Hazard Algebra for Asynchronous Circuits

E. Meijer

UU-CS-1994-06
January 1994

Utrecht University

eo O(.
3 = Department of Computer Science
% g Padwalaan 14, P.O. Box 80.089,

1 WY

3508 TB Utrecht, The Netherlands,
Tel. : ... + 31- 30 - 531454

Hazard Algebra for Asynchronous Circuits

g Fik B e

Lindvet

sity o Utreoht

Degartment of Ugmputer Lolence

PORox B0 0BG NL-IBOB T8 Lhreont The Methesipnds

i o g 8 v 5 e B e g e Wl
ST &Y W B LY B

dat ene moment

dat de tyd stopt
- dar pne moment

dat ales Fiog

Dar Sne Mo

aks e ket

aet b ves!

dat jo onderdest beni

van het grote gehesl

" De Dijk

A

1 Introduction

Qur concern is the design of provably correct asynchropous circuts. e such circuits therve may
occur hazards, due to 1he delay of signals along|wires and components Informally, a hazard s
& time interval during which the output of & cifcuit, o rcuit component, is wrong. Hazards
- are hardly ever defined formally in the literature) For a synchronous circuit designer this might
be no problem as he assumes the cutpuis of all components are correct {and stabtie] by the
ﬁ@xﬁﬁiog% edge Asynchronous or clockiess dircuns
components arz correct. So it s of vita! impor{ance Tor the asynchronous system designer 1o
be abie to reason formally about barards. We shall degn an algsbra, a formal systermn, for this
purpese and we shall wse it 1o design asynchionous finfte-state machines Wur work grew out
of an attempi to formalize Paytor Jones's technigque for designing asynchronous finite-state
 achines (8] & condensed version of this oapay ra tn {71 '

may feavure hazasds, even though all

i

j g sigebia) and
Egualty s jifted pointwise

3 Conventional algebras

We intend to design an algebra by which it is possible to prove the absence of hazards in
asynchronous circuits. A formal system which takes time into account is certainly going to be
too complicated to be of practical use, hence a formalism in which time has been abstracted
is to be preferred. However, as shown above switching algebra over B is too simplistic an
abstraction of logic circuits.

Another possibility is the ternary algebra as used by Eichelberger [1] and others. Here the
value set B = {1,0} is extended with a third value } to become T = {0,},1}. This new
value is intended to describe the transient behaviour of logic gates. The operation of gates
with respect to the transient value 1 is determined by changing back and forth the required
input of the gate and noting whether its output changes or remains fixed. Thus for example

-1=1 since0-1#1-1,and
0=0 since0-0=0=1-0.

Nl= Ni=

In ternary algebra we may define that an expression A[p] has a static hazard on variable p if
A = 1 when p changes, but A yields the same B-value for p either constant 1 or 0.

static hazard (p,A) = Afp:=1]=Ap:=0] A Alp:=1]=1}

Similarly we define that A has a dynamic hazard on p when A = 1 if p =] but A yields two
different boolean values for p = 1 resp. p = 0.

dynamic hazard (p,A) = Alp:=1#Alp:=0] A Alp:=1]=

According to these definitions the 2-input data selector P - v+ p - q has a static hazard on p
when q and 1 are both 1.

Not so obvious perhaps is the fact that in ternary algebra the notion of dynamic hazard is
hardly useful since we can prove that for each A

Alp:=0]#A[p:=1] = dynamic hazard (p,A)

That is, the notion of dynamic hazard does not distinguish between truly occurring dynamic
hazards and merely correct changes of the output. A more refined notion of dynamic hazard
is wanted but this seems impossible within ternary algebra.

4 Hazard algebra

The solution to the problem of giving formal definitions of static and dynamic hazards is a
quinary algebra, to be called hazard algebra. The domain of values is a five element set
H=BuU{t,{,L} structured as a flat cpo with L as least element.

1lCa = a#l

As usual the ordering on values is lifted pointwise to terms
ACyB = (VxeH:Alp:=x]CBp:=x|) (LIFT)

(Again the extension to more than one variable should be obvious). When no confusion can
arise the H subscript is omitted.

Informally speaking,

e 1 (0) denotes a constant high (constant low) signal during an interval of time.
e A clean rising signal is denoted by T.
e A clean falling signal is denoted by |.

e | denotes an unknown signal, possibly a hazard.

Fantuauzzi [2] describes a nine-valued algebra for the analysis of logical circuits that distin-
guishes between five different kinds of hazards instead of only one. This seems to be a little
overkill. In his paper Fantuauzzi refers to a quinary algebra proposed by Lewis [5]. It might
very well be the case that this quinary algebra is very similar to ours. This certainly is the
case for the five-valued transitional logic of Thompson [9]. However he does not distinguish
between the full ordering C and its refinements C;, and Cy.

The operations of ternary algebra are extended to quinary algebra in conformity with the
operational interpretation of 1, !, and L. For example 1 -} = L reflects the possibility of

a hazard when the inputs of an and-gate change in the opposite direction within the same
interval of time.

tl=1

A complete characterization of the quinary operators is given below. Appendix A contains the
corresponding truth tables.

X'y = Yy-x 0 =1 x+y = Yy+x
XX = X T=0 X+x = X%

0.x = 0 1T =1 O+x = x

T-x = X T =1 T+x = 1

1-x = L1,ifx#0 1 =1 1+x = L, ,ifx#1
T4 1 t+4 = 1

The static hazard in the data selector can be computed within the new algebra as follows

F-r+p-Qp=tr=la:=1=F- 1+t 1= 1+ 1=+1=1

As a corollary we get that the hazard behaviour of a term never gets worse when replacing it
by a bigger one.

safe (p, A)JAAC,B = safe (p,B)
safe (A)AACyB = safe (B)

The above monotonicity laws are useful since many laws for T, Cy and C,, have a simpler
lhs operand than rhs operand. The laws enable us to replace an expression by a simpler one
without losing safety.

5 Hazard removal

This section shows how arbitrary expressions can be made hazard-free by expanding and sub-
sequent covering. Data selectors play a prominent role in this process.

The by far most important property of 2-input data selectors is the fundamental mode abides
law: For all p, q not occurring in A, B, C, and D

(A <pt>B) <iq> (C<ap>D) =y (A <q> C) <p> (B <qr>D)

Its proof follows from the fundamental mode distributive laws. Another law which follows from
the same distribution rules is fundamental mode distribution of <ip>> over + for all p not in
either A, B, C, or D.

(A<p>B)+ (C<p>D) =y (A+C)<p>(B+D)
Distribution of <ip>> over - improves the hazard behaviour.

(A<p>B) - (C<p>D) C (A-C)<p>(B-D)

The Shannon expansion p&A on variable p realizes A using a 2-input data selector controlled
by p with A[p := 1] and A[p := 0] at the respective data inputs.

POA = Alp:=0]<p>Afp:=1] (SHANNON)

Shannon expansion preserves meaning, A =g P®A, a fact which is easily verified by a case
analysis on p. The abides law and the distribution law for data selectors are inherited by
expansion. Idempotence of ® follows from the equality (p®A)[p := b] = Afp = b] if
b e B.

PO(A+B) =v (P®A)+ (P®B)
POMPO®A) = POA
POUO®A) =v d®(PGA)

Because of the last two laws, it is safe to overload the notation for expansion over a set of
variables in fundamental mode.

{}GA = A
{p}IUpPs)®A =v PO(PS®A)

7

Expanding an expression A for each variable in A is denoted by

= {plpeA}®A

In practical terms this means that A is realized using only 2-input data selectors. Total
expansion expansion is idempotent and distributes over +, both in fundamental mode.

= (A]
[A+B] = [A]+[E]

An expression A is called expanded if it is equal in fundamental mode to the expansion on any
variable occurring in A.

expanded (A) = (VpeA: A=y POA)

Total expansion yields an expanded term because additional expansion on variables in have

no effect.
Vp:p E:=VP@

Expressions in sum-of-product-form are also expanded if products do not contain a variable
and its negation, e.g. p-P is forbidden. In fact any totally expanded expression is fundamental
mode equivalent to an expression in sum-of-product form. For example let A be an expression
in terms of p and g then

=v P-q-Alp:=0,q:=0]+
P-q-Alp:=0,q:=1]+
p-q-Ap:=1,q:=0]+
p-q-Alp:=1,q:=1]

Expanded variables can be distributed n fundamental mode over the remaining expression.

Shannons expansion theorem can be used to provide hazard-cover for transitions of variable
p. The cover on p of A is defined as

pPOA = Afp :=0]-Alp :=1]

Adding a cover term preserves meaning, A =g A + P©A., and removes hazards on p for
terms expanded on p.

safe (p,p®A + p©OA) (Hazard-Cover)

A quick check of the truth-table for p = | confirms this claim.

Alp:=0][Alp:=1] pPOA +pOA
0 0 $+.0+0-0+4:0=0
0 1 £.0+0-14+)-1=
1 0 +1+1.0+1-0=1
1 1 +1+1-144-1=1

safe (p, A*)

safe (p, (£ psC A :[ps@A))

safe (p,[Al+[p@A]+(Z ps CA:p &ps:[({p} Ups)©OA)+
(ZpsCA:péps:|ps©@A))

safe (v, [A]+ [FOA)

When A is in sum-of-product form, the formula A* really hides a simple procedure that may
be used when hazard covering is applied manually: as long as A = B+ P - C+p - D with
C-DgBand C-D#0,add C-D to A.

6 Asynchronous Finite-state Machines

This section shows an application of our hazard algebra to the implementation of asynchronous
finite state machines. An asynchronous finite state machine consists of

A set of inputs J = {a,b,c,.. .}.

o A set of outputs O = {m,n,o0,...}.

A set of states $ = {R,S,T,.. .}.

An output specification ms which specifies for each state S and each output m a boolean
expression over J, whose value m should take when in state S.

e A transition specification Kst over J for pairs of states S and T denoting that when the
machine is in state S and Ks1 holds a transition should be made to state T.

The transitions should be complete and deterministic. Completeness means that each state S
has at least one successor state T (which may be S itself)

(O TuKst) = 1 (COMPL)
Determinacy means that in any state S at most one transition is enabled
Kst-Ksr = 0, f T#T (DET)
From the two conditions (COMPL) and (DET) on transitions it follows that
Kse = ([T T:T#R:Ke7) (SELF)

Without loss of generality we therefore assume Kss = ([T T: T# S: Kst). There are two
possible cases to consider when proving (SELF); transition Ksg is enabled and all others are
disabled, or Kgp = O and some other transition Kgp' is set.

10

state has been reached.

m = () S=S-mg)* (Moor)

Next-state variables are treated the same as outputs,

y = (3 S, T=S Ksr-yr)* (State)

where yr is the value of state variable y in state T.

7 Comparison with Peyton Jones

Peyton Jones [3] uses as equation for outputs
m = (Z S,T:KST¢0:(S+T)-ms-mT) (OUTSPJ)

This is essentially the result of pushing _* inside our Moore-machine equation. Formally this
means we have to show

(3 S T:Kst#0:(S+T)-ms-my) =y (3_ SuS-ms)"

At this moment we lack nice algebraic laws for the _*-operator to prove this. Similarly his
equation for state variables

y’ = ZS,T:KST¢O:(S+T)-y§-y} (StatespJ)

where y% is defined for arbitrary S as

y; = US(Z TT¢Sy—T—KST)(Z TZT#Sin'KST)
corresponds to our equation (OUT). We believe however that our formulation is much simpler.

The following machine shows that the equations for outputs given by Peyton Jones are wrong
for Mealy-type machines. The machine has a single input a, one output m and two states S
and T encoded by y respectively .

mgs a
mr = 0
K sT = @
Kt = 1

Expanding the expression for m suggested by Peyton Jones gives
m = y-a

which is makes the output m temporarily high just before a transition from S to T. Our
equation hardwires m to 0.

12

