Bottom-up Grammar Analysis

- A Functional Formulation -

J. Jeuring and D. Swierstra,

UU-CS-1994-01
January 1994

Utrecht University

S o, -

§. = Department of Computer Science
)

hrs S Padualaan 14, P.O. Box 80.089,

'
4771 ’8\ 3508 TB Utrecht, The Netherlands,
Tel. : ... + 31-30-531454




Bottom-up Grammar Analysis

- A Functional Formulation -

J. Jeuring and D. Swierstra

Technical Report UU-CS-1994-01
January 1994

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands



IS8N: 09243275




Bottom-up Grammar Analysis
— A Functional Formulation —*

Johan Jeuring and Doaitse Swierstra
Utrecht University
P.0.Box 80.089, 3508 TB Utrecht, The Netherlands

email:

Abstract

This paper discusses bottom-up grammar analysis
problems such as the EMPTY problem and the
FIRST problem. It defines a general class of bot-
tom-up grammar analysis problems, and from this
definition it derives a functional program for per-
forming bottom-up grammar analysis. The deri-
vation is purely calculational, using theorems from
lattice theory, the Bird-Meertens calculus, and laws
for list-comprehensions. Sufficient conditions guar-
anteeing the existence of a solution emerge as a
byproduct of the calculation. The resulting pro-
gram is used to construct programs for the EMPTY
problem and the FIRST problem.

1 Introduction

Grammar analysis is performed in many different
situations: Yacc tests whether or not its input
grammar is LALR(1), parser generators contain
functions for determining whether or not a non-
terminal can derive the empty string (EMPTY) as
part of determining the set of all symbols that
can appear as the first symbol of a derived string
(FIRST), and for determining the set of symbols
that can appear as the first symbol following upon
a string derived by a given nonterminal (FoL-
Low). Other, similar, problems arise when ana-
lysing attribute dependencies in attribute gram-
mars: determine the inherited attributes upon
which a synthesised attribute depends (IS), and,
conversely, determine the synthesised attributes
upon which an inherited attribute depends (SI).
Such problems are called grammar analysis prob-
lems. Grammar analysis problems can be divided

*This paper is an extended version of a paper with the
same title that will be presented at ESOP ’94.

{johan,doaitse}@cs.ruu.nl

into two classes: bottom-up and top-down. The
difference between these classes is that the re-
quired information for a nonterminal in a top-
down problem depends on the possible contexts
for that nonterminal, whereas in a bottom-up prob-
lem the contexts of a nonterminal can be ignored.
Often the output of a bottom-up problem is used
in a top-down problem. The specification of a
grammar analysis problem determines the class
to which it belongs: EMPTY, FIRST, and IS are
bottom-up grammar analysis problems, the FOL-
Low and SI problems belong to the top-down class.
This paper studies bottom-up grammar analysis.

Grammar analysis problems are described by sets
of mutually recursive equations, and the solution
of a grammar analysis problem is a fixed point of
this equational system. Moncke and Wilhelm [9]
observe this, and give several solutions, depend-
ing on the conditions that are satisfied, for such
problems. The goal of this paper is to derive the
solutions given by Moncke and Wilhelm. We start
with a very general specification of a bottom-up
grammar analysis problem, and we derive a func-
tion of which the fixed point gives the solution
of the problem. This function is obtained by ap-
plying laws to components of the expressions oc-
curring in the specification. The laws we apply
are familiar laws for, for example, list-comprehen-
sions [11], and maps [1, 7]. Sufficient conditions
for guaranteeing the existence of a fixed point so-
lution emerge as a byproduct of this derivation.
Finally we give the implementation of the derived
algorithm in the functional language Gofer [5, 3].
Incorporating the functions for solving grammar
analysis problems in parser generators such as a
functional version of Yacc [10] and Ratatosk (8]
would reduce the amount of code used in, and very
likely increase the speed of, these parser genera-
tors.



This paper is organised as follows. Section 2 de-
fines the datatypes that are used in manipulating
grammars in Gofer. Section 3 introduces some
necessary concepts of lattice theory needed in the
subsequent sections. Section 4 defines the class of
bottom-up grammar analysis problems, and gives
some examples. Section 5 derives an algorithm
that can be used to solve bottom-up problems.
Section 6 concludes the paper.

2 Datatypes for grammars in

Gofer

This section defines various datatypes in Gofer
used in analysing and representing grammars.

Functions

We use simple juxtaposition and a little white
space to denote the application of a function f :
s — t to an argument z € s, i.e.,, f . Compo-
sition of functions f : s > tand g : 7 — s is
written f - g : r — t. Composition is associative,
and the identity function ¢d is the unit of compo-
sition. Projection ezl (ezr) selects the left (right)
component of a pair, i.e,

ezl (a,b)

exr (a,b) = b
Given functions f : A - B and g : A = C,
function fag: A = B x C (split) applies both

f and g to an argument. The type B x C is the
cartesian product of the sets B and C.

(fagda = (fa,g90)

Given functions f : A = B and g : C = D, func-
tion f X g : A x C = B x D (product) applies f
to the first component, and g to the second com-
ponent of its argument.

(fxg)(a,0) = (fagc)

We have the following laws concerning projections,
split, and product.

exl-(fag) = f (1)
ezr-(fag) = ¢ (2)
exr-fxg = g-er (3)
exl-fxg = f-exl (4)
fxg-haj = (f-h)a(g-d) (5)

Function application binds stronger than a binary
operator, and among the binary operators func-
tion composition binds weakest.

Lists

The datatype list is a prominent datatype in the
subsequent sections, and we will use a number of
properties that are satisfied by functions defined
on the datatype list. The empty list is denoted by
[], and the concatenation of two lists z and y is
denoted by z + y. Prepending an element z to a
list zs is denoted by z : zs. The datatype list over
base type A is denoted by A*. For f : A = B,
function f* : Ax — B=x, called a map function
takes a list and applies function f to all elements

in the list, so
frzs = [fz]|z+ zs

For the map function we have

fx (1 = [}
fr(z+y) = frzHfry (6)
frx(z:28) = fx:fxxs

Map-distributivity says that the composition of
two maps is a map again, i.e., for all functions f
and g:

frogx = (f-g) (7)
Furthermore, the result of mapping the identity

function over an argument is the argument itself,

S0
idax = idas

These equalities say that * is a functor. An im-
portant functional programming construct we use
is list-comprehension. For example,

[(z,9) | z + [1,2],y « [3,4]]

T IL,3), (1,4),(2,3), (2,4)]

We will use the following laws for list-comprehen-
sions [11] in some calculations.

[t]tts) = ts (8)
[ftld = fxt|dq 9)
[t | pq] = concat [[t | ] | P] (10)

where function concat flattens a list of lists. Func-
tion concat is defined in terms of the reduce oper-
ator. The reduce operator / takes an associative
operator ® with unit 1g, and a list, and places
the operator in between the elements of a list, so
®/ la,b,c] = a®bdc. For operator & : AXA = A
we have @/ : Ax = A. It can be defined by

o/ [] = lg
®/(zHy) = O/zdd/y (11)
&/ (z:28) = OO/ z8



Function concat is an example of a reduce: it is
defined by concat = +/. For the composition of
a map and function +/, and for the composition
of a reduce and function +/ we have

frodb) = A/ fr (12)
@/ -/ = &f (&) (13)

Terminals and nonterminals

Suppose a terminal is a value of type b, and a
nonterminal is a value of type a. A symbol that
is either a nonterminal of type a or a terminal of
type b is a value of the datatype Symbol defined
as

data Symbolab = Na|TDh

An element N z is considered to be a nonterminal,
and an element T y is considered to be a terminal.
Note that this definition makes the conventional
disjoint sum operational.

Grammars
A context-free grammar consists of sets of nonter-

minals, terminals, productions, and a start-symbol.

In Gofer, the sets of nonterminals and terminals
correspond with the types a and b, respectively.
These types are parameters of the definition of a
context-free grammar. We represent a context-
free grammar in Gofer by a pair, the first compo-
nent of which denotes the start-symbol, and the
second component of which denotes the produc-
tions of the grammar. The start-symbol is a non-
terminal, i.e., a value of type a. The productions
of a grammar are a set of pairs the left-component
of which is a non-terminal, and the right compo-
nent of which is a list of symbols. A context-free
grammar is a value of the type Grammar, which
is defined by

type Grammar a b

- (a, [(a, [Symbol a b])])

For example, consider the grammar eg for expres-
sions in a variable v.

E —» E+T|T
T — TxF|F
F 5 (E)|v
This grammar is represented in Gofer by

€g = (E’[(Ev[T +»NT])
,(E,[N T])

,(T,[N T,T %,N F))
(T, [N F))
J(F[T (N ET))
(BT o))

)

Function rhss takes a grammar and a nonterminal
nt and returns the right-hand sides of the produc-
tions of nt. It is defined by

thss gmt = [rhs | (nt,rhs) « ezr g]

Function nts takes a grammar, and returns the
list of nonterminals of the grammar. We assume
that for each nonterminal there exists at least one
production. Function nts is defined by

nts g = nub (exl* (ezr g))

where function nub removes duplicates from a list.

Parse Trees

To determine whether or not the empty string can
be derived from a nonterminal (the EMPTY prob-
lem), we have to refer to all sentences that are
derivable from the given nonterminal in the given
grammar. A derivation using productions of a
context-free grammar corresponds to a parse tree
or derivation tree, i.e., an element of the datatype
Rosetree, which is defined by

data Rosetree a b

Node a [Rosetree a b] | Leaf .b

For example, the following derivation of the sen-
tence v+v using the productions from grammar

eg

E
E+T
T+T
F+T
v+T
v+F
v+v

corresponds to the derivation tree dt defined by



Node E
[Node E
[Node T
[Node F
[Leaf ]ll,
Leaf +,
Node T
[Node F
[Leaf ]|
]

Suppose function top : Rosetree a b — Symbol a b
returns the top of a rose-tree. For each subtree
of a derivation tree of the form Node a x we have
that a — top* z is a production of the grammar.

The function sen takes a rose-tree, and returns
the sentence of which the rose-tree is a derivation.
Funcion sen is defined by

sen (Node a ) = +/ (senx 1)

sen (Leaf b) = [b]
It follows that sen dt = v+v.

Catamorphisms on Rose-Trees
For every recursive datatype we can define a func-
tion which recursively replaces constructors by func-
tions [6]. By definition, a catamorphism on the
datatype Rosetree is a function h : Rosetree a b—
¢ that is uniquely determined by functions f and
g as follows.

h (Node a z) = fa (h*z)

h (Leaf b) = gb
For such a function h we write

h = RT_cata f g
The function sen defined above is a catamorphism,
ie.,

sen = RT_catast

where saz=H/z
tb=1[b

Another example of a catamorphism on Rosetree
is the height function, which returns the height of
a rose-tree.

height = RT_cata st

where s (Na)z=1+1/2
t(Th=1

where 1 returns the maximum of two numbers.
For example, height dt = 5. We will encounter

several other catamorphisms on rose-trees in the
following sections.

2.1 Implementation

The definitions of some of the functions and data-
types given above are translated into Gofer as fol-
lows.

split fgx=(f x, g x)

data Symbol a b =N a
| Tb®

type Grammar a b = (a,[(a, [Symbol a b])1)

rhss :: Eq a =>
Grammar a b ->
a->
[[Symbol a bl]
rhss g nt = [rhs
| (z,rhs) <- snd g
, z==nt

]

nts :: Eq a => Grammar a b -> [a]
nts g = nub (map fst (snd g))

3 Lattice theory

This section only gives the definitions of notions
from lattice theory that are used in the subsequent
sections. For a more extensive introduction to lat-
tice theory the reader is referred to e.g. [2].

Lattices and CPO’s

A partial order on a set A is a reflexive, antisym-
metrical, and transitive binary relation on A. A
partially ordered set or poset is a pair (D, E) con-
sisting of a set D together with a partial order C
on D. If it exists, the least or bottom element of
a poset is usually denoted by L. Given d, d €D,
their join, denoted by d U d', is the least element
in D that is greater than both d and d'. Tt is fully
characterised by the following equation:

c=dud

(Ve:cCe =dCe A d Ce)

Note that the join of two elements in D is uniquely
defined when it exists. The least upperbound or
Iub of a subset X C D is denoted by U/ X. It is
defined by

c=u/X



(Ve:cCe = (Vz:z€X:zCe))

Not every X C D needs to have alub. The meet N
and greatest lowerbound or glb are dual to the join
and the lub, respectively. Their definitions are
omitted. Let (D, C) be a poset. If for all elements
d and d’' their join d U d’ exists, then (D,C) is
called a join semilattice. A meet semilattice is
defined similarly. Let S be a subset of a poset. S
is said to be directed if every finite subset of S has
an upper bound. A poset D is a complete partial
order or cpo if it contains a bottom element, and
if each directed subset of D has a lub, so U/ X
exists for all directed subsets X C D.

Fixed Points

An element d € D is a fixed point of function
f:D = Dif fd=d. Itis a least fixed point if
for any other fixed point d' of f we have d C d'.
A function f : D — E is monotonic if it respects
the ordering on D, i.e.,

dCd = fdCfd

A function f : D — E is continuous if it respects
lubs of directed subsets, i.e., if X C D is a directed
subset, then

(f-uphx = (- -MX

Let D be a finite set, (D,C) a CPO with bottom
1, and g : D — D a continuous function. It
follows from the CPO Fixed Point Theorem I [2]

that function g has a least fixed point ug, defined
by

pg = U/lg" L]n[0.]]

Since ¢g* L C g**! 1, we have that the least fixed
point of g equals the first element in [¢" L | n +
[0..] that occurs twice, i.e.,

Wl Line0] = gl

where function ifp is defined by

_ T
Wie = {qum

The Fixed Point Fusion Theorem (or Plotkin’s
Lemma) is used to reason about fixed points. This
theorem reads as follows.

ffz==x
otherwise

fl=LAf-h=g-f
=

f uh=pg

We use the Fixed Point Fusion Theorem and the
CPO Fixed Point Theorem I as follows. Consider
the function (+1). Define oo = p(+1). Taking
h = (+1), applying the Fixed Point Fusion Theo-
rem gives

flL=L A f-(+1)=g-f
=

fu(+1) =pg

Writing oo for u(+1), and O for the bottom L of
the natural numbers, we get

fO=L A f(n+l)=g(fn)
=

foo=upg

3.1 Implementation

The definitions of some of the functions and classes
given above are translated into Gofer as follows.

class Semilattice a where
join :: a->a->a
bottom :: a

instance Semilattice Bool where
join = (1)
bottom = False

instance Eq a => Semilattice [a] where
join = \a b -> nub (a ++ b)
bottom = []

1fp :: Eq a =>
(a -> a) >

a ->
a
Iifpfxlx==£fx =x
| otherwise = 1fp f (f x)
lub :: Semilattice a => [a] -> a

lub = foldl join bottom

4 Grammar analysis problems

Although in some grammar analysis problems only
a property of the start-symbol of the grammar is
sought, we define a grammar analysis problem to
be a problem which requires finding information



about all nonterminals of the grammar. This sec-
tion defines bottom-up grammar analysis prob-
lems. The first subsection gives some examples
of grammar analysis problems. The second sub-
section discusses functions for generating deriva-
tion trees. The third subsection defines bottom-
up grammar analysis problems, and, finally, the
fourth subsection gives the implementation of some
of the functions introduced in this section.

4.1 Examples of grammar analysis
problems

Part of determining whether or not a grammar is
LL(1) consists of computing lookahead sets. If the
grammar analysis problems EMPTY, FIRST, and
FoLLow have been solved, we can easily approxi-
mate the lookahead sets. The definitions of these
problems are our first three examples. The fourth
example, LEFT-CONTEXT concerns the computa-
tion of left-contexts of nonterminals. Left-contexts
of nonterminals are used to determine whether or
not a grammar is LR(0).

EmMPTY

Given a grammar g and a nonterminal nt from g,
the expression Empty g nt is a boolean expressing
whether or not it is possible to derive the empty

string from nt, using the productions from g. Itis
defined by

Empty g nt

[1#[z|nt = z,z=[]]

where 2> denotes a derivation with productions
from g¢.

FIRST

Given a grammar g and a nonterminal nt from g,
the expression First g nt is the set of terminals
that can appear as the first element of a sentence
derivable from nt. It is defined by

First g nt

nub [a | nt = [a] # 2,z € X4

where X is the set of terminals of g.

FoLLow
Given a grammar g and a nonterminal n¢ from g,
the expression Follow g nt is the set of terminals

that can follow on nt in a derivation starting with
the start-nt S from g. It is defined by

Follow g nt

nub [a € X | S = u+ [nt,a] 4]

LEFT-CONTEXT

A left-context of a nonterminal is a list of ter-
minals and nonterminals that can appear before
the nonterminal in a right-most derivation from
the start-nt, provided the list of symbols after the
nonterminal is a list of terminals. Given a gram-
mar g and a nonterminal nt from g, the expression
LC g nt is the set of left-contexts of nt.

LC gnt

nub [u| S & u+ [nt] #v,v € X¥|

Bottom-up versus top-down

The definitions in the first two examples given
above require finding information about a nonter-
minal, and do not refer to the context in which
such a nonterminal appears. These two examples
are bottom-up grammar analysis problems. The
definitions of the last two examples explicitly refer
to the context in which the nonterminal appears,
namely v+ |-, a] #v, and u+[] +v, respectively.
These two examples are top-down grammar anal-
ysis problems. In the rest of the paper we limit
ourselves to bottom-up problems.

4.2 Generating trees

The definitions in the examples of grammar analy-
sis problems given in the previous subsection typi-
cally refer somehow to all sentences derivable from
a nonterminal. The sentences derivable from a
nonterminal can be obtained from the derivation
trees of the grammar with the given nonterminal
in the root. In this subsection we define a function
returning all possible derivation trees of a gram-
mar.

Function generate takes a grammar, and returns
a list of lists, in which each list contains all deriva-
tion trees with the same nonterminal in the root.
Before we give the definition, we discuss the func-
tion cp (cartesian product), which is used in the
definition of function generate.

Function cp



Function cp returns the cartesian product of a list
of lists. It is defined as a map followed by a reduce
by

cp = X/ []=

zs\ys = [m—H—y]x(—xs,y(—ys]

where [] takes an element a, and returns the sin-
gleton list containing that element: [a]. Note that
[[1] is the unit of operator X. Function cp com-
mutes with function fxx for all functions f, i.e.,
for all functions f we have

frx-cp = cp- fxx (14)
Function generate
Function gh is defined in the context of a grammar
g, which from now on is considered a constant.
It takes a natural number n, and a symbol nt,
and returns the collection of all derivation trees,
of height at most n, derivable with the productions
of g with symbol nt in the root, so

gh : nat — Symbol a b — (Rosetree a b)*
ghnnt = [y|nt 5y A height y <n]

where we suppose that 2 derives derivation trees
instead of strings with productions from grammar
g. So dt is an element of gh 5 (N E). Function
generate is defined in terms of function gh as fol-
lows.

generate g = (gh oo N)* (nts g)
Function gh can be defined recursively in vari-
ous ways; we have chosen the following definition
which is easily manipulated in calculations. Func-
tion gh is defined by pattern matching on its first
argument, using the second argument to break the
tie. There are no trees of height zero, so

gh 0 symbol = []

There is just one derivation tree of height at most
n+1 that can be built from a terminal.

gh (n+1) (T b) = [Leaf b

The list of derivation trees of height at most n+1
derivable from a nonterminal nt contains the list
of the derivation trees of height at most n deriv-
able from nt. Furthermore, for each production
for nt we add the cartesian product of the deriva-
tion trees of height at most n of the symbols of
the right-hand side of a production for nt; each

element of the cartesian product is turned into a
derivation tree using function Node nt.

gh (n+1) (N a)
= (15)

(gh n (N a)) # [Node a c |

rhs « rhss g a,c < cp ((gh n)x rhs)]
We do not bother about duplicate elements in
gh n nt; applying function nub to the right-hand
expression of the last equation would have removed
them. The right-hand side argument of + in the

last equation of the definition of function gh can
be rewritten using laws for list-comprehensions.

[Node nt ¢ |
Ths < rhss g nt, ¢ «— cp ((gh n)* rhs)]
= equation (9) for list-comprehensions
(Node nt)*
[c | rhs « rhss g nt,c « cp ((gh n)* Ths)]
(10), (8), and (9)
((Node nt)x - 4/ - cpx - (gh n)xx)
[rhs | Ths < rhss g nt]

(8), definition of function rhss
((Node nt)x - 4/ - cp* - (gh n)xx)
(rhss g nt)

This equality will be used in the calculation in
Section 5.

4.3 Bottom-up problems

We formalise the notion of a grammar analysis
problem. In case of the EMPTY problem, we want
to determine for all nonterminals nt¢ from a gram-
mar g whether or not it is possible to derive the
empty string from nonterminal nt. A non-execu-
table specification for this problem reads as fol-
lows. Given a nonterminal nt we apply a func-
tion p to each derivation tree with nt in the root.
Function p determines whether or not the string
represented by the derivation tree is empty, ie.,

([1=) - sen

Note that function p corresponds with the two ex-
pression nt % z,x = [ ] occurring in the list-
comprehension in the definition of Empty g nt. To
determine whether or not it is possible to derive
the empty string from nonterminal nt, we apply
the function combine to the list of results obtained

p:



by applying function p to all derivation trees with
nt in the root. Function combine is defined by

combine = V/

Note that function combine corresponds with func-
tion ([] #) occurring in the definition of Empty g nt,
i.e., we have

[1#1] = false
(A e#y = (#2VA1#Y

Generalising this pattern, we now define the class
of bottom-up grammar analysis problems.

(16) Definition A bottom-up grammar anal-
ysis problem, which analyses a grammar g with
respect to a function p : Rosetree a b — ¢, and an
operator @ : ¢ X ¢ — ¢ with unit 1g, is an expres-
sion of the form ag g p @, where function ag is
defined as follows.

aggp®

(id a (af - gh 00 - N))* (nts g)

where

af = combine - properties
properties = p*

combine = O/

In case of the bottom-up grammar analysis prob-
lem EMPTY we may now write

empties g = ag g (([]=)sen)V

and in case of the bottom-up grammar analysis
problem FIRST we write

firsts g = ag g (take 1-sen)U

where operator U is defined by zUy = nub (z+y).

4.4 Implementation

The definitions given above are translated into
Gofer as follows.

We do not give the implementation of function
ag, because the resulting program would not ter-
minate. In the following subsection we transform
function ag such that it always terminates, and
the resulting program can be found at the end of
the following section.

We give the definitions of functions empties and
firsts. There are some differences with the defi-
nitions given above. First, the last argument of
the functions given above does not appear in the
Gofer definitions below. We will assume later that
the last argument of a bottom-up problem is al-
ways the join of a semi-lattice, so we need not pass
it as an argument. The second difference is that
function p is replaced by two functions, which are
obtained by writing p as something very much like
a catamorphism on Rosetree, namely, we will as-
sume later that there exist functions pn and pl
such that

p (Node nt ) = pn nt ((top a p)* z)

p (Leaf x) = plz
The second argument of ag is derived from func-
tion pn, and the third argument of ag is the func-

tion pl. At the end of the following section we
construct these definitions.

empties :: Eq [(a,Bool)] =>
Grammar a b ->
{(a,Bool)]
empties g =
ag
g

(\nt x -> and (map snd x))
(\a -> False)

firsts :: (Eq [(a,Bool)]
,Eq [(a, [bD]
,Eq [[b]]
,Semilattice [b]
) =>
Grammar a b ->
[(a,[b])]
firsts g =
ag
g
(\nt x -> foldr t bottom x)
(\b -> [b])
where
t (N a,y) x
| eg ‘at® a = nub (y ++ x)
| otherwise =y

t (Tb,y) x=y
eg = empties g

From these definitions we obtain the following type
for function ag.

ag :: (Eq a



,Eq [(a,c)]
,Eq [c], Semilattice c
=>
Grammar a b ->
(a => [(Symbol a b,c)] > ¢c) =>
(b -> c) ->
[(a,c)]

5 The derivation of an algo-
rithm

Function ag can be implemented in a functional
language, but executing ag g p ® will result in a
nonterminating computation because of the occur-
rence of oo in the definition of function ag. This
section derives an algorithm that can be imple-
mented as an always terminating program that
returns the value of ag g p ®. To obtain this algo-
rithm we use the lattice theory given in Section 3.

Function ag satisfies the following equality.

aggp o

agn 0o

where

agnn = (id a (af - gh n- N))* (nts g)
af = combine - properties

properties = p*

combine = ®/

This expression is obtained from the definition of
function ag in Definition (16) by replacing the con-
stant oo by a variable n.

The CPO fixed point theorems may be used to
find the value of agn oo in finite time. Suppose
there exists a function K such that for n >0

agn (n+1) = K (agn n) (17)

If we suppose furthermore that there exists a CPO
(E,Cg) with bottom agn 0, then the results in
Section 3 show that function K : E — E has a
least fixed point pK, defined by

pK = U/ [K™ (agn0) | n (0.1
provided function K is continuous, and

agn o = pK
The domains used in the grammar analysis prob-

lems are finite, that is, the target type E of func-
tion ag is a finite type. Since every finite join

semilattice is a CPO, and since each monotonic
function on a finite domain is continuous, it suf-
fices to find a join semilattice with bottom agn 0,
and a monotonic function K satisfying (17).

This section consists of five subsections. The first
subsection constructs a join semilattice with bot-
tom agn 0 for bottom-up grammar analysis prob-
lems. The second subsection derives a definition
of function K that satisfies equation (17), i.e., it
expresses agn (n+1) in terms of agn n. In or-
der to find a definition of function K that satisfies
equation (17) it will be advantageous to impose
conditions upon the components of the bottom-up
grammar analysis problem. The third subsection
shows that provided some further conditions are
satisfied the function K obtained in the derivation
is monotonic. The fourth subsection discusses the
conditions imposed thus far, and the fifth subsec-
tion applies the derived theory to some examples.

5.1 Constructing a join semilattice
with bottom agn 0

We want to construct a join semilattice (E,C E)
with bottom agn O and join Ug, such that there
exists a monotonic function K : E — E satisfying
agn (n+1) = K (agn n). For that purpose, we
impose our first condition on bottom-up grammar
analysis problems.

For value agn 0 we calculate as follows.

agn 0

definition of agn

(id & (af - gh 0 N))x (nts g)

= definition of gh, a®* b=a for all a
(id & (af - [1*))* (nts g)

= fa=(for

(id & (af [1)*)* (nts g)
definition of af

(id a 1§)* (nts g)

We have derived the following equality.
agn 0 = (id a 1g)* (nts g)

i.e., agn 0 is a list of length equal to the number of
nonterminals of g, of which the second components
are all equal to 1. This suggests to construct the
following join semilattice. Let E be the set of lists
z of length equal to the number of nonterminals



of g of which ezlx x = nts g, and of which the
second component of each element is an element
of ¢, the result type of operator ©.

For the definition of the relation Cg and the join
Ug, we suppose that there exists a relation C.
such that (¢, C.) with join L. is a join semilattice,
and such that the unit 1g of operator & occurring
in the definition of a bottom-up grammar analysis
problem is the bottom of c.

Both the relation Cg and the join Ug are now
straightforward extensions of C. and U, respec-
tively. Relation Cg is defined by pairwise com-
paring elements with C..

zCgy

and (exr* T, exrx y)

where function and is the reduce A/, and where
Te, with @ a binary function, zips two lists of
equal length to a list of pairs, and then applies
operator & to all pairs in the list. The join of two
elements is defined by pairwise joining the second
components of the pairs.

TUEY

exlx z T (exrx x Ty, exr* Y)

It is easy to prove that agn 0 is the bottom of E,
using the fact that 1g is the bottom of ¢, and that
(E,Cg) is a join semilattice.

5.2 Finding function K

In this subsection we derive a definition of function
K satisfying (17), i.e., we construct a function K
such that

agn (n+1) = K (agn n)

In the next subsection we show that K is mono-
tonic with respect to Cg, which allows us to con-
clude that agn oo is the least fixed point of func-
tion K, i.e.,

agn oo = pK

We calculate as follows for agn (n+1). The goal
is to express agn (n+1) in terms of agn n.

agn (n+1)

= definition of agn
(id a (af - gh (n+1) - N))* (nts g)

We proceed the calculation with the subexpression
af - gh (n+1) - N. Suppose we can find a function
J such that

af - gh (n+1)-N =

J (agn n) (18)

then we have

agn (n+1) = (id a(J (agn n)))* (nts g)

and it follows by abstracting from agn n in the
right-hand side of this equation that a function K
satisfying (17) is defined by

Kz = (idaJz)* (nts g) (19)

Tt remains to find a function J such that equation
(18) is satisfied.

Function J satisfying equation (18) is obtained by
manipulating the expression af (gh (n+1) (N nt)),
where nt is an element of nts g. Abbreviate the
right-hand argument of + in definition (15) of
gh (n+1) to rh, that is

[Node nt ¢ | ths « rhss g nt,
¢ « cp ((gh n)x rhs)]

rh =

Using this abbreviation we calculate as follows for
af (gh (n+1) (N nt)).

of (gh (n+1) (N nt))
= definition of gh
of (gh n (N nt) # rh)
= definition of af
(combine - properties) (gh n (N nt) + rh)
= definition of combine and properties
(®/ - p*) (gh n (N nt) H rh)
= (6
@/ (p* (gh n (N nt)) 4 px rh)
= (1)
(@/ - p*) (gh n (N nt)) © (®/ - p¥) Th
= af , combine, and properties
af (gh n (N nt)) ® af rh

We express the arguments of operator & in the last
expression above in terms of agn n separately. For
agn n we have

agnn =

(id & (af - gh n- N))* (nts g)



and it follows that if we define function 7 by

rza = atza

where function at is defined by

atza = head [yl (a,y) 2]

then

of ghn-N = 7 (agnn) (20)

This equation is used to express the left-hand ar-
gument of operator @ in terms of agn n. It re-
mains to express the right-hand argument of op-
erator @ in terms of agn n. We calculate as follows
for af rh

af rh
definition of Th

af [Node nt ¢ | rhs « rhss g nt,
¢ + cp ((gh n)x rhs))
= calculation from Section 4
(of - (Node nt)* - 4/ - cpx - (gh n)%*)
(rhss g nt)

If we can push af to the right within the map
(gh n)*x in the composition of functions of the
last expression in the above calculation, then we
can use equation (20) again to obtain an expres-
sion of the desired form. Aiming at pushing af to
the right then, we proceed with the composition
of functions af - (Node nt)x - +/ - cpx - (gh )%k,
Abbreviate function Node nt to mt.

af - mtx -/ - cpx - (gh n)**
definition of af
@/ - px - mtx - 4/ - cpx- (gh n)#*x
= map-distributivity (7)
®/ - (p- mt)x- 4/ - cpx - (gh n)xx
= equation (12)
@/ -4/ - (p- mt)xx - cpx- (gh n)*=
= equation (13)
®/ - @®/* (p- mt)+x - cpx - (gh n)**
map-distributivity (7)
®/ - (®/ - (p- mt)x-cp - (gh n)¥)*

Il

At this point of the calculation we assume that
there exists a function pn such that

p (Node nt ) = pn nt ((top ap)*x z) (21)

11

This condition is not unreasonable: for all Rose-
Tree catamorphisms there exists such a function
pn. We proceed the calculation with the expres-
sion within the map in the last expression of the
above calculation.

@/ - (p- mt)x - cp- (gh n)*
= assumption (21)

@/ - (pn nt - (top s p)¥)* - cp - (gh n)*
= map-distributivity (7)

@/ - (pn nt)* - (top a p)+x - cp - (gh n)*
= (14

@/ - (pn nt)* - cp - (top a p)xx - (gh n)*
= map-distributivity (7)

®/ - (pn nt)x - cp - ((top & p)* - (gh n))*
= introduction of function zri below

@/ - (pn nt)x - cp - zrix - (id a (p* - gh n))*
= assume equation (22) below

H nt- (id x ®/)- (id & (p* - gh n))*
= map-distributivity (7), (5)

H nt-(id a (®/ - p* - gh n))*
= introduction of 7’ below

H nt-(r' (agn n))*

In this calculation we have assumed the existence
of three functions: zri, H, and r’ such that a num-
ber of properties is satisfied. Function 2ri is de-
fined by

zri = T repeat X id

where function repeat takes an element a, and re-
turns an infinite list of a’s. We omit the proof
of the fact that function zri satisfies the following
equality.

ari-id a (px- gh n) = (top ap)*-(gh n)

Furthermore, we have assumed the existence of
a function H such that the following equality is
satisfied.
®/ - (pn nt)x - cp - zrix
= (22)
H nt-(id X &/)*
Finally, function r’ is defined by
Pz (Na) = (Na,rza)
rz(Tb) = (Tbpld)

The above derivation shows that if there exist a
function H satisfying (22), then there exists a



R

function J satisfying equation (18). Function J
is defined by

Jzra

= (23)
(rza) @
(®/ - (H a-(r' z)x)%) (rhss g a))

It remains to prove that there exists a function
H such that equation (22) is satisfied, and that
function K defined in equation (19) is monotonic.
The latter condition is discussed in the following
subsection, and the former condition in the sub-
section thereafter.

We give an operational interpretation of the func-
tions we have derived. Given a grammar g and a
CPO (E,Cg), we compute the least fixed point
of function K, starting with K L, where L is the
bottom of E, and repeatedly applying K until we
find a value z such that K z = z. Function K
applies function J to all nonterminals of g. Func-
tion J takes the old value of K and a nonterminal
nt, and returns the new value for nt by applying
the function H nt - (' x)* to all right-hand sides
of the productions of nonterminal nt. The results
are combined by taking the join &/ of the values
thus obtained, and, finally, by joining the result
with the old value for nt.

5.3 Function K is monotonic

In order to guarantee the existence of the least
fixed point of function K : E = E defined by

Kz = (ida(Jz))* (ntsg)

where function J is defined in equation (23), we
have to show that function K is monotonic, ie.,
for a, @’ € E, K has to satisfy

aCgad = KaCgKa

It is easily verified that function K is monotonic,
provided function J is monotonic on E in its first
argument, that is, provided

aCgd = JantCgJa nt

Function J is monotonic in a, provided operator
@ is monotonic in both its arguments, and func-
tion H satisfying equation (22) is monotonic in its
second argument. These are the last conditions
we impose upon the components of a bottom-up
grammar analysis problem. An example of an op-
erator & that is monotonic in both its arguments is

12

the operator join Ll of the semilattice ¢ by means
of which the semilattice E is defined. In the exam-
ples of the following subsection and the program
in subsection 5.6, operator @ will be the join of a
join semilattice, which renders the verification of
monotonicity of @ trivial. Since K is monotonic
and the domain of K is finite, the least fixed point
of K can be found in finite time.

5.4 The conditions

In the previous subsections we have derived a func-
tion K by means of which a bottom-up grammar
analysis problem can be solved. In the derivation
we have imposed a number of conditions upon the
components of the grammar analysis problems.
This subsection discusses these conditions.

The first condition we imposed upon bottom-up
grammar analysis problems is the following. We
suppose there exists a join semilattice (c, C.) such
that 1g is the bottom of ¢, and @ is the join U of
c.

For the second condition we suppose that there
exists a monotonic function H, such that the fol-
lowing equality holds.

@/ - (pn nt)* - cp - zrix
H nt-(id X &/)*
There exists a trivial but rather useless monotonic

function H such that the above equality is satis-
fied:

®/ - (pn nt)x - cp - zrix

= 1)

@/ - (pn nt)x - cp - arix- (ezl - id o ®/)x
map-distributivity (7)

@/ - (pn nt)x - cp - zrix - exlx - (id 2 ®/)*
definition of H below
H nt-(id a ®/)*

where function H is defined by

H nt

@/ - (pn nt)* - cp - zri* - ezl

Function H recomputes the required information
from scratch instead of using the available infor-



mation, and function H is therefore highly ineffi-
cient. However, it follows from this definition that
the only condition that has to be satisfied in order
to solve a bottom-up grammar analysis problem is
the first condition given above. To obtain a prac-
tical solution for a bottom-up grammar analysis
problem we discuss a special case in which we can
find a monotonic function H that can be imple-
mented as an efficient program.

Suppose the property function p is a catamor-
phism on Rosetree. Then we have for function
pn nt satisfying assumption (21)

pnnt = gn nt-errx 24
(

where function gn is the function of the Rosetree
catamorphism for p. For the left-hand expression
of equation (22) we now calculate as follows.

@/ - (pn nt)x - cp - 2rix

= (24
@/ - (qn nt - exr*)* - cp - 2ri*

= map distributivity (7)
@/ - (qn nt)* - exr** - cp - 2ri*

= (14), map distributivity ("N
@/ - (qn nt)* - cp - (exr* - 2ri)*

= product/zip calculation (omitted)
®/ - (qn nt)* - cp - exr*

= assume equation (26) below
gn nt - (/)* - exr=

= map distributivity (7), (3), (7)
qn nt - exrx - (id X ®/)*

Tt follows that if we assume that there exists a

function gn such that

p - (Node nt) =
®/ (gnnt)x-cp =

gn nt - p*
qn nt - (®/)*

(25)
(26)

then function H can be defined by

Hnat = gnnt-exr*

The second assumption is still rather unwieldy,
and can be simplified. To obtain a simpler condi-
tion we apply the theory for cp developed in [4].
For that purpose, we first assume that function
gn nt is a reduction, that is, there exists an oper-
ator ® with unit u such that

gnnt = ®f

13

Now we apply a theorem from [4], which states
that (26) holds, provided the sections (a®) and
(®a) distribute over operator &.
a®(b®c) =
(a®b)®c =

(a®b)®(a®c)
(a@c)®(db®c)

and provided for all y, 1®y = y®1lg = 1g. Func-
tion H nt is monotonic provided function gn nt is
monotonic, and function gn nt is monotonic pro-
vided operator ® is monotonic in both arguments.

5.5 Examples

This section shows how we apply the theory de-
rived in the previous section to the examples of
bottom-up grammar analysis problems given in
Section 4. The algorithm derived in the previous
section can be used to solve a bottom-up grammar
analysis problem provided the components of the
grammar analysis problem satisfy the conditions
given in the previous section.

EMPTY

We verify the conditions the components of the
definition of the bottom-up grammar analysis prob-
lem EMPTY have to satisfy.

First, the join semilattice (¢,Ec) upon which the
join semilattice (E,CE) is built is the join semi-
lattice of booleans, where c is the set {true, false},
the relation C. is defined by false C. true, false
is the bottom of ¢, and the join Ll is the operator
v. Clearly, V is associative, and false is the unit
of V.

For the second assumption, we have to construct
a function H such that equation (22) holds. To
obtain a definition of function H that can be im-
plemented as an efficient program, we verify the
conditions listed in the previous subsection. We
have to show that function p defined by

p = ([]=) sen

is a Rosetree catamorphism, i.e., there should ex-
ist a function gn such that

p (Node ntz) = gqnnit (p* =)

A definition of function gn is obtained as follows.

p (Node nt x)
definition of h
(({] =) - sen - Node nt) «

definition of sen

il



([1=)- 4/ sen¥) z
= ([1=)-+/=and - ([1=)% (7
(and - (([] =) - sen)*) =

definition of gn (see below), and p
gn nt (p* z)

Function gn is defined by
gnntz = and

Furthermore, we have to show that A, the operator
of the reduction for and, distributes over V, that
is,

a AN(Ve = (@ Ab)V (aAc)
(avbdAc = (@ hc)yVv (bACd

and that false is a zero of A. These equalities hold
for false, v and A. Finally, we have to show that A
is monotonic in both arguments. This requirement
is satisfied too.

FIRsT

We verify the conditions the components of the
definition of the bottom-up grammar analysis prob-
lem FIRST have to satisfy.

First the join semilattice (c,C.) upon which the
join semilattice (E,Cg) is built is the join semi-
lattice of terminals, where c is the set of terminals,
the relation . is the subset relation, [] is the bot-
tom of ¢, and the join L is set union, or nub - H.
Clearly, set union is associative, and []is the unit
of set union.

For the second assumption, we have to construct a
function H that can be implemented as an efficient
program, such that equation (22) holds. The con-
dition (26) given in the previous subsection does
not hold for function p defined by

p = takel-sen

It is not difficult to find a Rosetree catamorphism
for p, so (25) is satisfied, but the second require-
ment (26) does not hold. It follows that we have to
find another way to construct function H. Func-
tion H is defined by

Hnt = foldrtlg

where function ¢ is defined as follows. If the cur-
rent symbol in the right-hand side of a production
is a terminal, then the symbols that can appear as
the first symbol of a string are the symbols found
until then, and no more.

t(Thy)z =y

If the current symbol in the right-hand side of a
production is a nonterminal N a, then we distin-
guish two cases depending on whether or not N a
can derive the empty string. If N a can derive
the empty string, then the symbols that can ap-
pear as the first symbol of a string are the symbols
found until then together with the first symbols of
the remaining part of the production. If N a can-
not derive the empty string then the symbols that
can appear as the first symbol of a string are the
symbols found until then, and no more.

t(Nay)z
nub (y 4 z) if at emptiesa
Y otherwise

We can prove equation (22) for function H thus
defined by induction to the structure of lists: ap-
ply both sides to [ ] and [a] + 2, and show that
the resulting expressions have the same recursive
structure. The proof of the fact that H is mono-
tonic is easy and omitted.

5.6 Implementation

The definitions given in the previous subsections
are translated into Gofer as follows. Some rather
obvious alterations of these functions increase the
efficiency of the program. These alterations are
discussed after the following program.

(map (split id (\x -> bottom)) nt’s)
where

nt’s = nts g

k x = map (split id (j x)) nt’s

j x nt = (r x nt)

‘join’
((Qub
.map (pn nt . map (r’ x))
.rhss g)
nt
)
r xnt = at xnt

r’x (Na) = (Na, rxa)
r’ x (Tb) = (T b, pL b)

We discuss two of the possibly many ways in which
a more efficient program can be obtained.



Function 1fp applies a function £ to an argument
x until it reaches a fixed point. In order to de-
termine whether an argument is a fixed point, £
x is compared with x. In the case of grammar
analysis problems, the first components of the el-
ements of the grammar analysis problems are al-
ways the nonterminals of the given grammar. It
follows that the first components of the elements
of £ x and x are always equal, and that equal-
ity depends just on the second components of the
problems. The first condition of function 1fp may
be replaced by map snd x = map snd (f x).

Another way to improve the performance of the
program is to replace map (j x) nt’s bymap (j
x) g, and to replace the definition of function j
by

j x (nt,pnt) = join
(r x nt)
((Qub
.map (pn nt
pnt
)

. map (r’ x)))

6 Conclusions

This paper discusses bottom-up grammar anal-
ysis problems. We give a very general specifi-
cation of bottom-up grammar analysis problems,
and from this specification we derive, by means
of program transformation applying laws to the
components of the intermediate expressions, an al-
gorithm for performing bottom-up grammar anal-
ysis. The driving force in the derivation of the
algorithm is the construction of a fixed point. To
obtain such a fixed point a number of conditions
have to be imposed upon the components of the
bottom-up grammar analysis problem. Thus we
derive both the algorithm and the conditions un-
der which the fixed point exists in one go. The
derivation is an example of a derivation of a real-
world program, which would have been difficult
to obtain without a derivation. The research re-
ported on in this paper is still in progress: in the
next version we want to split the calculation in
two parts. The first part of the derivation as-
sumes that the function that computes the prop-

-erty of a parse tree is a Rosetree catamorphism

and the second part of the derivation adds, if nec-
essary, the extra information (for example in the
case of firsts, where we use information about the
empties). This simplifies the derivation. Future

15

research will be directed towards the derivation of
an algorithm for top-down grammar analysis.

References

[1] R.S. Bird. An introduction to the theory of
lists. In M. Broy, editor, Logic of Program-
ming and Calculi of Discrete Design, vol-
ume F36 of NATO ASI Series, pages 5-42.
Springer—Verlag, 1987.

[2] B.A. Davey and H.A. Priestley. Introduction
to Lattices and Order. Cambridge University
Press, 1990.

[3] J.H. Fasel, P. Hudak, S. Peyton Jones, and
P. Wadler. Sigplan Notices Special Issue
on the Functional Programming Language
Haskell. ACM SIGPLAN notices, 27(5),
1992.

[4] J. Jeuring. Theories for Algorithm Calcula-
tion. PhD thesis, Utrecht University, 1993.

[5] M.P. Jones. Introduction to Gofer 2.20. Pro-
gramming Research Group, Oxford Univer-
sity, 1992.

[6] G. Malcolm. Data structures and program
transformation. Science of Computer Pro-
gramming, 14:255-279, 1990.

[7] L. Meertens. Algorithmics—towards pro-
gramming as a mathematical activity. In
J.W. de Bakker, M. Hazewinkel, and J.K.
Lenstra, editors, Proceedings of the CWI
Symposium on Mathematics and Computer
Science, volume 1 of CWI Monographs, pages
289-334. North-Holland, 1986.

[8] Torben Mogensen. Ratatosk — a parser gen-
erator and scanner generator for Gofer. Pub-
lished on comp.lang.functional, 1993.

[9] Ulrich Moncke and Reinhard Wilhelm.
Grammar flow analysis. In Attribute Gram-
mars, Applications and Systems, SAGA 91,
pages 151-186. Springer-Verlag, New York,
1991. LNCS 545.

[10] Simon L. Peyton Jones. Yacc in Sasl — an ex-
ercise in functional programming. Software-
Practice and Experience, 15(8):807-820,
1985.



[11] P. Wadler. Comprehending monads. Math-
ematical Structures in Computer Science,
2:461-493, 1992.

16



