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Back to Basics:
Deriving Representation Changers
Without Relations

Graham Hutton* Erik Meijert

Abstract

A representation changer is a function that can be specified in a
particular way in terms of two other functions. Examples of repre-
sentation changers include binary addition and multiplication, base
conversion, and compilers. There has been much recent work in us-
ing a relational language, namely Jones and Sheerans’ Ruby, to derive
representation changers from their specifications using equational rea-
soning. In this paper we show that by beginning with a slightly less
intuitive form of specification, the use of relations can be avoided, and
representation changers can be derived within the simpler framework
of functional programming. Moreover, our techniques can be applied
to derive a carry-save adder, a representation changer that has not yet
been derived in Ruby without the aid of informal reasoning.

1 Introduction

In the calculational approach to programming the aim is to formally de-
rive (or synthesize) programs from their specifications by using equational
reasoning. Programs so derived require no post-hoc proof of correctness;
rather they are “correct by construction”. Despite the fact that program
derivations can often be viewed as correctness proofs turned upside down,
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experience has shown that many algorithms can in fact be derived from
their specifications in a smooth and simple way. Typically there are only a
few key steps where experience and creativity is needed in a derivation, the
remaining steps being largely mechanical.

In this paper we are concerned with deriving representation changers, a
widely occuring kind of functional program. For the last few years, repre-
sentation changers have been the major topic of study within the relational
language Ruby. The relational paradigm is a powerful framework for specify-
ing and deriving programs, but arguably one of the most tricky to learn and
use. We show that the use of relations can be avoided, and representation
changers can be derived within the simpler setting of functional program-
ming. Moreover, our techniques can be applied to derive a carry-save adder,
a representation changer that has not yet been derived in Ruby without the
aid of informal reasoning.

2 Preliminaries

We write R : A +» B to mean that R is a (binary) relation between the
sets A and B, i.e. that R is a subset of the cartesian product A x B. We
write f : A — B to mean that f is a total function between sets A and B.
Functions can be viewed as relations in the evident way. If R is a relation,
then ¢ R b means (a,b) € R, and the domain and range of R are the sets
defined by dom(R) = {a | 3b. a R b} and rng(R) = {b| Ja. a R b}. Inclusion
(C) and equality (=) of relations is defined just as for any other sets. Note
that if f,g: A — B are functions, then f C g iff f = g.

Given two relations R: A & B and S : B + C, the composite relation
SoR: A+ C is defined by a (S o R) c iff there exists a b such that a R b
and b S c. Composition on relations generalises composition on functions:
if f and g are functions, then g o f is just ordinary function composition.
The converse (or reciprocal) R°: B + A of a relation R : A < B is defined
by b (R°) a iff a R b. Converse on relations generalises inverse on functions:
if f: A— B hasinverse f~!: B — A, then f~! = f°.

3 Representation changers
A representation changer is a function that converts a concrete represen-

tation of an abstract value into a different concrete representation of that
value. A simple example of a representation changer is a base-conversion



function conv that converts a number in base m to a number in base n.
In this case, abstract values are natural numbers, and concrete values are
numbers in base m and base n respectively.

Given functions f : C1 — A and g : C2 — A that convert concrete
values of types C1 and C2 to abstract values of type 4, a representation
changer h : C1 — C2 can be specified by the requirement that if h maps
concrete value z € C1 to concrete value y € C2, then = and y must represent
the same abstract value:

hz=y = fz=gy. (1)

Since g need not be injective, there may be more than one choice of such a y
for each z, and hence there may be more than one solution for h. An equiv-
alent specification then is that h maps a concrete value z to any concrete
value y that represents the same abstract value as z:

hzef{y|lfz=gy} (2)

If for some value of x there is no y for which f = = g y then there exists no
total function A that satisfies the specification. An h exists iff the range of
g is at least the range of f, i.e. rng(g) 2 rng(f). A sufficient condition for
this inclusion to hold is that the function g : C2 — A be surjective, which
is often the case in practice.

Substituting y = h « in (1) gives an equivalent functional equality:

f=goh (3)

Observing in (1) that hz =y iff z hy and that fz =gy iff z (g°0 f) v,
we obtain a relational inclusion equivalent to (3):

hCg°of. (4)

It is often natural to specify representation changers in this form. Using
specification (4) has the advantage that h is in some sense the subject of the
formula, and the term g¢o f has an intuitive operational reading: first use f
to convert a concrete value to an abstract value, then use g° to convert the
result into another concrete value. Moreover, ¢g¢ o f is in general a relation,
which emphasises the fact that there may be more than one function h that
satisfies the specification h C g°o f.

For example, the base-conversion function conv can be specified by the
requirement that conv C (e'valn)c o eval,,, where the function eval, converts
a number in base b to the corresponding natural number:



evaly 1 = 0,
evaly, (z:x8) = z+bx*(evaly z3).

Note that eval, expects the digits in the opposite order to which they are
normally written; for example, eval; [1,0,1, 1] = 13. The specification for
conv expresses that a number in base m can be converted to a number
in base n by first evaluating the base-m number, and then converting the
resulting natural number to base-n. Since eval, is surjective (every natural
number can be represented in base b), a solution exists for conv. Since eval,
is not injective (for example the lists [0, 1], [0,1,0] and [0,1,0,0] all represent
the natural number 2 under eval, — numbers can have trailing zeros) the
specification does not have a unique solution for conv.

Functional programmers might recognise that eval, could be expressed
using the operator foldr of Bird and Wadler [5]. When we come to do
induction over the argument of eval,, however, it is more convenient to
have eval, defined using explicit recursion, rather than using foldr. Modern
calculational programmers avoid the labour of inductive proofs by using the
so-called ‘unique extension property’ (UEP) of foldr [19]. In the present
situation, the effort of setting things up so that the UEP can be used is no
less bother than an induction. Moreover, one of the aims of this paper is to
make the techniques available to a wide audience, so we don’t want to use
a perhaps unfamiliar technique like UEP when it doesn’t buy very much.

In the literature, relations R which can be expressed as R=g%0of (ie.
in the form of the right-hand side of a representation changer specification)
are called difunctional relations [20, 12]. Any relation can be expressed
in the dual form R = f o g%, a result which underlies much of the recent
categorical work on relations [10, 7, 9]. A natural generalisation of the
paradigm of representation changers adopted in this paper is to allow the
functions f,g,h in a specification h C g° o f to be in fact difunctional
relations. This generalisation is addressed in [15, 11].

4 Satisfying the specification

Typically for representation changers it is easy to define programs f : C1 —
A and g : C2 — A directly, while defining a program h: C1 — C2 that
satisfies h C g° o f requires some creative effort. Rather than defining an
h and proving after-the-fact that is satisfies the specification, in this note
we are concerned with deriving (or synthesising) an h that is guaranteed to
satisfy the specification.



One approach to deriving representation changers is that as used in
Ruby, the relational calculus developed by Jones and Sheeran for designing
programs that represent hardware circuits [21, 13]. In Ruby we define f:
C1 — Aand g : C2 — A as relational terms, and synthesise a term h : C1 —
C?2 that represents a circuit and satisfies h C g°o f by transforming the term
g¢ o f using relational laws {14, 15, 11]. There are several reasons why Ruby
is based upon relations rather than functions. Relational languages offer
a rich set of operators and laws for combining and transforming programs,
and a natural treatment of non-determinism in specifications. Furthermore,
many methods for combining circuits (viewed as networks of functions) are
unified if the distinction between input and output is removed [21].

But there are a number of disadvantages to working with relations rather
than with functions. Functional programs are typically defined using bound
variables, and manipulated using the powerful tools of beta-reduction (ap-
plication) and eta-reduction (extentionality) [6, 3, 17]. With relational pro-
grams however, pointwise manipulations quickly become tedious, and are
avoided by eliminating bound variables completely and building programs
using combinators. Such relational programs then become cluttered with
plumbing relations whose only goal is to route arguments to the right place.
Moreover, familiarity with a large number of—often non-intuitive—laws is
needed to manipulate relational programs.

5 Avoiding relations

In this section we present a simple method by which we can derive represen-
tation changers using a functional language. Starting with the specification
h C g° o f (an inclusion of relational terms) we immediately convert it into
the equivalent but less intuitive form f = go h (an equality of functional
terms). Then we synthesize a program h that satisfies f = g o h by con-
structing a pointwise proof that the equation holds, aiming to end up with
assumptions that give a definition for h. This is similar to the way recur-
sive programs are constructed in type theory. The technique is also known
to functional programmers; many of the programs in Bird and Wadler [5)
are synthesized in a similar fashion, but the application to representation
changers in this paper is new.

Let us consider an example: a function add that takes a binary number
(represented as a list of bits) and a bit (0 or 1), and adds them together
to give a binary number [15, 11]. For any bit b the function add - bis a



representation changer, specified by the requirement that

add _b C (evaly)® o (4b) o evals. (5)

The specification expresses that we can add a bit b to a binary number by
first converting the binary number to a natural number, adding b, and then
converting the result back to binary. For the remainder of this section, we
abbreviate eval; by eval.

Since rng eval 2 rng ((+b) o eval) for any bit b, the specification (5) has
a solution for add - b. Since (+b) o eval is not injective, the specification has
many solutions. Different solutions give different numbers of trailing 0’s in
the result list.

The first step is to re-write the specification:

add _ b C eval® o (+b) o eval

& hCgeofiff f=goh
eval o (add - b) = (+b) o eval
& extensionality

eval (add s b) = (eval xs) +b.

The second step is to verify the final equation above, which we do by induc-
tion on zs. In the base-case zs = [], we end up with an assumption that
gives a definition for add [] b. In the inductive-case xs = z : x5, we end

up with an assumption that gives a recursive definition for add (z : zs) b in
terms of add s b.
First the base-case, zs = []:

eval (add [] b) = (eval []) +b

& unfolding eval
eval (add [] b) =b
o folding eval
eval (add [] b) = eval [b]
&= application
add [] b= [b].

We conclude that the definition add [] b = [b] satisfies the specification in
the zs = [] case. Note that in the “folding eval” step above, replacing b by



eval [b] is not the only possibility; eval [b,0], eval [b,0,0], etc., are equally
valid. Choosing eval [b] means that the result list produced by add zs b will
have no trailing 0’s.

Now for the inductive-case, zs = (z : £8). Rather than manipulating the
equation eval (add (z : zs) b) = (eval (z : zs)) + b as a whole, we work only
with the right-side, aiming (just as in the zs = [] case) to express it in the
form eval exp for some expression exp, from which we can conclude that the
definition add (x : xs) b= exp satisfies the specification in the zs = (z : z3)
case. We begin by unfolding:

eval (z:xs)+b
= unfolding eval
2 % (eval zs) +z + .
One might think that by folding using eval now to give eval ((z +b) : zs)
we are finished, but this step is not valid, because eval expects a list of 0’s
and 1’s, but the expression z + b can have the value 2. We proceed in fact
by splitting the value z + b into two parts: (z +b) mod 2 and (z +b) div 2.
This solves the problem because both parts are bits; the first can be viewed
as a sum-bit, and the second as a carry-bit.
2 % (eval zs) +z +b
= splitting = + b
2 % (eval xs) + 2% ((z +b) div 2) + ((z + b) mod 2)
= arithmetic
2 * (eval x5 + ((z +b) div 2)) + ((z + b) mod 2)
= induction hypothesis
2 x (eval (add zs ((x +b) div 2))) + ((z + b) mod 2)
= folding eval
eval (((z + b) mod 2) : add zs ((z + b) div 2)).
The final term above is of the form eval exp, so we are finished and conclude

with the definition add (x : zs) b= ((z+b) mod 2): add zs ((x+0b) div 2).
In summary, we have derived a functional program

add ] b = [b,
add (z:zs) b = ((z+b)med 2) : add zs ((z + b) div 2).



that satisfies the specification add _ b C eval®o (+b) o eval.

Deriving a program which adds two binary numbers and a carry-bit
(rather than a single binary number and a carry-bit) is no more complicated.
The only trick is to begin with a specification in which the two binary
numbers are zipped together to form a list of pairs of bits.

Our second example is given by a function cadd that takes a carry-save
number and a bit, and adds them together to give a carry-save number. The
cadd function is an example which has proved difficult to derive fully formally
using Ruby [15]. A carry-save number is like a binary number in that the
ith digit has weight 2¢, but different in that digits range over {0,1,2}, with
each digit being represented by a pair of bits whose sum is that digit. For
example, [(0,1),(1,1),(1,0)] is a carry-save representation of the natural
number 9, because (0+1).2°+(1+ 1).2! 4+ (0+1).2? = 9. A natural number
can have many carry-save representations; for example, [(1,0),(0,0), (1, 1))
also represents the number 9. The function ceval converts a carry-save
number to the corresponding natural number:

ceval ] = 0,
ceval ((z,y):z8) = zT+y+2x (ceval zs).

Here is our specification for the cadd function:
cadd _ b C ceval® o (+b) o ceval.

Not only does this specification look the same as that for the binary addition
program add, using precisely the same derivation pattern (try it!) we can
construct the following definition for cadd:

cadd ] b = [(0,b)],

cadd ((z,y):zs) b = ([z+ y) mod 2,b) : cadd zs ((z + y) div 2).

The point to note is that cadd is non-strict in the b argument, whereas add
is strict in b. The effect is that the carry-save adder has no ‘rippling carry’,
and so the addition can be done in parallel in constant time. Carry-save
adders are much used in hardware circuits: if a large number of additions
are to be done (such as in a multiplier), a considerable speed-up can be
obtained by first converting to carry-save pumbers, doing all the additions
using carry-save adders, and then converting the result back to binary at
the end. Using this technique, the only place a rippling carry occurs is when
the final carry-save number is converted back to a binary number.

In the add example one could have made eval injective (and hence in-
vertible) by including a side-condition that there be no trailing zeros in
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the input number or by working with binary numbers of a specified length.
Even with such restrictions, ceval is still not invertible, since there can be
many carry-save representations of each number. That the carry-save adder
proves difficult to derive within the relational framework of Ruby is due to
the problem of manipulating type information (types in Ruby are equiva-
lence relations) when inverting the non-injective function ceval.

6 A two-stage example

For our final example we return to the base conversion function that was
our initial example of a representation changer. The base converter turns
out to be particularly interesting because in the process of its derivation we
construct an auxilliary representation changer. One might say then that the
base converter has a two-stage derivation.

Recall from section 3 that conv can be specified by

conv C (eval,)" o evalp,

Expressing this in the form of equation (3) and then using extensionality
gives our working specification:

eval,, (conv zs) = eval, Ts.

We synthesize conv by a constructive induction on zs. In the base-case
zs =[], unfolding evaln immediately results in the definition conv (1= 1]
Like in the binary adder example, in the inductive case s = T : s we aim
to express the right-hand side of the equation in the form eval,, exp for some
expression exp, from which we can conclude that conv (z : zs) = exp:
eval, (T :z8)
= unfolding eval,
m * (evaly, x8) +x
= induction hypothesis
m * (eval, (conv £s)) + =
= assumption — see below

eval,, (convd (conv zs) T).



Hence we make the definition conv (z : zs) = convd (conv zs) x. In the
above derivation, in order to end up in the form eval, erp, we had to
postulate the existence of a function convd satisfying

eval, (convd ys ) = mxeval, ys+2. (6)

Re-writing this a little, we observe that convd ys is itself a representation
changer, which takes a digit in base m and yields a number in base n:

convd ys C (eval,)® o ((m  eval, ys)+).

The auxiliary function convd is constructed by a double induction on its two
arguments. A simple calculation gives convd [] 0 = []. For the inductive
case ys = [] and = # 0, manipulating the right-hand side of equation (6)
results in the definition convd [] £ = z mod n : convd [] (x div n):

m*eval, ||+ 2

= unfolding eval,

= splitting

(z mod n) + n * (z div n)
= folding eval,

(z mod n) +n * (m x eval, [] + (z div n))
= induction hypothesis

(z mod n) + n * (eval,, (convd [] (z div n)))
= folding eval,

eval, (z mod n : convd [] (z div n)).

For the induction hypothesis to be applicable above, we must assume n > 1.
The creative part in handling the final case, ys =y : ¥5, is the splitting of
m xy + z in order to apply the induction hypothesis. Such a splitting was
also the essential step in establishing the previous induction step.
m * (eval, (y:ys))+2
= unfolding eval,
m* (y +nxeval, ys) +z

= arithmetic
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(m xy + x) + m *n x eval, ys
= splitting m *y + =

(m+*y+x) mod n+nx ((m*xy + ) div n) + m *n x eval, ys
= arithmetic

(mxy+x) mod 1 + 1 * (m * eval, ys+ (m*y + ) div n)
= induction hypothesis

(m*y+z)modn+nx* (eval,, (convd ys ((m*y + ) div n)))
= folding eval,

eval, ((m*y + z) mod n : convd ys ((m*y + z) div n)).

We conclude that convd (y : ys) z = (m*y + z) mod n : convd ys ((m *
y + z) div n). In summary, we have synthesized the following program:

conv ! = [l
conv (z:xs) = convd (conv zs) T.

The auxilliary function convd is defined as follows:

convd (] 0 = b
convd 1 r = zmodn:convd ] (zdivn),
convd (y:ys) z = (m*y+ z) mod n : convd ys (m*y +2 div n).

Implementing these functions in Gofer, we can try out some base conversion
examples. Taking m = 2 and n = 10, the following output confirms that
13 is the decimal representation of the binary number 1101 (remember that
the digits in the input and output numbers for the program are reversed):

Gofer?

conv [1,0,1,1]

3, 1]

(43 reductions, 92 cells)

By taking m = 10 and n = 2 we can convert the other way around:

Gofer?

conv [3,1]

[1, o, 1, 11

(35 reductions, 82 cells)

11



The reader might like to compare our derivation of the base conversion
program with the corresponding derivation in Ruby [11]. Ours is simple and
uses no special techniques, whereas the Ruby version is tricky, being the
final and most complicated example in Hutton’s thesis. The base conver-
sion algorithm can be implemented as a hardware circuit, as shown in the
book “Digital systems, with algorithm implementation” [8]. This book is
somewhat novel in hardware circles, making use of algebraic methods in an
attempt to explain circuits. Despite this, we still find the explanation in the
book lacking in detail and difficult to understand.

7 Discussion

Many functional programs can be viewed as representation changers and
have a natural specification in the form h C g¢o f. Once a programming
problem is recognised as being an example of a representation changer, de-
riving a program using our techniques is largely a mechanical process, and
requires experience and creativity only in a few key points. It is encourag-
ing to find that the same patterns of transformations are used again and
again when deriving representation changers. Certainly for the arithmetic
examples given in this paper, one quickly gets a feeling of deja vu.

We conclude with some reflective remarks. Relational programming is
gaining favour among calculational programmers, as evidenced by the grow-
ing number of systems 11, 13, 4, 22, 2, 16). Little is being said, however,
about the undoubted fact that relational programming is more difficult than
functional programming. In this paper we have shown how a number of re-
lational derivations can be reworked using functions. One of the points we
would like to make is that one should be frugal in the use of relations, us-
ing them only when a simple functional solution can’t be found. Similar
comments can be made about other trends in calculational programming,
including the use of categorical concepts, catamorphisms, UEP rules, point-
free reasoning, etc. It is our opinion that calculational programming is losing
track of its goals. Too many researchers are striving ahead and using more
and more theory (see for example our own theses [11, 18]), without stopping
to think if things can be done adequately using standard techniques.
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