 8
8 9,...,14

Figure 1: The canonical decomposition with bottom edge (9, 14).

We will commonly view Cy as a path (wy, w,, ..., w;) (instead of a cycle) starting with w; = v,
and ending with w; = v,, ignoring the edge (v;,v,).

We will use the following lemma proved by Kant [§]:
Lemma 1 Each 3-connected plane graph has a canonical decomposition.

Proof: (Sketch) Pick an edge (v1,v2) and a vertex zy ¢ {v1,v2} on the outer face of G. Let
‘/1 = {Zo}.

Suppose that we have already defined V;,...,Vi_;. If G} is 3-connected, let V; be {z}, where
z is an arbitrary vertex from Cj — {v;,v,} that has a neighbor in G — Gj.

Otherwise, if C} contains a chain whose removal does not destroy 2-connectivity, let V; be a
maximal such chain — its members will have degree 2 in G}, (and will have a neighbor in G — G,
by the 3-connectivity of G), and its two neighbors will have greater degree.

If, however, no such chain exists, pick two vertices in C, whose removal disconnects G, that
are as close to each other as possible in the ordering of C;. The triconnected component in
between, by the 3-connectivity of G, contains a vertex z having a neighbor in G — G;. Let V;, be

{z}. O

As it was shown by Kant [8], Theorem 2.3, a canonical decomposition can be constructed in
linear time.

Members of V}, are said to have rank k. A vertex in Cj is said to be saturated in G, iff it has
no neighbors outside Gy, i.e., no neighbors of smaller rank.

Given Cy = (v = wy,...,w; = Vy), let 1 < a < b < j be such that w, and w, are not
saturated in Gy but all vertices w;, for a < ¢ < b, are already saturated. Pick a < ¢ < b such
that w, has largest rank, and if there are two vertices with highest rank pick the left one. (From
the definition of the canonical decomposition it can be shown that there are at most two such
vertices.) Then we define u; (a) = pu; (b) = c. We will often omit subscript k, for simplicity. Note
that if b = a + 1 then u}(a) = p; (b) = a.

If a, b are as defined above, then the path w,,...,w, in G is a part of a facial cycle F', that also
contains two edges that connect w, and w, with G — Gy, plus possibly some other edges in G — Gy.
Intuitively, the algorithm will work in such a way that one of w,,w, 1., with g = p*(a), will be a
lowest vertex on F' (that is, it will have the smallest y-coordinate), and thus stretching the edge

(wy,wy41), together with some other edge on the upper side of F, will not destroy convexity of
F.

Our algorithm will be to add sets Vi, one by one, in reverse order, V,,,...,V;, adjusting the
embedding at every step. By £(v) we will denote the current position of vertex v on the grid,
ie., £(w) = (z(v),y(v)). By £(u,v) we denote the embedding of edge (u,v), that is, the line
segment that connects £(u) with £(v). To each vertex w we assign a set of vertices, Under(w),
that will contain certain vertices that are located below w and have to be shifted right whenever
w is shifted right. The precise definition of Under(w) is part of the algorithm and is given below.

4

We will describe first an algorithm that uses the (n — 1) x (n — 1) grid, and then show how to
improve it to (n — 2) x (n - 2).

Algorithm ConvexDraw. We initialize the embedding by drawing C,, = (vi = 21,22, ..,20 =
V) as follows:

S(ZI) = (0,0);
E(ze) == (£ —1,0);
E(z)=>G(-1L1foralli=2,...,0—1;
Under(z;) := {2z} foralli=1,...,L
Then, for each k =m —1,...,1, we do the following. Let Ciy; = (v; = Wi,...,W; = V) be
the contour of G4;. Let Vi = (21,...,2,). Vi may be a singleton or a chain, but in the algorithm
we will treat both cases uniformly.

Let w, and w, be the leftmost and rightmost neighbors of V; in Giy;. Let o = ut(p) and
p = p~(q). Note that if V; is a chain then all vertices that are being covered belong to one
face and all vertices w41, ..., w,—; must have been saturated by now. Consequently, we will have
a = (. If V, is a singleton (of degree at least 3), Vi, = {2}, then all vertices among w1, ..., w,_;
which are not neighbors of z; must have been saturated. In this case, we have a < 3. In fact, w,
and wg will belong to different faces: to the first and last face that are created when adding z,
respectively.

We now execute the following steps:

Update: We update Under(w,), Under(w,) and compute all Under(z;) as follows:

Under (w,) := UUndeT(wi);
i=p
q

Under(wy) := U Under (w;);
i=06+1

Under(z) = {z}U G Under (w;);
Under(z;) = {z}; 1?I=+12, A
Shift: For each u € U7=q Under (w;) do
z(u) :=z(u) + £

Install Vi: Let € be 0 if w, is saturated in Gy, and 1 otherwise. For each i = 1,...,¢, let £(2;)
be defined by

z(z) = x(wp)+i—1+e¢
y(z:) = y(wg) +(wy) — z(wp) —L+1—¢

5

In other words, we draw the V; horizontally, in such a way that the slope of the segment
E(zg,w,) is —45°. Vertex z, is placed above w, if w, is saturated, and at the next z-
coordinate otherwise. Note that in the last formula we use the new updated value of z(w,).

This completes the description of the algorithm. Now we will prove its correctness (see Figure 2
for an illustration).

Figure 2: Illustration of Lemma 2.

Lemma 2 Let 1 < k < m, and Cy = (v; = wy,ws,...,w; = v2). Then E(v1) = (0,0), E(vz) =
(k — 1,0), and all contour segments E(w;, wi+1), ¢ = 1,...,j — 1, have slopes in {—45°,0°} U
[45°,90°].

More specifically the following conditions hold:

(a) if w,, w, are two non-saturated vertices such that all w;, for a < i < b, are saturated, and
if u = pt(a), then the line segments on the path from w, to w, (clockwise) satisfy the following
condition: The first u — a segments have slope —45° and the last b — p — 1 segments have slopes
90°. The segment £(w,,w,+1) has slope in {—45°,0°}U[45°,90°], ezcept that it cannot be 90° for
u=a.

(b) If wy is the first non-saturated vertez on Cy, then all slopes on the path w,, ..., wy are 90°.

(c) If w, is the last non-saturated vertez on Cy then all slopes on the path w,,...,w; are —45°.

Note that the lemma implies that, in particular, if b = a + 1 (and thus g = a), then the slope
of £(w,,w,) belongs to {—45°,0°} U [45°,90°).

Proof: (a) Backward induction on k. For k = m, the lemma is obvious. Fix k € {1,...,m — 1},
and assume that the lemma holds for ¥’ = k£ + 1. We will show that it also holds for k. Let w,
and w, denote, as usual, the leftmost and rightmost neighbors of V; in Cy,,. Clearly, both w,
and w, are not saturated in Gyyi.

Let Vi = (21,...,2¢). Then the new contour is

’ ! !
Crtr = (Wi, Wy, 2150 vy 20, Woy ooy Wy) = (Wi, Wh, ..., Wipe),

6

for £ = £ — g+ p+ 1. By the definition of the canonical decomposition, each z; is not saturated in
Gy, and therefore the lemma holds for all segments £(z;, z:i+1). Thus it is sufficient to prove that

the lemma holds for vertices in the chains wy,...,2; and z,...,w; of Ciiy.
We consider first the chain wy,...,z = wi,...,w,,;. If w, is not saturated in G, then the
lemma holds for the sub-chain wy,...,w, by induction and for w;, z; by the algorithm.

Thus we can assume now that w, becomes saturated in Gy. If all vertices w,,...,w, are
saturated, then the chain wy,...,w,, # satisfies (b) with f = p+ 1, by induction and by the fact
that the slope of £(w,, 2;) is 90°. Otherwise, pick a non-saturated vertex w,, 1 < a < p, that is
closest to w,. The lemma holds, by induction, for the chain wy,...,w,. For w,,...,wp, 21, the
lemma follows from the inductive assumption about w,, . . ., w,, since the slope of £(w;,, 2) is 90°,

and it (a) = i1 (a).

The proof for the other chain, zs,w,,..., w; = wh,,... W, is similar. Let r = p + £ If
q J p+e J+€
w),, = w, is not saturated in Gy, the lemma follows directly by induction.

Thus suppose that w, becomes saturated in Gy. If all vertices wy,...,w; are saturated, then
the chain w,...,w}, . = 25, W,, ..., w; satisfies (c) with g = r, by induction and by the fact that
the slope of £(z, w,) is —45°. Otherwise, pick a non-saturated vertex w, ¢ < b < j that is closest
to w,. The lemma holds, by induction, for the chain wy,...,w;. For zy,wg,...,ws, the lemma
follows from the inductive assumption about wy, . . ., ws, since the slope of £(z¢,w,) is —45°, and

pi (r) = piy, (). O

The lemma above implies immediately that adding Vi does not destroy the embedding, as
stated in the corollary below.

Corollary 1 For each k, when we add Vi, then, after applying the shift operation, all neighbors
of Vi are visible, that is the edges between Vi and Ciyy do not intersect themselves or edges in
Cri1-

Whenever we add a vertex z (singleton or a member of a chain), we place it at the y-coordinate
which is not smaller than the y-coordinate of its neighbors that had already been embedded. Also,

y-coordinates never change. Thus the next lemma follows directly from the algorithm.

Lemma 3 At each step of the algorithm, the y-coordinates are monotone with respect to ranks,
in the following sense: if (u,v) is an edge and rank(u) > rank(v) then y(u) > y(v).

What remains to show is that we do not destroy the planarity property and convexity when
we apply the shift operation. This is proven in the next two lemmas.

Let us call a plane graph internally convez if all its internal faces are convex.

Lemma 4 Each G; is straight-line embedded and internally convez. Additionally, it has the
following property: Suppose Cy = (vi = wy, Wy, ..., w; = v3), and pick any 1 < s < j, and any

7

integer 6. If we shift all nodes in |’ Under(w;) by & to the right, then G\ remains straight-line

embedded and internally convex.

Proof: Backward induction on k. The lemma holds for k = m, by inspection. Assume the
lemma holds for k' = k + 1; we will show that the above properties are preserved when we add
Vi. We use the notation from the algorithm that the contour of Gry1 18 Cry1 = (wy,...,w;), and

now we are about to add V. Let w, and w, be the leftmost and rightmost neighbors of V; in
Ck+1.

Let Vi, = (21,...,2¢). The contour of Gy is C}, = (wy, wh, ..., wi,,) for £ =f—g+p+1, where

w; t=1,...,p
w; = ¢ z k=p+1,...,p+¢
Wi_g t=p+L+1,...,j+E&

If s > p+¢, Vi doesn’t move, and the lemma follows directly by induction. If s < p, the lemma
also follows from the inductive assumption, since V; shifts rigidly with the rest of the graph.

Let us assume now that V; is a singleton, V, = {z1}, and consider the cases s =p+ 1,p + 2.
Let 2; have ¢ neighbors among w,, ...,w,, and let Fy,..., F,_; be the faces created when adding

21

If s = p+ 1, then we apply the inductive assumption to Gy, with s’ = pi1(p) + 1. The
straight-line embedding and internal convexity are preserved on G.;; by induction. All faces
Fy, ..., F;_, are shifted rigidly with Gy, only F; will be deformed. But in F, we will only stretch
the edge (wy,21) and (wy, w, 1), and by the choice of s’ this will not destroy the convexity of F;.

If s = p+ 2, the proof is similar: we apply the inductive assumption to Gry1 with s =
Me+1(g) + 1. In this case only F;_, can be deformed but, by the choice of s”, the convexity of F;_;
will be preserved.

The proof when Vj is a chain is very similar and is left to the reader. O

Improving the grid size. Now we sketch how to modify ConvexDraw in order to reduce the
grid size to (n — 2) x (n — 2). First we pick 2, to be the neighbor of v, different from v, on the
outer face of G. We construct a canonical decomposition and run ConvexDraw for m — 1 steps.
In the last step, having already embedded G,, we set £ (20) := (1,n — 2), and we do not shift any
vertices to the right.

Let us call this modified algorithm ConvezDraw2. In order to show correctness, we only need
to show that adding 2o will result in a correct, convex embedding. By Lemma 2 and the algorithm,
before adding 2o we have z(w:) = z(w.) = ... = z(w,) = 0 and z(w,) = n — 2, where Wy = vs.
The edge with slope —45° from v, contains the point (1,n — 3). This implies that all vertices
Wy, ..., W, are visible from (1,n — 2). The convexity of the outer face follows from the choice of
z9. Consequently, we obtain the following theorem:

Theorem 1 Given a 3-connected plane graph G, algorithm ConvezDraw?2 (described above) con-
structs a straight-line conver embedding of G into the (n —2) x (n — 2) grid.

In Figure 3 an illustration of a drawing is given. After adding vertex 3, we have Under(w) =
{w} for w € {5,9,13,14}, Under(6) = {6,10} and Under(3) = {3,4,7,8,11,12}. Thus, when
adding vertex 2, the vertices in Under(3) U Under(13) U Under(14) = {3,4,7,8,11,12,13,14}
will be shifted right. After adding vertex 2, we have Under(w) = {w} for w € {2,5,9,13, 14},
Under(3) = {3,4,6,7,8,10,11,12}.

24 1
34
3
4
7 4
5 6 7
g 5¢—4 6
10N\ 11 12 13 8
10 111 ol2 13
? i 9 \. 14
(a) The drawing of the graph Gs. (b) The drawing of the graph G.
adding z-coordinates of vertices
step | vertices |w, |w, | 1| 2| 3[4[s5]6]7[8]of1w0[11]12]13]14
8 [o9,...,14] - [- ol 1] 2] 3] 4 5
7 8 11 | 12 310 1 2| 4 5 6
6 7 11| 8 2{4({0| 1 21 5] 6| 7
5 5, 6 9 |10 Oj1[4(6(0| 3| 4] 7| 8| 9
4 4 7 8 410(1(4{7|0| 3| 4| 8| 9|10
3 3 6 | 13 1(4(0]1]|4|7|0| 3| 4| 8|10|11
2 2 5 3 O 2|5(0|1({5|8|0| 3| 5| 9|11]12
1 1 2 |14 1 0 2|5|0|1|5(8|0| 3 5 911112
y-coordinates | 12 [12[10[5[3[3[42]o] 1] 1] 1] 1] 0]

Figure 3: The values of the different variables in ConvexDraw.

Notice that the drawing is not strictly convez, i.e., there are angles of size 180°.

3 Linear-time Implementation

The linear-time implementation is achieved by representing the sets Under (v) using a binary tree
T. Furthermore, instead of computing absolute z-coordinates of vertices each time we add Vi, we
will only maintain, for each v, its relative z-coordinate with respect to its father.

By T(v) we denote the subtree of T rooted at v. Each node v is a record containing the
following information:

lef(v) : Ifwisin the contour then left(v) is the node u such that
T(u) = Under(v) — {v}.
right(tv) : If v is in the contour, right(v) is the next node in the
contour.

If v is not in the contour then lefi(v) and right(v) are
used as work pointers to maintain the correct relation-
ship between T and the sets Under(u), and to minimize
pointer manipulations.

Az(v) = z(v)— z(w), z-offset of v from its T-father w
z(v) = z-coordinate of v
y(v) = y-coordinate of v

The root of T is v, and Cy = (wy,...,w;) consists of: v, right(v;), right(right(v,)), etc.
Under (w;) consists of w; and its T-subtree rooted at left(w;). Thus we have the following rela-
tionship: T'(w;) = J’_; Under(w,).

a=1

In general, if u,v are any two nodes, then let Az(u,v) = z(v) — z(u). In particular, Az(v) =
Az(u,v) where u is the father of v. We want to emphasize that the algorithm will store only
Az(v) for each v; whenever the value of Az(u,v) is needed, where v # left(u), right(u), it has to
be computed by finding the lowest common ancestor w of u, v, adding all offsets on the path from
w to v and subtracting all offsets on the path from w to w.

In terms of our tree T, when we add V;, we need to shift T(w,) to the right. The crucial
observation that leads to the linear-time algorithm is that it is not really necessary to know the
exact positions of w, and w, at the time when we install Vi, = (2,...,2,). If we only know their
y-coordinates and the offset Az(w,,w,) then for each i > 1 we can compute y(z;) and the z-offset
of z; relative to z;_,, the z-offset of 2; relative to wp, and the z-offset of w, relative to z,.

Algorithm FastConvexDraw. We will assume, for simplicity, that all links in 7' have been
initialized to nil.

The algorithm consists of two phases. In the first phase we add new vertices, compute their
z-offsets and y-coordinates. In the second phase, we traverse the tree and compute final z-

10

coordinates by accumulating offsets.

We begin by embedding V,, = (21,...,2¢):

for i :=1 to £ — 1 do right(z;) := z;41;
E(21) == (0,0); E(z¢) := (£ - 1,0);
for i :=1to ¢{—-1do &(z):= (i —1,1);

Now, for each k =m —1,m—2,...,1, we proceed as follows. Let w,...,w; be the contour of
Gi+1; and let w,, w, be the leftmost and rightmost neighbors of V;, = (24,...,2,) in Ggy;. Then

execute the following steps.

Precompute offsets:

Update node w,:

Install Vi:

Update node w,:

a:=put(p); B:=p"(g);

compute A; = Az(wp,w;), fori=p+1,...,q;

if & > p (and thus ¢ > p+ 1) then begin
right(w,) := left(w,);

if left(w,) # nil then Az(lefi(w,)) := Az(left(w,)) — Aq;

left(w,) = right(w,)
end ;
right(w,) := 21;
if w, is saturated then e :=0 else € :=1;
Azx(z) = €
y(z1) i=ylwy) + Ay —€+1—¢
for ¢ := 2 to £ do begin
right(z;_1) = z;
Azx(z) = 1;
y(z:) == y(21)
end ;
right(zg) := wy;
if @ < then begin
left(z1) 1= Waqyr;
AZ(Waq1) := Aoay1 — €
right(wg) := nil;
end ;
if 3+ 1 < ¢ then begin
right(wg-1) := left(w,);
Ax(lefw,)) = Ax(left(w,)) + A(w,);
left(1,) = we;
Az(wpy1) = Bpyr — Ag;
end ;
Az(wy) =40, —L+1—¢

11

At this point all y-coordinates and z-offsets have already been computed. All that remains
to be done is to compute z-coordinates. In order to do so, we invoke AccumulateOffsets(v,,0),
where AccumulateOffsets is as follows:

procedure AccumulateOffsets(v: vertex, d: integer);
begin
if v # nil then begin
z(v) := 6 + Az(v);
AccumulateOffsets(left(v), z(v));
AccumulateOffsets(right(v), z(v))
end

end

Correctness. In order to prove correctness, it is sufficient to show that FastConvexDraw is a
correct implementation of ConvexDraw from the previous section.

That the sets Under(v) are represented correctly, as explained at the beginning of this section,
follows by inspection of the pointer manipulations.

Since the z-coordinate of a vertex v equals to the sum of the offsets on the path from the root
v, to v, it is sufficient to show that all offsets Az(v) are computed correctly. It is a matter of
elementary algebra to verify that this is indeed true.

Complezity. As for its complexity, we have already mentioned that the canonical decompo-
sition can be found in time O(n). In the first phase, when we add Vi = (2,...,2;), the cost is
proportional to £+ g — p, where w, and w, denote, as usual, the leftmost and rightmost neighbors
of Vi in Cjy,. Thus the total cost of the first phase is proportional to the number of edges, that
is, O(n). The second phase can be trivially implemented to run in linear time.

Improving the grid size. In order to improve the grid size, we apply the modification outlined
in the previous section. Let us call the resulting algorithm FastConvexDraw2. This change doesn’t
affect the time complexity, and thus we get the following theorem.

Theorem 2 Given a plane graph G, algorithm FastConverDraw2 computes a convexr embedding
of G into the (n — 2) X (n — 2) grid in O(n) time.

In Figure 4 the construction of the tree and the values of Az(v) are given for the example
from Figure 3.

Notice that FastConvexDraw also computes a spanning tree of a 3-connected planar graph
with degree at most 3. This gives a new proof (and a linear-time algorithm) for a theorem of
Barnette [1]. The general problem is NP-hard, i.e., given a graph, find a spanning tree with degree
at most K (K > 2) (problem ND1 in [7]).

12

right

(a) The tree of the graph Gjs. (b) The tree of the graph Gs.
adding Az(v)

step | vertices |1]2[3[4[5] 6[7[8]9o]1011]12]13]14
8 9,...,14 0] 1 1 1 1 1
7 8 110 1 1} 1y 1] 1
6 7 oft2j0f 1y 1] 1] 1] 1
5 5, 6 0 o|2(0f 2| 1} 1| 1] 1
4 4 010 0|3{0f 2y 1| 1| 1} 1
3 3 01040 o(3|0f 2| 3| 1| 2] 1
2 2 oj2(0f(o0t-110(3(|0] 2| 4| 1 91 1

Figure 4: The tree T and Az (v).

Our algorithm can also be generalized, using the following theorem of Thomassen:

Theorem 3 Let G be a plane graph with outer face S such that all vertices not in S have degree
> 3. Then G has a convez representation with outerface S if and only if G is internally 3-

connected.
If G satisfies the assumptions in the above theorem and S = (uy,...,u;), then adding a
vertex z, with edges to u;,...,u; gives a triconnected graph G*. By applying the algorithm

FastConvexDraw to G*, and not adding 2, in the last phase, we obtain a straight-line and internally
convex drawing for G. This yields the following theorem:

Theorem 4 If a plane graph G with degree > 3 is convez drawable, then FastConvezDraw, mod-
ified as above, constructs in linear time an internally convez drawing of G into a (n—1) x (n—2)
grid.

13

Acknowledgements.

The authors wish to thank Tom Payne for useful comments.

References

1]
[2]

3]

[4]

[5]

[6]

7]

8]

[9]

[10]

[11]

[12]

(13]

D. Barnette. Trees in polyhedral graphs. Canad. J. Math. (18):731-736, 1966.

N. Chiba, K. Onoguchi, and T. Nishizeki. Drawing plane graphs nicely. Acta Informatica,
(22):187-201, 1985.

N. Chiba, T. Yamanouchi, and T. Nishizeki. Linear algorithms for convez drawings of planar
graphs. In J.A. Bondy and U.S.R. Murty (Eds.), Progress in Graph Theory, pages 153-173,
Academic Press, 1984.

M. Chrobak and T.Payne. A linear-time algorithm for drawing planar graphs on a grid. Tech-
nical Report UCR-CS-89-1, Department of Mathematics and Computer Science, University
of California at Riverside, 1989.

H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid, Combinatorica
(10):41-51, 1990.

I. Fary. On straight line representing of planar graphs. Acta. Sci. Math. Szeged, (11):229-233,
1948.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. Freeman & Co., San Francisco, 1979.

G. Kant. Drawing planar graphs using the Imc-ordering. In Proc. 38rd Symp. on Foundations
of Computer Science, pages 101-110, 1992.
Extended and revised version in:

G. Kant. Algorithms for Drawing Planar Graphs. PhD thesis, Dept. of Computer Science,
Utrecht University, 1993.

P. Rosentiehl and R.E. Tarjan. Rectilinear planar layouts and bipolar orientations of planar
graphs. Discrete Computational Geometry, (1):343-353, 1986.

W. Schnyder. personal communication.

W. Schnyder. Embedding planar graphs in the grid. In Proc. 1st Annual ACM-SIAM Symp.
on Discrete Algorithms, pages 138-147, 1990.

W. Schnyder and W. Trotter. Convex drawings of planar graphs. Abstracts of the AMS (13),
1992.

14

[14] S.K. Stein. Convex maps. Proc. Amer. Math. Soc, (2):446-466, 1951.

[15] C. Thomassen. Planarity and duality of finite and infinite planar graphs. Journal of Com-
binatorial Theory B, (29):244-271, 1980.

[16] W.T. Tutte. Convex representations of graphs. Proc. London Math. Soc., (10):304-320, 1960.
[17] W.T. Tutte. How to draw a graph. Proc. London Math. Soc., (13):743-768, 1963.

[18] K. Wagner. Bemerkungen zum vierfarbenproblem. Jber. Deutsch. Math.- Verein, (15):26-32,
1936.

15

