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The idea of defining a language by giving an interpreter for it and transforming that interpreter
into a compiler also lies at the very hart of partial evaluation. Not surprisingly our work bears
some resemblance to partial evaluation. Many of the tricks that we use to improve our derivations
also arise in tuning interpreters for effective partial evaluation. The main difference is that we do
not strive for fully mechanical generation of compilers from interpreters using one of the Futurama
projections [10], instead we rely on a powerful factorization theorem that gives a simple recipe for
transforming an interpreter into a compiler. Having no automation in mind allows us to bypass
a formal type system to distinguish between static and dynamic values. Instead we make the
distinction informally, but very carefully.

This paper is a condensed version of the author’s PhD thesis [19]. Besides the compiler for the im-
perative language described in this paper, the thesis derives implementations of a simple functional
and a simple logic programming language.

2 The Compiler Correctness Problem

Many people [12, 21, 24, 3, 30, 22, 5, 4] have suggested the use of algebraic means to tackle the
compiler correctness problem. Given a source language L, a target language T, their respective
semantics m € L -+ M, a € T = U and a compiler ¢ from L to T, one seeks an embedding e of the
source semantics into the target semantics such that the following diagram commutes.

[—& T

m a

By enforcing an algebraic structure on the different domains and defining the respective functions
as homomorphisms, initiality of L ensures commutativity. If L is initial, homomorphisms from L
to any other algebra are unique; homomorphisms a o ¢ and e o m both go from L to U and hence
they are equal. A sufficient condition to prevent trivial solutions which result from taking U as a
final algebra, is to require e to be injective, i.e. U must be a true implementation of M. The above
classic approach has not been concerned with calculational issues. It only provides a framework
for proving the correctness of a given compiler. We want to derive a new compiler by calculation
not to prove a given one correct. Where in the classical approach one looks for the embedding e
in the compiler correctness equation a o ¢ = e o m, we want to construct an efficient compiler c
knowing only the semantics m. Excellent surveys of other work in the area of semantics directed
compiler generation are given by Tofte [29] and Schmidt [27, Chapter 10]. The proceedings of a
workshop in 1980 [11] still provides many interesting references as well.

3 Algebras

In order to try and find that more constructive method we look a little more closely into the alge-
braic framework. Don’t be afraid of all the squiggles and formulea that will be introduced, after we
have developed enough theory we switch back to more conventional functional programming style.
It is just that the Squiggol notation lends itself better for proving generic high level theorems about
any data type. Otherwise we end up with a catalogue of very similar rules, one for each recursive
data type of interest, which makes it hard to see the wood for the trees. Actual calculations on
the other hand are best done by instantiating the appropriate laws for a specific type and using a
traditional notation.

An F-algebra is a pair (A, @ € FA — A) consisting of the carrier set A and a strict operation ¢ of
signature F, for some suitable functor F. A homomorphism h between F-algebras (A, @) and (B, )



is a strict structure preserving map h € A — B that commutes the operation ¢ with 1, formally,
ho@ =1 o Fh, or as a diagram

FA—2—+ A

Fh h

FB——8B
P
An invariant [8] uF of functor F is an F-algebra pF = (L,in) where in € FL — L is a bijection with
inverse out € L — FL. Since out is just another function, we can use it to define a homomor-

phism (called catamorphism) from invariant (L,in) to any other algebra (A, @) using the so-called
‘banana’-brackets:

fini=) € FA=A)=>(L=A) (CataType)

(in:=¢) = p(AMf.@oFfoout) (Self)

The free theorem or parametricity condition [31] for (CataType) is the fusion law, that tells us the

composition of a homomorphism with a catamorphism is again a catamorphism (it is not true in
general that catamorphisms are closed under composition).

(in:=Y)=Ffolin:=¢) < YoFf=foqp A fstrict (Fusion)

If furthermore we assume that (L,in) is a minimal invariant, that is the copy function (in := in)
equals the identity id, we can show from (Self), (Fusion) and minimality that (in := @) is the
unique fixed point of Af.@ o Ff o out, i.e. that (L,in) is the initial F-algebra. In this paper we don’t
need minimal invariants but rely solely on the fusion law. The existence of (minimal) invariants is
guaranteed by Scott’s inverse limit construction [26].

In the sequel we will need to consider catamorphisms of higher type, for example {in:= ) €
(F(A = B) = (A = B)) = L = (A — B). The parametricity condition for this type is for strict f

F(og)a=F(fo)b=><paog=fopr
(in:=9@)asog="Ffoin:=¢Y) as

When instantiated for a particular F this usually expands into a monstruous formula. Its inter-
pretation is that f distributes over (in := ) as if f distributes over P b under the inductive
hypothesis that f distributes over b.

Elements of an algebra can be defined recursively, and in that case the following leapfrog law turns
out to be handy to compute the result of applying a catamorphism to such an infinite value.

(in:=9) (uf)=png < (in:=@)of=go(in:= o) (CataMu)
Property (CataMu) can be proved easily by fixed point induction.

3.1 Functional programming

The notion of (minimal) invariant coincides with algebraic data types as found in modern functional
languages. For example the type of lists over A defined as

List A == []|A:ListA

corresponds to the minimal invariant (List A, []v(:)) of the functor F X = 14+A xX. Catamorphisms
([] = ¢,(:) == (®)) are generalized fold-operators that recursively replace the constructors [ ]
and: by respectively the operations ¢ and &.

foldc(®)[] = ¢
fold ¢ (&) (a: as) a®fold c (&) as



Instantiating the first order fusion law, gives a familiar theorem for fold.

o f strict
efc=d
of(adas)=a®(f as)
fo fold c (@) = fold d (®)

For lists, the second order fusion law is still managable compared to that for the abstract syntax
of our programming languages (see section 8.2).

o f strict

of(ax)=d(bx)

ef(cody)=ce(gy)<f(cz)=e(g2z)
f (fold a (®) as k) = fold b (®) (g k)

We want to stress that any algebraic data type, even mutually recursive ones, corresponds to the
minimal invariant of a functor that describes the signature of the type. Catamorphisms on these
types are fold operators that recursively replace constructors by other functions of similar type
and the fusion law is the free theorem of that fold operator. Minimal invariants and functors are
just a convenient way of talking about algebraic types in general that circumvents sloppy notation
like

T = ICtT1Tm|
foldr ...ci...t = casetof ...Cit1...tm = ci (foldy, t1)...(foldy,, tm)

3.2 Compositional semantics and catamorphisms

The abstract syntax of a programming language L can be defined as an initial F-algebra (L,in)
where in is the set of constructors of the abstract syntax. Therefore we can give an interpreter
m € L — M for L programs — a compositional denotational semantics for L — as the catamorphism
(in := @) by imposing an F-algebraic structure (M, @) on the semantic domain M. The important
thing of a denotational semantics is to give the meaning of a construct (in := @) o in solely
in terms of the meaning of the parts ¢ o F(in := @). This is captured precisely by using a
catamorphism for the semantic function.

In a traditional denotational description casting the semantic domain into the right form is achieved
by encoding ¢ using A-abstraction and application. Such language descriptions have rather poor
pragmatic qualities. It is hard to identify essential semantic concepts of the language being de-
scribed, and the (automatic) generation of compilers is virtually impossible. Action Semantics as
developed by Mosses and Watt [33, 23] is an attempt to improve the readability and modularity
of formal descriptions of programming languages. The semantic domain M is cast into a G-algebra
(M, &) where the set of actions « corresponds to the run-time concepts of the programming lan-
guage in question. For an imperative language an action algebra includes primitive actions such
as assignment and action combinators such as sequencing and conditionals. The essence of writing
an interpreter for L is transforming this fixed action algebra @ € GM — M, into a compile-time
algebra Toc € FM — M of the same signature as the abstract syntax by means of a polymorphic
transformer [7]

TeE(GA—-A)> (FAA) (Transformer)

The key property of transformers that we will use is that given transformer T, any interpreter
(in := Ta) derived from action G-algebra (M, &) can be factored constructively into a compiler
(in := TIN) from source (L,in) to F-algebra (S, TIN) and a residual interpreter (IN := «) from
the initial G-algebra (S, IN) to the original domain (M, ).



in:=TIN
p—Lin b ¢

(in:=Ta) (IN := )

M

In order to prove the factorization law, we use the parametricity condition for transformer T from
G-algebras to F-algebras:

foBp=aoGf = foTB=TaoFf (Transformer)

It tells us that homomorphisms on G-algebras are homomorphisms on the transformed F-algebras
too. This is exactly what you would expect intuitively of a polymorphic transformation from G- to
F-algebras. Correctness of the factorization theorem follows immediately from (Transformer) and
(Fusion).

(in := Ta) = (IN := o) o (in := T IN)
<= (Fusion)

(IN:=o)oTIN=TaoF(IN := a)
<« (Transformer)

(IN:=a) o IN=xoG(IN := a)
= (Self)

true

Factoring an interpreter into a compiler and a residual interpreter is a disciplined form of partial
evaluation. The work done at compile-time is specializing a value in F-algebra (S,T IN) to a
program in the G-algebra (S, IN). In ordinary partial evaluation IN (and «) are the unknowns in

the factorization process and it is not known a priori what the signature of residual programs will
be.

Usually the compiler generated as described above will not produce very efficient code because the
difference between the source algebra and the target algebra of the transformer is too small. The
remedy is to émprove that already correct compiler. Improving a compiler derived from interpreter
m = (in := Tx) means finding an injective homomorphism e from (M, Ta) to some new F-algebra
(U,RB). The fusion law then yields a more efficient interpreter from L to U provided we can prove
that e is a homomorphism.

(Lin)

(in:=Ta) (in := RB)

(M, Tor) . (U, RB)

The new transformer R, from the new action algebra (U, € HU — U) say, to the compile-time
F-algebra, usually arises as side-effect of establishing the premise e o T = RP o Fe of the fusion
law, i.e. of the proof that e is a homomorphism.

Injectivity of e ensures that the improved interpreter is equivalent to the previous one

(in := Ta)
= e injective
e loeo(in:=Ta)
= (Fusion)

e~ ! o (in:= RB)



hence (in := T« can be replaced safely by e~ o {in := RB).

Based on the new interpreter n = (in := RB) we can generate an improved compiler c € L -+ T
that solves the original compiler correctness diagram.

C

—_T

L L £ T L
/ \ + \ / = m a
M = u u M——Uu
In many cases, for example when U is a function type V — W, the above method does not yield a
satisfying underlying action algebra. In that case we look for an RP such that e o (Tx)Ll=(RB) 1o
e’ and use the higher order fusion law to get a new interpreter, this time (€’ o) o {in := RB). This

interpreter can subsequently be split into a compiler and a residual interpreter.

A useful heuristic to obtain an implementation function e is to add an extra argument to the
semantics m such that this argument is available at compile-time. Shifting work from run-time to
compile-time is essential to generate realistic code.

Diacritical Convention When making proofs about two semantic definitions we are frequently
required to consider and to compare pairs of values, one from each definition, that are both called by
the same name. The diacritical convention as proposed by Stoy [28] is a convenient and systematic
way of distinguishing such values. All names from the one definition are given acute accents (")
while the names belonging to the other get grave accents (). By convention acute accents are used
for decorating the more ‘abstract’ semantics, while concrete, more to the ‘ground’ semantics get
grave accents.

4 A simple imperative language W

The above theory is put into practice by deriving an implementation of a simple imperative lan-
guage W. First the syntax and the initial, direct, semantics for W are introduced. As a first im-
provement this direct semantics is transformed into a continuation semantics. Next we investigate
the efficient compilation of expressions. Arithmetic expressions are translated into conventional
three-address code and boolean expressions are implemented using jumping-code [1]. The language
C of section 8 extends W with simple first order procedures. Here we give a constructive proof
that recursive functions can be implemented using a stack and show how tail recursive calls may
be eliminated and replaced by jumps. We conclude with a discussion of problems and future work.

4.1 Syntax

The abstract syntax of W is given by the grammar

P € Program := prog Statement
S, T € Statement skip

| var:= Expression

| Statement ; Statement

|  if Expression then Statement else Statement fi

The classes of arithmetic and boolean expressions are defined by the single nonterminal Expression.
A,B,E,F € Expression := var Var

|  num Num

|

Expression @ Expression



The set of binary operators @ includes boolean operators @ such as and and or, arithmetic
operators @ like + and x, and relational operators & such as = and >.

Loops in the concrete syntax of W are assumed to be returned as recursive syntax trees by the
parser, that is we consider while B do S od as an abbreviation for u(Aloop.if B then S ;
loop else skip fi). Dealing with loops on the level of syntax instead of the level of semantics
makes no formal difference (see Schmidt [27]) but does make our derivations easier. With semantic
recursion, calculations are disrupted by a fixed point induction argument every time a least fixed
point u is encountered. With syntactic recursion we have taken care of that once and for all by
means of theorem (CataMu).

4.2 Meaning functions

The semantic functions M[.] € Program — program, €[] € Expression — expr and S[.} €
Statement — stat are given by the following set of mutually recursive catamorphisms, written in
a functional programming style.

M{[prog P} program S[P]
S[skip] = skip
S[x :=E] assign (x,E[E])
S[S;T] seq (S[S], S[T])
S[if BthenSelse Ti] = cond (£[B),S[S],S[T])

I

Efvar x] = wvarx
Efpumn] = numn

E[E@QF] = operg (E[E], E[F])
These equations show that the semantic functions M[.], S[] and £[.] inductively replace each of
the constructors of a given program by a corresponding compile-time semantic operation (from the
algebras prog, stat respectively expr). These operations assemble the denotation of a construct
from the denotations of its components in terms of operations of the run-time semantic algebra.
The essence of writing a compiler is the extraction of a suitable compile-time algebra from a fixed
run-time algebra, that is, given a set of run-time operations we must define compile-time operations
program, skip, assign, ... in terms of those. The recursive structure of the interpreter is uniquely
determined by the recursive structure of the abstract syntax and therefore not of real interest.

4.3 Dynamic Semantics

The initial dynamic semantics will be a standard direct semantics [27], based upon the following
semantic actions.

Evaluating an expression should yield a number in Num. Since expressions can contain variables,
their values must be provided at run-time by means of an environment mapping variables to
values. Hence the denotation of expressions is a function of type e, f,a,b € expr = env —
Num. Corresponding to the three possible kinds of expressions, there are three run-time actions.
Instruction VAR x fetches the value to which variable x is bound. Action VAL v directly returns
the value v. In order to evaluate a binary operator @), the environment must be distributed to its
arguments first.

VARxn = nx
VALvn = v
(e@f)n = en®fn



When no confusion may arise we will just write @) instead of @

An environment 1 € env = var & Num carries the dynamic values of variables appearing in an
expression. Updating the environment is strict; an assignment statement x := E updates x with
the value of E, thus if £[E] = L the meaning of the statement S[x := E] should be L as well. In
the initial environment 1o no variable has a proper value.

Mo
nfx = 1]
nx:=v]y

L
1

v, ifx=y
ny, ifx#y

Statement and program denotation are environment transformers s,t € stat, p € program =
env — env. Sequential composition ; of statements is strict in its first argument as we want L it
to be L regardless of the value of t. The unit of ; is SKIP. An assignment statement updates the
environment with the new r-value of its l-value.

(s;t)n = strictt(sn)
SKIPnn = nq
x:=en = 7x:=en]
(if bthenselset)n = sn,ifbn=1
tn,if bn=0

where strict f L = L and strict fa=faifa# L.

Using the above operations, the compile-time actions can be defined as follows

progam s
skip

assign (x,e)
seq (s,t)
cond (b, s, t)
var x
numn

operg (e,f)

3
SKIP

xX:=e

s;t

if b then s else t
VAR x

VALn

e@f

Substituting the above definitions in the general meaning functions yields a standard direct se-

mantics

Miprog P]

S|skip]

S[x :=E]

S[s;T)

S[if B then S else T fi

Efvar x]

Il

il

i

program S|P}

Sir]

skip

SKIP

assign (x,E[E])

x = E[E]

seq (S[S), S[TD

SIs); sir]

cond (£[B], SIS}, S[T])
if £[B] then S[S] else S[T]
var x



VAR x

Efpnumn] = numn
= VALn

E[E@F] = operg (E[E]LE[F])
= f[El @

From the proposed abbreviation for while-loops, we get that
S[while Bdo S od] = u(Aloop.if £[B] then S[S];loop else SKIP)

To improve the above semantics we only have to change the set op run-time actions and revise
the compile-time actions accordingly. The actual semantic functions M[], £[.] and S[] remain
unchanged.

The compiler obtained by factoring the above direct semantics would simply be the identity, the
signatures of the action algebra and of the abstract syntax are the same.

5 Continuation semantics

Invariably every efficiency improving transformation is aimed at making explicit an otherwise
implicit evaluation order by the introduction of additional continuation arguments. When aiming
for a conventional machine (almost) all evaluation order must be explicit. Inventing the proper new
semantic domain results from careful study of the interpreter at hand and from that the injection
of the old into the new domain usually follows from typing considerations alone.

The first continuation that we will introduce makes control-flow in sequencing of statements ex-
plicit. Statement denotations § € stdt = env — env will be replaced by functions that take their
successor statements as an extra argument § € stat = (env — env) - (env — env). Type
considerations strongly suggest to define Stat € stdt — stat as

Stat$t = §;{ (Stat)
The left-inverse Stat™! of Stat takes a concrete statement back into an abstract one
§=Stat§ = §=Stat™'3}
and is constructed using the following argument:

$

aim at folding Stat
§;id
= fold Stat
Stat §id
= assume § = Stat §
§id
=  define Stat~'§=31id
Stat! §

Using the fact that Stat is injective we can transform our previous direct semantics into an equiv-
alent continuation semantics.



Mprog S}
= meaning of programs must remain the same
Mlprog S}
= unfold
S[s]
=  Stat~! (Stats)=s
Stat~! (Stat S[S])
unfold
Stat S[S] id
= assume Stat S[S] s = S[S] s with s static (*)
S[s] id
extract program s =s id

program S[S]

In step (*) we have assumed that Stat S[S] s = S[S] s holds with s static. Instantiating the fusion
law for S[.] with all static arguments gives sufficient conditions for (*) to hold.

e Stat strict

e Stat skip s =skip s

e Stat (assign (x,e)) s = assign (x,e) s

e Stat (séq (s,t)) u = séq (Stat s,Stat t) u

e Stat (cénd (b,s,t)) u = cond (b,Stat s,Stat t) u

Stat S[S] s = S[S] s

Strictness of Stat is obvious and our next task now is to find concrete versions skip, assign, ...
of the compile-time actions skip, assign, ... such that the premise of the fusion law becomes
true. As a side-effect of this, new run-time operations will be synthesized where necessary and
thus (implicitly) a new transformer from the run-time algebra to the compile-time algebra is built.

The calculations that establish the antecedent of the fusion law consist of a specialization part
(usually written in the left column) and an evaluation part (written in the right column). In a spe-
cialization we are only allowed to use static values. When compile-time specialization sticks, we add
the dynamic arguments (by n-expansion) and continue (run-time) evaluation until specialization
(by m-reduction) can be resumed.

The simplest case is skip, where we find that Stat skip s = skip s holds if we define skips=s

Stat skip s

= unfold
SKiP;s (SKiP; s)n
= abutting evaluation = evaluate
s sm

= extract skip s = s
skip s

Because continuation s is static we have successfully compiled away all SKIP instructions. Had s
been dynamic the best we can do is synthesizing a new run-time operation SKiP.

10



Stat skip s 1

Stat skip = evaluate
=  abutting evaluation (SKiP;s)n
SKipP = evaluate
= extract skip = SKIP s1N
skip = synthesize SKiP s n=smn
SKIP s

Assignments cannot be evaluated fully static, and a new run-time operation results to deal with
the extra continuation.

Stat (assign (x,e)) s

= unfold (x:=e;s)n

x:=e;s = evaluate
=  abutting evaluation snx:=en]

x:=es =  synthesize x :=esn=sn[x:=en]
= extract assign (x,e) s=x:=es x:=esn

assign (x,e) s

Hence Stat (assign (x,e)) s equals assign (x,e) s if we define the new compile-time operation
assign (x,e) s = x := e s in terms of the new instruction x := e s =s n[x := e 7).

Sequential composition eliminates sequential composition of statements ;.

Stat (séq (s,t)) u
= unfold
s;t,u
= fold twice
Stat s (Stat t u)
extract seq (s,t) u=s (tu)
seéq (Stat s,Stat t) u

Il

For conditionals we use the fact that composition distributes over choice
(if b then s else t);u = if b then s;u else t;u (Cond)

to move the continuation into the two branches of the if-statement. Property (Cond) is a free
theorem for if _ then _ else .

Stat (cénd (b,s,t)) u
= unfold
(if b then s else t);u
(Cond)
if b then s;u else t;u

= fold twice
if b then Stat s 1 else Stat t u
= extract cond (b,s,t) u=if bthensuelsetu

11



cond (b,Stat s,Stat t) u
Applying the fusion law and unfolding the compile-time operations skip, assign, ... results in a
continuation semantics for W that is the same as the semantics given by Schmidt [27] for a similar

language.

M[prog S] = S[§]id

Slskip] s = s
S[x:=EF]s = x:=£&[E]s
S[S;Thu = SIS)(S[T]w)
S[if Bthen Selse T iju = if £[B] then S[S] u else S[Miu
E[var x] = VARx

E[numn] = VALn
EEQF = £[E]@ElH

It is easy to show that the meaning of while-loops is S[while B do S od] t = u(Aloop.if E[B] then (S[S] loop) else t).

5.1 Flowcharts

The current semantics can be factored into a compiler that maps programs into flowcharts. A
convenient representation of flowcharts can be obtained by breaking a flowchart into basic blocks
using GOTO’s for loops and conditionals.

GOTOsn = sn1

The meaning of conditional statements (and accordingly loops) is modified as follows to suggest
how a derived compiler could generate code for conditionals and loops.

S[if B then Selse T fij u = if not £[B] then GOTO else-
else S[S] (GOTO fi.) where
else. = S[T] fi-
fii=u

S[while Bdo Sodl u = do-where

do_ = if not £[B] then GOTO od-
else S[S] (GOTO do.)
od_.=u

6 Expression continuations

The next goal is to make control-flow in the evaluation of expressions explicit. Looking at
E[E@F] n = £[E] n @ E[F] n, we see that the order of evaluating the arguments of (@ is
not specified. For an actual implementation some order must be chosen, and subsequently inter-
mediate values have to be stored. Often a stack is introduced for this purpose. Explicit naming
of intermediate values is not only easier to derive, it also gives better code for modern load-store
RISC architectures.

Explicit control-flow can be introduced into the evaluation of expressions by lifting the order of
evaluation subexpressions to the statement level.

Sx:=t@F = Sk i=E;z:=F;x:=y@17] (ExprSimpl)

12



where y and z are fresh variables.

This suggest that expressions éxpr = env — Num should be turned into statements expr =
(var x env = env) — (env — env) by means of the transformation Expr € éxpr — éxpr; again
the type of Expr leaves little choice but taking

Expre(x,s) = x:=es (ExprCont)

Although Expr may generate unnecessary assignments such as for £[var x + var y] (z,s), it is
often simpler to eliminate these in subsequent optimization phases than to complicate the trans-
formation to deal with such special cases. It is even doubtful whether we can deal with such
‘non-homomorphic’ optimisations at all.

Miprog S]
= meaning of programs must remain the same
M{prog S]
= unfold
S[s] id
=  assume S[S] s = 8[S] s A Expr £[E] (x,s) = E[E] (x,5)
S[s] id
= extract program s = s id
program S[S]

The fusion law gives sufficient conditions to make the assumption hold.

e Expr strict

e cénd (b,s,t) u=cond (Expr b,s,t) u

¢ while (b,s) t = while (Expr b,s) t

e assign (x,e) s = assign (x,Expre) s

e Expr (vdry) (x,s) =vary (x,s)

e Expr (nim n) (x,s) = num n (x,s)

o Expr (operg (e,f) (x,s) = operg (Expr e, Expr f) (x,5)
S[S] s = S[S] s A Expr E[E] (x,s) = E[E] (x,s)

Strictness of Expr is vacuous since updating the environment is strict.

The simplest cases in making the premise of the fusion law true are variables and literal values.

Expr (var y) (x,s) Expr (nim n) (x,s)

= unfold = unfold
x:= VARyYy s x:=VALns

= extract vary (x,s) =x:= VARy s = extract niim n (x,s) =x:= VALn s
vary (x,s) num n (x,s)

Improving the compilation of binary operators is the reason why we do these calculations in the
first place. The calculation is driving towards folding Expr on the subexpressions e and f, thereby
using observation (ExprSimpl) as a heuristic. Doing so we find that Expr (operg (e, f)) (x,s) =
operg (Expr e, Expr f) (x,s) when operg (e,f) (x,5) = (u,f (z,x:=y @Dz s)).

Expr (operg (e,f)) (x,s)
= unfold
x:=(e@f)s

observation (ExprSimpl), y and z fresh variables

13



y:=e(z:=f (x:=VARYy @ VAR zs))
= fold twice
Expr e (y,Expr f (z,x := VARYy @ VAR z 5))
= synthesize x:=y @zsn=snx:=my@nz
Expre (y,Expr f (z,x :=y @ z 5))
=  extract operg (e,f) (x,s)=e (y,f (z,x =y D z5))
operg (Expr e, Expr f) (x,s)
The exclamation “y and z fresh variables” is of course non-functional. Introducing an explicit
supply of fresh variables can be put on top of the interpreter in an orthogonal way using for

example monads [32]. The following fragment is copied from an actual Gofer implementation of
the current interpreter.

oper op e £ (x,s)

fresh_variable

‘bind¢ \y -> fresh_variable

‘bind¢ \z -> £ (z, assignOP op x y z 8)
‘bind¢ \f’-> e (y,f’)

‘bind‘ \e’-> result e’

In our experience using monads in the actual derivation is not a good idea as it detracts attention
from the core of the matter. When writing an actual interpreter however they are indispensable
to provide a source of fresh variable names.

The key observation that allows introducing Expr in the interpretation of statements is that we
can assign the value of the expression of a selection statement to a fresh variable before testing the
value of that variable

S[if B then Selse T fij = S[x:=B;if (var x) then S else T fi]
With this insight the derivation of the new compilation scheme for conditionals is simple encugh.

cond (b,s,t) u
= unfold
if bthensuelsetu
= eureka, x a fresh variable
x :=b (if VAR x then s u else t u)
fold
Expr b (x,if VAR x then s u else t u)
= extract cond (b,s,t) u="b (x,if VAR x then s u else t u)
cond (Expr b,s,t) u

Similarly we find assign (x,e) s = e (x,s). Referring to the fusion law we get the new semantics:

Mi]prog S] = S[S]id
S[skip} s = s
S[x:=E}s = E[E](x,s)

S[ifBthenSelse Tfiju = £[B] (x,if VAR x then S[S] u else S[S] u)
Efvar y] (x,s) = x:=VARys
E[opum n] (x,8) = x:=VALns
EEOF (x,s) = E[E] (W,EIF] (z,x:=y D z5))
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The new set of run-time operations is:
x:=VARyYysn = snx:=nvy
x:=VALnsn s n[x :=nj
x:=y@zsn = snx:=ny@nz

7 Short Circuit Evaluation

Most programming languages, with Algol68 and Pascal being exceptions to the rule, specify short
circuit evaluation of (certain) boolean expressions. The C manual [15] for example says:

“Unlike &, && guarantees left-to-right evaluation: the first operand is evaluated,
including all side effects; if it is equal to 0, the value of the expression is 0. Otherwise
the right operand is evaluated, and if it is equal to O, the expression’s value is 0,
otherwise 1.7

Since our interpreter inherits boolean operators from its meta-language we must make sure that
they behave as required. We can kill two birds with one stone by using the following program
equivalences to eliminate boolean expressions altogether

Sfx:=B] = S[if B then x := true else x := false fi]
S[if (A or B) then S else T fi} S[if A then S else (if B then S else T fi) fi]
S[if (A and B) then S else T fi] S[if A then (if B then S else T fi) else T fi]
S[if (not A) then S else T fi] S[if A then T else S fi]
S[if truethen Selse Tfifj = S
S[if false then Selse Tfi] = T

The duplication of code in the transformations for and and or can easily be avoided by adding an
extra goto or so. In practical programs expressions tend not to be very deeply nested however and
then the cure might be worse than the disease due to broken pipelines caused by these additional
jumps.

If short circuit code is required, boolean connectives have to be translated differently from arith-
metical operators. Therefore the syntax is changed to distinguish between arithmetic and boolean
expressions.

P € program
S, T € statement

prog statement

skip

var := expression

statement ; statement

if boolean then statement else statement fi
E,F € expression var var
num num

expression @ expression

—— = ==

bool boolean

var var

true | false

expression & expression

A,B € boolean

boolean @® boolean
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Short circuit evaluation of boolean expressions is introduced by simultaneous application of the
transformations:

Bool b (s,t) = if bthenselset
Expre(x,s) = (x:=e€)s
to the continuation semantics of §6 (adopted in the obvious way to deal with boolean expressions.)
First we will derive the new semantic operations for boolean expressions. The generated code for
a variable dynamically chooses a branch to continue because the value of variable x is dynamic.
Bool (vdr x) (s,1t)
~ if VARx then s else t
var x (s,t)

Atomic boolean expressions are eliminated at compile-time, thanks to the fact that the pair of
continuations (s, t) is static. The calculation for fdlse is very similar and not shown.

Bool trie (s, t)

~ if VAL 1 thenselset
s
trite (s,t)

Complex boolean expressions are reduced to a rat’s nest of conditionals as suggested by the above
observations. Again, the calculation for (61 (a, b)) is similar and therefor omitted.

Bool (dnd (a,b)) (s,t)
T (a AND b) then s else t
= if a then (if b then s else t) else t
~ Bool a (Bool b (s,1),t)

and (Bool a,Bool b) (s,t)

Relational expressions cannot be encoded by means of control-low, and thus require somewhat
more work.

Bool (equal (e, f)) (s, t)
= ifeg fthenselset
= x:=(e &) (if VARx then s else t)
y:=e (z:=f (x:=y & z (if VARx then s else t)))
Expr e (y, Expr f (z,x :=y © z (if VAR x then s else t)))
edqual (Expr e, Expr f) (s, 1)

Boolean expressions form the interface between Expr and Bool.

Expr (bool b) (x,s)

T x:=bs
if b then x := VAL 1 s else x := VALO s
Bool b (x := TRUE s, x := FALSE s)

= bool (Bool b) (x,s)

The remaining cases for Expr remain unchanged with respect to the previous calculation of ex-
pression continuations, but conditionals now contain boolean instead of integer expressions.
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cénd (b,s,t) u

T ifbthensuelsetu
Bool b (s u,t u)
cond (Bool b,s,t) u

The fusion law yields the new semantics.

M{prog S}

S[skip] s

S[x:=E] S

S[S;Tlu

S[if B then Selse T fij u
S[while Bdo S od] t

Elvar y] (x,5)
E[num n] (x,s)
E[EDTF] (z,5)
E[bool B] (z,s)

B]var x] (s,t)
Btrue] (s,t)
B[false] (s,t)
B[E S F] (s, 1)
B[A and B] (s, t)
B[A or B] (s,t)

it

S[s] id

s

E[E] (x,s)

S[sy (S[M1w)

B[B] (S[S] v, S[T]w)
u(Aloop.B[B} (S[S] loop, t))

y:=VARxs
x:=VALns

E[E] (. €[F] (u,z:=x Dy 3))
B[B] (z := VAL 15,z := VALOs)

if VAR x then s else t

s

t

E[E] (y,E[F] (z,x :=y & z (if VARx then s else 1))
B[A] (B[B] (s,1),1)

B[A] (s, B[B] (s, 1))

It is hard to imagine that anyone can write this interpreter from scratch. A Gofer implementation
of the compiler generated from the above semantics using theorem (Factor) compiles a program

for computing factorials

n:=num ...}
fac:=num 1
while (var n > num 0)
do
fac := var n x var fac;
n:=var n—num |
od;

into the following fragment of pidgin C (after some trivial reformatting)

n= ’
fac = 1;
do:
x6 = n;
x7 = 0;
x8 = x6 > x7;
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it el St

if (1x8) {goto od;};

x5 = n;
x4 = fac;
fac = x5 * x4,
x3 = n;
x2 = 1;
n = x3 - x2;
goto do;

od:
exit (0);

8 Adding Procedures: from W to C

Now that we have seen how a realistic compiler for W can be derived in a few simple steps, we
extend the language with first order procedures. Function procedures are added to W by extending
the syntax with clauses for returning a value, for calling a procedure and for procedures bodies.

statement = ...|return expression

expression = ...|call procedure (expression)

P € procedure := proc var begin statement end

Recursive procedures will be represented by cyclic programs. An example recursive procedure is
fac

p(Afac procn

begin
if n = 0 then return 1
else return n xcall fac (n—1)
fi

end)

Usually recursive procedures are assumed to be finite and recursion is solved semantically by means
of a symbol table mapping procedure names into their denotations. Using cyclic programs it is
impossible to describe dynamic binding. Syntactic recursion is static binding at its extreme.

8.1 Continuation Semantics

Statement continuations will get type env — Num instead of env — env because procedures
return a value. The CALL-instruction x := CALL ((p,y),z) calls procedure p with an initial
environment in which the formal argument y is bound to the value of the actual argument z. The
value computed by p (y := z) is assigned to x.

RETURNxsn = mnx
x := CALL ((p,y),z) sm = smu[x:=v] wherev=p Noly :=n 7]
EXITsn = 1

The extra valuation functions for the new syntactic elements are defined using the new semantic
operations. Besides M[.] all other semantic functions remain unchanged.

M[prog S] = S[S] (EXIT 1)
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S[return E} s

Elcall PE)] (x,5)

Pl

Plproc x begin S end]

E[E] (x, RETURN x s)

E[€] (y,x := CALL (PfP],v) s)
procedure — stat x var

(S[S] (EXIT 1),x)

m |

A procedure or program that does not RETURN explicitly, implicitly returns L.

8.2 Introducing the dump

The semantics of a procedure call
x:= CALL ((p,u),z) sm = sn[x:=v] wherev=pnofy:=nz|

does not reflect the standard subroutine call, where evaluation on the caller’s side is temporarily
suspended and control is transferred from caller to callee which eventually returns its result to
back to the caller. This implicit evaluation order will be explicated by introducing yet another
continuation, the dump. The dump continuation represents the suspended computation of the
caller of the currently executing procedure, it has type dump = Num — Num, and should be
strict. Given the result of the callee, the caller may resume computing its result, but if the callee
evaluates to L the whole computation has to fail.

The injective function Dump € (env -+ Num) — (env — dump — Num) maps an abstract
continuation § that does not expect a dump, into a concrete one 3 = Dump § that does expect a
dump. It sounds like a cliche, but again the type of Dump leads us to the definition

Dumps$nd = 6(§n)

The left-inverse Dump~' € (env — dump — Num) — (env — Num) maps a concrete continu-
ation § = Dump § back into an abstract one § = Dump~’ 3.

Dump™!

$n

= $§ =Dump §
Dump~' (Dump §) n

= meaning of programs must remain unchanged
$n

= aiming at folding Dump

id (§ )
fold

Dump $ 11 id

Dump §=3§
$nid

Thus Dump~! § 1 = 3§ 1 id is a left-inverse of Dump.

The new semantics is calculated using the fact that Dump~' (Dump s) = s for s € env — Num.

M{prog S]
= wish

Miprog S]
= unfold
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SIS} (EXIT L)

= S[S] s = Dump~' (Dump S[S] s)
Dump~' (Dump (S[S] (EXIT 1))

=  assume Dump (S[S] s) = S[S] (Dump s)
Dump~! (S[S] (Dump (EXIT L)))

=  extract program s = Dump~' (s (EXIT 1))
program S[S]

The assumption follows from the instance of higher-order fusion given below where Proc (s,x) =
(Dump s,x)

e Dump strict
e Dump (skip s) = skip (Dump s)
e Dump (séq (§,1) u) = seq (3,t) (Dump u)
< Dump (§ u) =3 (Dump u) A Dump (f u) =t (Dump u)
e Dump (assign (x,€) s) = assign (x,¢) (Dump s)
< Dump (é (x,s)) = & (x,Dump s)
o Dump (cénd (b, §, ) u) = cond (b, 3,t) (Dump u)
< Dump (b (x,s)) = b (x,Dump s) A
Dump (§ u) = 3 (Dump u) A Dump (f u) =t (Dump u)
e Dump (operg (¢,f) (x,8)) = operg (&,f) (x, Dump s)
< Dump (é (x,5)) = & (x,Dump s) A Dump (f (x,5)) = f (x, Dump s)
e Dump (cdll (9, é) (x,u)) = call (p, &) (x,Dump u)
< Dump (é (x,u)) =& (x,Dump u) A Procp =9
e Proc (préc (§,x)) = proc (3,x)
< Dump (§ u) = 3§ (Dump u)
Dump (S[S] s) = S[S] (Dump s)A
Dump (£[E] (s,x)) = E[E] (x, Dump s)A
Proc P[P] = P[P]

Now we can try to find concrete compile-time operations that make the fusion law hold. The nested
premisses will be referred to as (IH) (induction hypothesis). The meaning of skip statements and
sequencing remains unchanged.

Dump ((séq (§,1) uw)

Dump (skip s) =  unfold
=  unfold Dump (§ (f u))
Dump s = IH twice
=  extract skips=s 3 (t (Dump w))
skip (Dump s) = extract séq (s,t) u=s (tu)

seq (3,1) (Dump u)

If we had used normal fusion Dump (skip s) = skip s instead, the result is a correct but opera-
tionally unsatisfying semantics.
Dump (skips)n &
= unfold

5 (sm)
= synthesize SKIP s 1 8 =6 (s 1)

20



SKIP s b
= extract
skipsnd

Tt forces the introduction of a weird run-time instruction SKIP that returns immediately. It took
the author a long time to realize that higher order fusion was the way to go.

We continue our derivation with the assignment statement, where we find that Dump (assign (x, €) s) =
assign (x, &) (Dump s) if assign (x,e) s=e (x,s).

Dump (assign (x,¢) s)
unfold

Dump (é (x,5))

= 1H
¢ (x,Dump s)

extract

assign (x, &) (Dump s)

The side effect of applying Dump to RETURN-statements is a new instruction RETURN x s 1 & =
5 (m x).

Dump (retimn é s)

= unfold Dump (RETURN x s) 1 8
Dump (é (x, RETURN x s)) =  unfold

= & (RETURN x s 1)
& (x, Dump (RETURN x s)) =  evaluate

= abutting evaluation 5 (nx)
& (x, RETURN x (Dump s)) =  synthesize RETURN

= extract retiurn RETURN x (Dump s)n &

retitrn & (Dump s)
The instruction RETURN x s 1 8 = & (n x) captures the intuition of the statement return E,
namely return the value of E to the caller of the caller.
Conditionals pose no particular problems and hence they are omitted.

Having shown that Dump promotes over all operations of S[], we now must show that Dump
also promotes over the operations of £[.].
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Dump (operg (4,b) (x,5)) Dump (x:=y@zs)nd

= unfold = unfold
Dump (4 (y,b (zx:=y @z 9))) §(x:=y@zsm)
= TH twice = evaluate
a (y,b (z,Dump (x:=y @ z5))) 5(snx:==my@nz)
= abutting evaluation = fold
a (y,b (z,x :=y @ z (Dump s))) Dump snfx:=ny@nz]
= extract = synthesize
operg (&,b) (x, Dump s) x:=y@z(Dumps)nd

For expressions compiled into VAL and VAR we find new instructions in a similar fashion.

x:=VARysnd = snx:=ny]?d
x:=VALnsnd = snx:=n|d

The most difficult case is the procedure call.

Dump (calt (($,),€) (x,5))
unfold

Dump (€ (z,x := CALL (($,1),2) $))

= IH

¢ (z,Dump (x := CALL (($,v),2) s))
evaluation, see below

¢ (z,x := CALL (Proc (($,1),2)) (Dump s))

I

= IH
¢ (z,x := CALL (($,y),2) (Dump s))
= extract

call ((0,y),8) s

In the fourth step of this calculation the assumption has been made that Dump (x := CALL
(($,v),2)) s = x:= CALL (Proc (($,y),2)) (Dump s), this remains to be shown.

Dump (x := CALL ((p,y),2)) sn 8
= unfold

§ (x := CALL ((p,y),2) s M)
= evaluate

5 (s nx := v] where v=p o[y :=1 z])
= lambda calculus

§ (s nx := v]) where v="p noly :=1n z]
= lambda calculus

(Av.5 (s n[x :=])) (p Nofy =7 2])
= fold

Dump p noly :=1n 2] (Av.Dump s nx =] 8)
= synthesize

x := CALL (Proc ((p,u),2z) (Dump s)n 8
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We are nearly done, the last remaining case is Proc (préc (s,x)).

Proc (préc ($,x))

=  unfold Dump (EXIT s) 1 6
Proc (§ (EXIT L1),x) =  unfold

= I 5 (EXIT s m)
(3 (Dump (EXIT 1)),%) = evaluate

= abutting evaluation o1
(3 (EXIT L1),x) . =  synthesize

= extract EXITsn d

proc (3,x)

Applying higher order fusion yields the final semantics for C.

Miprog P} = Dump™' (S[P] (EXIT 1))
Slskip} s = s

S[x:=Els = E[E](x,9)
Sis;Mu = Ss](S[Mw)

S[return E] s £[E} (x,RETURN x s)
S[if B then Selse T ij u = £[B] (x,if VAR x then S[S] u else S[T] u)
Efvar y] (x,5) x:= VARyY s
E[num nj (x,s) x:=VALns
E[EDF (x,5) E[E] (u,EMF] (zx = (y @ 2 8)))
£[call P(E)]} (x,5) £[E] (y,x := CALL (P[P],v) s)
Plproc x begin s end] = (S [S] (EXIT 1),x)

The run-time operations indeed are very close to concrete machine instructions

EXITsnd = 61
RETURNxsn &6 = 8(nx)
x:=VARysnd = snx:=ny]d
x:=VALnsndé = snux:=n]d
x := CALL ((p,y),z) snd = pnoly:=nz] Avsnlx:= v] 8)
x=y@zsnd = snux=ny@nz?

In fact, the run-time operations are now so primitive that they can be implemented directly in some
concrete machine code; the dump continuation would be realized as a stack of pairs of environments
and return addresses. Another option would be using C as target code in which case primitive
operations are inherited from C directly, in particular the procedure call and return. An actual
compiler derived from our last interpreter generates the following code for the factorial example

fac(n){
x10 = n;
x9 = 0;
x1 = x10 == x9;
if (1x1){goto else;}
x2 =1,
return (x2);
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goto fi;

else:
x5 = n;
X8 = n;
x7T = 1;
x6 = x8 - x7;

x4 = fac (x6);
x3 = x5 * x4;
return (x3);
fi:
exit (0);
};

9 Tail call elimination

Suppose the context condition holds that any variable appearing in a program is defined (occurs
on the Ihs of an assignment) before it is used (occurs on the rhs of an assignment), then the CALL
instruction can be refined to pass the current environment 7} instead of the empty environment Tjo.

x:= CALL((p,y),z) snd = pnly:=n z] (Av.s n[x := ] 8)

This modified CALL instruction allows tail recursive calls to be replaced by iteration. When a
procedure returns by calling a procedure (either itself or another), that call is said to be a tail call.
We can replace such a call by a jump, this not only saves time but also (stack) space.

x := CALL ((p,y),z) (RETURN x s) 1 &
= evaluate CALL

Py ;=1 z] (AW.RETURN x s n[x := v] 8)
= evaluate RETURN

pnly:=nzd
= definition VAR and GOTO

y:=VARz (GOTOps)nd

Incorporating this peephole optimization into our translation scheme gives
S[return (call P(E))} s = £[E} (x,GOTO p s) where (p,x) = PIP]

Note that this definition is not homomorphic, but could be made so easily by letting the parser
detect it and introducing an additional constructor in the abstract syntax.

10 Conclusions and future work

We hope to have convinced the reader that a not totally unrealistic implementation for a simple
imperative language can be derived from its denotational semantics in a few (mechanical) trans-
formation steps. The crucial thing that makes the transformation of an inefficient into an efficient
interpreter possible is that there is a homomorphic embedding of the abstract into the concrete
semantic domain. For first-order languages like C this is easy, but things get notoriously difficult
when the semantic domains become more complicated. Most troublesome in this respect is the
contravariance of the function space functor. At present we lack nice calculation rules for recursive
domains with function spaces. This effectively means that our techniques does not extend directly
to interpreters for functional languages. Historically our work on compiler derivation started by
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the desire to unify the wealth of abstract machines for implementing functional languages by cal-
culating each one of them from the generic meta-interpreter for the lambda-calculus (The seminal
work of Lester [16] on the G-machine is still unique in this respect). We have good hopes however
that the induction principles for recursively defined domains of Pitts [25] are the right theoretical
tool to tackle this problem.

Besides the need for a stronger theory, practical application of the techniques for deriving compilers
as proposed in this paper requires machine assistance for sure. First of all an automatic free theorem
generator is indispensable, it is rather tedious to figure out fusion laws like that for Dump by hand.
We have written a simple such a program, but is still requires too much manual simplicifation to
make the resulting theorems palatable. Secondly it would be nice to have an intelligent editor that
could handle all the dump transformation steps that appear in the calculations. We don’t know
whether one wants to automate all calculations (even if possible) as you want a thight control on
the new run-time operations being synthesized. All interpreters and compilers described in this
paper have been implemented in Gofer (NOTE: perhaps it would be interesting to include the
Gofer code as an appendix). Apart from the use of a monad to provide an explicit source of fresh
variables there is no difference between the interpreters written in Gofer and those presented in
the paper. When factoring an actual compiler from an interpreter some care has to be taken to
produce the correct (finite) textual representation of the (recursive) target program, i.e. we have
to generate a string that when parsed yields the proper abstract syntax tree of the target language.
This aspect is not properly expressed in the factorization theorem, but did not turn out to be a
real problem though it could make the automatic factorization of a compiler from an interpreter
non-trivial.
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