Multi-traversal tree decoration in a
functional setting:
monads versus bindings

Maarten Pennings

RUU-CS-93-46
December 1993

& % s Utrecht University

W%
< = Department of Computer Science
o
: ' Padualaan 14, P.O. Box 80.089,
W 3508 TB Utrecht, The Netherlands,

Tel. : + 31 - 30 - 531454

Vi
; o
e i
. e
it -

rtips :: (a = B) = Tree a — [B] = (4]
rtips n (Tip a) rs = i:rs where i=na
rtips n (Fork I r) rs = rs"
where rs' = rtipsnlrs
rs’ = rtips n r rs’
bmatch :: (o = B) = Tree a — [B] = (8], Bool)
match n (Tip o) (v:vs) = (vs,v =1) where i=na
match n (Fork [r) us = (vs",I' A7)
where (vs',!') = match nl vs
(vs",r') = match n r vs'

palin :: (¢ = B) = Tree a — Bool
palin n t = t' where ([}, t') = match n t (rtips n t [])

Fig 3: An ineflicient palindrome recognizer for termed trees

3 A circular program

The function palin from Fig. 3 has one major flaw. Each tip is normalized twice: once in the
first pass to cons the normalized term to the tip-list and once in the second pass to compare
it with an element in the tip-list. Hence, palin suffers from inefficiency due to recomputation.

In this section we will show a function that circumvents recomputation by giving it a
circular definition [Bir84]. This solution comes close to our requirements although it has some
shortcomings. Implementors of attribute grammar evaluators prefer non-lazy evaluation so
that the system is easier to implement and faster in execution. On a more theoretical bases,
the solution also has a shortcoming. It is not memoizable. Evaluation is essentially lazy, so
we can not first compute the arguments in order to check the memo table. Lazy memoing as
proposed by Hughes [Hug85] does not seem appropriate either.

There are two general methods to obtain a circular program. Firstly, one can use the
rewriting technique from bird [Bir84] or, secondly, one can use a mapping to and from an
attribute grammar as described in [KS87] or [Kui89, pp. 83-95]. However, since the functions
for the first traversal (rtips) and the second (match) have the same pattern structure, we
observe that we can bypass these elaborate techniques by simply merging the two function
definitions into one

rtm n t rs vs = (rs’, vs', t') where rs' = rtips n t rs; (vs',t') = match n t vs

The function cpalin as defined in Fig. 4 is the result. As Bird noted in [Bir84], “one has
to be careful to avoid demanding information about an argument, either through pattern
matching on the left hand side or an explicit conditional on the right, when such information
can be delayed or avoided altogether.” We have such a case at hand, namely the pattern
(v : vs) which is a parameter for the “second traversal”. Note that we have used an irrefutable
pattern (prefix ~) which is just syntactic sugar offered by GOFER to avoid writing the less
clear but lazy constructs head and tasl.

Since the traversing functions now also construct respectively destruct a binding, their types
have changed. This is reflected by their headers

rtips :: (@ = B) = Tree a — [8] = {[8], Tree™” ="+ g)
match :: (o — B) = Tree a — [8] & Tree™ ™ 3 — ([4], Bool)

After this transformation, we notice that in a Fork node both sons return a binding during
the first traversal. This binding should be passed back to them in the second traversal. Hence,
a Fork node must put the bindings of its sons in a binding. We conclude that a Tip node
requires a binding of type (3, whereas a Fork node requires a binding of two bindings, both
of type (Tree™ """). These are disjunct instances of the same type (Tree™ ™"+)

data Ti‘eeﬂipu—)matcb ,B — Tipr(a’pa—omatch ﬂ
l Forkrlipa—omatch (rrreem‘n—vmatcl ﬂ) (rrreerlip:—om-lch /3)

In Fig. 5 the function bpalin is given. It is a palindrome recognizer for termed trees that
uses bindings to circumvent recomputation of the normal forms. Function dmatch makes
use of double pattern matching. It will never abort, since brtips constructs the binding in
synchronization with the tree.

brtips :: (o = B) — Tree a — [] — ([B], Tree™” ="+ 3)

brtips n (Tip a) rs = (i:7rs,Tip™™ """ i) where i=na

brtips n (Fork I r) rs = (rs”,Fork™ =™ [, 1)

where (rs’,l,) = brtipsnlrs
(rs",ry) = brtips n r rs’

match :: (@ = §) = Tree a — [8] = Tree™ "™ 8 — ([8], Bool)
bmatch n (Tip a) (v : vs) (Tip™ ™" i) (vs, v = i)
bmatch n (Fork I r) vs (Fork™ =" [, 1) (vs", I' A T')
where (vs',l') = bmatch n | vs |,
(vs",r') = bmatch n r vs' 1,

bpalin :: (o = B) = Tree o — Bool
bpalinnt =
where (rs,t,) = brtips n t []
(I, t') = bmatch n t rs t,

Fig 5: An palindrome recognizer with bindings

4.2 Bindings in general

In the previous paragraph we dealt with the running example. In this paragraph we will deal
with the general case: mutual recursive data types with a varying number of traversals.

travy :: X — nil — nsl
travy (c X) nil = nsl
where zil = f1 nil
zsl = travy X zil
nsl = f2 zsl

We see in Fig. 6 that N is visited three times. In the first visit to N, son X will be visited
for the first time. In the second visit to N son X will be visited for the second and third time;
we see the beginning of a visit border. In the third visit to N the fourth visit to X takes
place. This figure also shows the intra-traversal-communications. They are flagged with a
“lightning-arrow” (%) next to the border they cross.

First, we extend the traversing functions with bindings. A tree of type N is visited three
times, so there will be three bindings: N'72 N!23 and N?7*3, On the other hand, X will be
traversed four times, so there are six bindings: X!22, X!73 and X'~** from traversal 1, X2~3
and X?7* from traversal 2 and finally X3~ from the third traversal. This transformation is
shown in Fig. 7. The above presented function now has the following type

travy :: X — nil — (nsl, N172, N1-3)

The final transition from Fig. 7 to Fig. 8 determines the shape of the binding constructors.
We will explain this in more details. First of all, some values are bound: nil is defined in
the first traversal, but it is used in the second as well as in the third. Therefore, it will be
bound by N'7? as well as by N'™3. The former also bind zs1. Secondly, bindings for sons
must be bound. We perform the usual define/usage analyses and note that X'*? and X!~3
are defined in traversal 1, but they are both needed in traversal 2 since the second and third
visit to X take place there. Likewise, X'~* is bound by N'~*3. We have now fully described
the bindings from the first traversal. There is one binding from the second traversal (N2~3),
it only binds the bindings for its sons. The following data types are the result

il gsl X192 X193 |

data N122 =cl™2 g4
data N!73 =c'73 pil X174 ...

data N2—>3 — c2—?3 X2—)4 X3—+4 I .

Other binding constructors on these types exist (as the dots suggest). They are defined
by other constructors on N though. There is one last thing that is worth noticing in Fig. 8.
The binding for son X from visit 2 to visit 3, X273 is taken care of immediately during the
second traversal to N.

4.4 Properties of bindings

Bindings closely follow the structure of the tree. Furthermore, they contain values from all
over the tree, and the more traversals have take place, the more bindings have been computed.
Nevertheless, bindings should not be confused with partially decorated trees that are threaded
through the traversal code. When the first traversal finishes, it returns a binding for the second
traversal. However, this binding only contains the values needed in the second traversal, not
the values needed for the third (those are stored separately in a 1 — 3 binding). Of course, we

Decoration starts with a completely undecorated tree. The following function creates such
a tree.

emptyA :: Tree a — Atree o
emptyA (Tip a) = Atip Undefa
emptyA (Fork I r) = Afork (emptyA l) (emptyA r)
We will need three operations on decoratable trees: recording a value, retrieving a value

and inspecting the applied constructor. For the latter, we first introduce a data type used to
return the result.

decoA i B — Atree a f — Atree a 3
decoA b (Atip b a) = Atip (Ok b) a

getA :: Atree a 8 — 3
getA (Atip (Ok b)a) = b

data Conses o = CTip a | CFork
consA :: Atree a 3 — Conses o

consA (Atip b a) = CTipa

consA (Afork [r) = CFork

5.2 ‘Walkable trees

The major problem to tackle is how to implement a “walkable” tree. This is necessary
since the current location is part of the state. We will represent a walkable tree by a two
tuple. The first component represents the current subtree. The second component is a list
of ancestors-functions. An ancestor-function returns the tree representing the father, when
passed its missing son as argument. Thus the original tree represented by the walkable tree

(tn, [fn—l,fn—-2’ oo >f0]> iS (fO 2o (fn—z (fn—l tn)) e)

type Wtree a 3 = (Atree a S, [Atree a f])
downlW , downrw, upW :: Wtree a 8 — Wtree o 3
downlW (Afork I r,h) = (I,(A\l'.Afork ! r):h)
downrW (Afork I r,h) = (r,(\r'.Afork!r'):h)
upW (s,f :) = {fs,h)

Of course, the functions on Atree must be ported to Wtree.
emptyW t = (emptyA t,][)
decoW b (t,h) = (decoA bt,h)
getW (t,h) = getAt
consW (t,h) = consAt

5.3 The monad

In a pure functional language, state may be mimicked by introducing a type to represent
computations that act on state. In the previous two subsections, we have defined a state that
satisfies our purposes, namely (Wtree o 3).

type M a8~y = Wtree a 8 — (v, Wtree o 8)

11

Now, the state monad (M a 8) is a function that accepts an initial state (a partially
decorated walkable tree), and returns the computed value —that may depend on the initial
state— paired with the final state.

With a (state) monad we associate three functions. One that takes a value into a monad
(unitM), one that applies a monadic function in a monad (x) and one that takes a value out
of a monad (startM). We use the quoting convention ‘f* for an infix application of f.

unitM :: y > M a By

unitM c = dw.(c,w)

) :MaBy—>(y>MaBdo>MaBs
zxf = Aw. let (c,w')=zw in fcw'
startM :: M a By — Wtree a f = v

s ‘startM‘w = ¢ where (c,w') =sw

What remains are the operations on the state. Two of them “inspect” the state (consM
and getM) and the other four (upM, downlM, downrM and decoM) only alter the state. The
value-component returned by the latter is therefore not of interest to us. In the imperative
language C the function would by of type void, indicating that its purpose lies in a side
effect. We define the type One for this.

data One = One
downlM, downrm,upM :: M a 8 One

downlM = MAw.(One,downlW w)
downtM = MAw.(One,downrW w)
upM = Aw.(One,upW w)
decoW :: 8 — M o 3 One

decoW b = Aw.(One,decoW b w)

The other two functions do have a useful result, and no side effect.

getM :: M a3

getM = dw.(getW w, w)
consM :: M a 3 (Conses «)
consM = Aw.(consW w, w)

5.4 Using the monad

In this final section we will convert the program from Fig. 3 into monadic form. The result
type must be augmented from v to (M a 8 7). Furthermore, the (Tree o) parameter will
be dropped. The result of this transformation is depicted in Fig. 9. The two traversals are
coordinated by the following function.

mpalin’ :: (. = 8) = M a 5 Bool
mpalin’ n = mrtips n [| x Ars.mmatch rs x A(_, t).unitM ¢

12

