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Abstract

Efficient data structures are given for the following two query problems: preprocess
a set P of simple polygons with a total of n edges, so that all polygons of P inter-
sected by a query segment can be reported efficiently, and (ii) preprocess a set S of n
segments, so that the connected components of the arrangement of S intersected by
a query segment can be reported quickly. In these problems we do not want to return
the polygons or connected components explicitly (i.e., we do not wish to report the
segments defining the polygon or the segments lying in the connected components).
Instead, we assume that the polygons (or connected components) are labeled and we
just want to report their labels. We present data structures of size O(n!*+¢) that can
answer a query in time O(n'/2+¢ 4 k), where k is the output size. If the edges of P (or
the segments in S) are orthogonal, the query time can be improved to O(logn + k)
using O(n logn) space. We also present data structures that can maintain the con-
nected components as we insert new segments. For arbitrary segments the amortized
update and query time are O(n!/2*¢) and O(nl/2*¢ 4 k) respectively. If we allow
O(n*/3+¢) space, the amortized update and query time can be improved to O(n!/ 3+e)
and O(nl/3+¢ 4 k), respectively. For orthogonal segments the amortized update and
query time are O(log” n) and O(log® n + klogn). Some other related results are also
mentioned.

1 Introduction

The general intersection searching problem involves preprocessing a set of objects into a
data structure, so that the objects intersected by a query object can be reported efficiently.
This problem is quite general and a numerous geometric query-type problems can be
formulated in this setting. For example, the widely studied range searching problem
requires preprocessing a set of points into a data structure, so that the points intersecting
a query region (rectangle, simplex, etc.) can be reported efficiently. In most of the work
done to date the researchers have assumed the input objects to be of simple shape, i.e.,
with constant description complexity (e.g., points, lines, segments, circles), while in most
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of the applications they are more complicated and are defined in terms of simple objects,
e.g., polygons, defined as a sequence of noncrossing segments. Typically the definition of
an object is stored in some data structure. The goal is to return the pointers to the the
data structures storing the definitions of the objects (and not the definitions themselves)
that intersect a query object. For this purpose we can assume that the objects are labeled
and one wishes to return the labels of the objects that intersect a query object. In most
of the applications, one can process the set of simple objects that define the input objects
for intersection searching, but the query time will no longer be output-sensitive; see below
for more discussion on this topic.

In this paper we consider some of these problems where the input objects are of not
simple shape. We assume that the objects are defined by segments and the query is again
a segment. We study the following ‘abstract’ problem, which we call the colored segment
intersection problem:

Given a collection S of n segments and an m-coloring x : § = {1,2, ... ,m}
of S, preprocess S into a data structure, so that the set of colors of segments
in S intersecting a query segment can be reported efficiently.

By coloring the segments of each object with the same color, we can reduce the original
intersection searching problem to the colored segment intersection problem. The following
examples illustrate the idea:

1. Polygon intersection searching: Let P, ..., P, be a set of simple polygons,
and let S be the set of n segments defining these polygons. We want to preprocess
the polygons, so that the polygons intersecting a query segment can be reported
quickly. We do not want to report all the edges of polygons; we just want to report
the indices of these polygons. By assigning the color ¢ to the edges of P;, one can
reduce this problem to colored segment intersection searching.

2. Connected component intersection searching: The connected components in
the arrangement of a set S of segments are the connected components of the planar
graph formed by S. More formally, two segments of S are in the same connected
component if there is a path between them along the edges of the arrangement
of S. The connected components form a partition S, ... ,8™ of S. We want to
preprocess S so that the connected components of S intersecting a query segment
can be reported quickly. Again for each S*, we do not want to report all the segments
of the connected components; we just want to return the index i. By coloring the
segments of S* with the color i, we can reduce it to colored segment intersection
searching. Notice that, unlike the previous problem, determining the color of each
segment in & not trivial, because it involves finding for each segment e € S the
connected component of A(S) in which e lies.

The connected components and their labeling are an important concept in image pro-
cessing, geographic information systems, etc.; see e.g. [9]. The segment intersection search-
ing problem, where one wants to report all segments of S intersecting a query segment,
is a special case of the colored segment intersection searching, because, by coloring each
segment of S with a distinct color, we can reduce it to the colored segment intersection



searching problem. Other colored intersection searching problems have been studied inde-
pendently by Janardan and Lopez [16], Gupta et al. [14], and Nievergelt and Widmayer
[19].

In the last few years much work has been done on the segment intersection searching
problem [2, 3, 5, 7, 10, 13, 21]. Agarwal and Sharir [3] showed that S can be preprocessed
using O(n'*¢) space and time, so that all k segments of S intersecting a query segment
can be reported in time O(n'/2*¢ 4 k). (The n¢ factor in the size and query time can
be reduced to logo(l) n factor using a more sophisticated partition tree due to Matousek.)
Roughly speaking it stores a family of subsets of S, called canonical subsets, so that the
segments of S intersecting a query segment can be represented as the union of O(n'/2+)
pairwise disjoint canonical subsets, and they can be computed in O(n!/?*¢) time. One can
easily extend this algorithm to our problem by storing the set of colors for each canonical
subset and reporting the colors of the output canonical subsets. The sets of colors in the
canonical subsets of the query output are no longer pairwise disjoint, so in the worst case
the same color may be reported by all canonical subsets, thereby implying that the query
time is O((1 + k)n'/2*¢), which is much worse than the desired bound of O(n!/2+< 4 k).

We are not aware of any data structure that gives a faster algorithm for colored segment
intersection searching than the one sketched above. In fact, we do not know any algorithm
even for connected component or polygon intersection searching except for a few special
cases [15]. The algorithm of Agarwal [1] for computing many faces in an arrangement of
segments can be modified to compute its connected components in O(n*/3log® n) time. If
the segments are orthogonal, Imai and Asano have presented an O(nlogn) time algorithm
for computing the connected components [15]. None of these algorithms work for reporting
the connected components that intersect a query segment. If the query is a line, one can
answer a connected component intersection query as follows (see also Janardan and Lopez
[16]): For each connected component of A(S), find its convex hull and preprocess the
convex hull edges for segment intersection searching. Since a connected component of
A(S) intersects a line £ if and only if its convex hull intersects £, and at most two edges
of a convex hull intersect ¢, all k¥ connected components of S intersecting a query line can
be reported in time O(n!/?*¢ + k). Observe that the above approach works for colored
segment intersection searching (assuming that the query is again a line) too as long as the
segments of the same color form a connected graph. Thus one can also answer polygon
intersection queries for lines using the same approach. However this approach does not
work when query is a segment.

In this paper we begin with a relatively simple algorithm for colored segment inter-
section searching for the case where the segments are orthogonal and the query segment
is also orthogonal (Section 2). We show that we can preprocess a set of n orthogonal
segments in O(nlog”n) time into an O(nlogn) size data structure, so that a query can
be answered in time O(logn + k). A similar bound has been attained by Janardan and
Lopez [16].

In Section 3, we present a dynamic solution for colored segment intersection search-
ing for the case where the segments of S and the query segments are orthogonal. The
query time is O((k + 1)log®n), where k is the number of colors reported. The insertion
or deletion of a segment takes O(log’ n) amortized time. If only insertions are performed,

!Throughout the paper, € stands for a positive constant which can be chosen arbitrarily small with an
appropriate choice of other constants in the algorithms.



the amortized query time can be improved to O(log’ n + klog n). An algorithm for dy-
namic colored segment intersection searching does not immediately yield an algorithm for
connected component intersection searching, because an update may affect several con-
nected components of S. We present an O(nlog®n) time on-line algorithm to construct
the connected components of n orthogonal segments (Section 4).

Section 5 solves the static version of connected component searching problem for ar-
bitrary segments. For any fixed ¢ > 0, the preprocessing time is O(n/3*¢), the space is
O(n'*€) and a query takes O(n/>*¢ 4 k) time, where k is the output size. One can im-
prove the query time by increasing the size of the data structure, as in standard segment
intersection searchmg In particular, for a parameter n < N < n?, one can answer a query
in time O(————— + k) using O(N'*¢) space. A variant of this algonthm yields an efficient
data structure for polygon intersection searching (Section 6).

In Section 7 we describe how the data structure for connected components can be
modified so that new segments can be inserted efficiently. The semi-dynamic structure
we obtain allows for insertions in O(n'/?*¢) amortized time. The amortized query time
of the new structure is O(n'/?*¢ + k). The insertion of a segment is fairly expensive
because before inserting a segment we need to determine the connected components that
it intersects, which comes down to answering a query. If we allow the size of the data
structure to be O(n*/3+¢), the update and query time can be improved to O(n!/3+¢) and
O(n'/3*¢+k). This leads to an O(n*/3+¢) time on-line incremental algorithm for computing
the connected components in arrangements of n segments.

The basic idea behind our algorithms is to store families of canonical subsets of S such
that any query selects only a small number of them. Within each canonical subset, we
use a data structure that finds any color only a small number of times, usually constant.
This approach assures that no color is reported often, and thus query time will be low.
An interesting feature of our dynamic algorithms is the lazy update of data structures.
Part of the work is performed only later by the query algorithms. However, a query is
answered correctly at all times. The idea is reminiscent of the union-find structure with
path compression [8]. A UNION operation performs its task correctly, but makes the
structure less efficient. A FIND operation adjusts the structure so that subsequent FIND
operations can be performed more efficiently. This is exactly what happens in our solution
for the maintenance of connected components.

2 The Orthogonal Colored Segment Problem

In this section we consider the colored segment intersection problem for orthogonal seg-
ments, i.e., given a set S of orthogonal segments and a color assignment x : S —
{1, ... ,m}, we preprocess S into a data structure so that the set of colors of the seg-
ments intersected by a query (orthogonal) segment v can be reported efficiently. If v is
vertical (horizontal), then it suffices to search among the horizontal (resp. vertical) seg-
ments of S. As a result, we can preprocess horizontal and vertical segments separately.
To find the horizontal segments that intersect a horizontal query segment, we can use the
same structure. We query with the endpoints of the query segment in the structure that
stores horizontal segments, which is possible because a point is just a degenerate vertical
segment. We also need a data structure on the endpoints of the horizontal segments,
but this is just a simple variation of the structure to be described next, so we omit the



description. Similarly, we can find the vertical segments intersecting a vertical query seg-
ment. We will only describe how to preprocess a set S of horizontal (colored) segments
for queries with vertical segments.

For simplicity, we assume that all horizontal segments of S have different y-coordinates,
and that they are sorted in increasing order of their heights. We construct a balanced
binary tree T on the segments of S. The i** leftmost leaf of T is associated with the 5t
segment of S. For each node v of T, let S, C & denote the set of segments associated
with leaves of the subtree rooted at v, and let n, = |S,|. For an internal node v, let
Y, denote the y-coordinate of the highest segment associated with its left child (i.e., the
segment associated with the rightmost leaf of the subtree rooted at the left child of v).
We associate the horizontal line ¢, : y = y, with v. At each node other than the root of
T, we store the secondary structure described below.
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Figure 1: Upper and lower envelopes of a set of horizontal segments.

Definition 2.1: The upper envelope U = U(S) of a set S of segments is the pointwise
maximum when each segment e € S is viewed as a partially defined linear function. U is
a piecewise (not necessarily continuous) linear function whose graph consists of portions
of the segments of S. If all the segments of S are horizontal, then U is a histogram or
Manhattan sky-line (see Figure 1),2 and every break-point of U is an endpoint of some
segment of S. The lower envelope L = L(S) of S is defined similarly.

Let 8! C S, be the set of segments of color i, and assume without loss of generality

that S}, ... ,8™ are the non-empty subsets of node v. Clearly m, < n,. Assume that
v is a left child of its parent. For each i, we let U; be the upper envelope of Si. The
set U, = {U},..., U™} is a set of m, histograms, each with a different color. Let
z; < -+ < z, be the z-coordinates of all break-points of the histograms in U,. We

have r < 2n,. The vertical ordering of the histograms in U, remains the same in every
interval (z;,x;11), and changes only at the break-points. We store the vertical ordering
of U, for all z-coordinates, using the persistent data structure of Sarnak and Tarjan [24].
The preprocessing time and space required are O((m,, + r)log(m, + 7)) and O(m, + r),
respectively. For any vertical query segment e which has its topmost endpoint above all
histograms, we can report all k£ histograms that intersect e in time O(log(m, +r) + k). In
more detail, we compute the persistent data structure by sweeping a vertical line from left
toright. At each break-point we stop and update the structure. Assume that the histogram
U; has a break-point at some z;. Then we perform the following two operations:

?Usually, a histogram or Manhattan skyline includes the vertical segments as well, but for the sake of
convenience we omit them.



(i) If U; was defined in the interval (z;_;,z;), we delete it from the structure.

(i) If U is defined in the interval (z;,z,.,), we insert it into the tree using the y-
coordinate of U} at (x;,z;4+1) as the key.

Since r,m < 2n,, the persistent data structure requires O(n,) space and O(n, logn,)
preprocessing time.

If v is the right child of its parent, we store a similar secondary structure at v, but
replace the upper envelopes U! with the lower envelopes L} of S:.

Let v be a vertical query segment. We follow a single path of T starting from the root
until we find a node z such that £, intersects . Suppose we are at anodev of T. If v is a
leaf and ~ intersects the segment associated with v, we report its color. If v is an internal
node with w and u being its left and right children, respectively, we do the following: If
v lies above the line ¢,, it cannot intersect the segments in S, so we descend to u and
repeat the same step. Similarly, if 7y lies below £,, we descend to w and repeat the same
step. Finally, if v intersects £,, we visit the secondary structures of the children w and u.
Since «y intersects £,, v intersects a segment of S, (or S!) if and only if « intersects U’
(resp. L:). Therefore, we search the persistent data structures stored at w and u with 7,
and report the upper and lower envelopes intersected by «; this in turn gives the colors of
the segments in S, = §,, U S, intersected by ~.

As for the query time, we spend O(logn) time in finding the highest node v for which
¢, intersects v and O(logn + t) time in searching through the persistent data structures,
where ¢ is the number of envelopes in these structures that intersect . There at most
two envelopes of the same color, so the overall query time is O(logn + k), where k is the
number of colors of segments in S intersecting .

A similar data structure can report the colors of vertical segments intersected by a
horizontal segment. We therefore conclude

Theorem 2.2 A set S of n orthogonal line segments in the plane, and a color assignment
x:S = {l,...,m} of S, can be preprocessed in time O(nlog®n), into a data structure
of size O(nlogn), such that all k colors of segments of S intersecting a given orthogonal
query segment can be reported in O(logn + k) time.

The above theorem implies that, by first computing the connected components of S in
time O(nlogn) [15], and then coloring the segments of each connected component with a
distinct color, we can preprocess S for connected component intersection searching. We
thus have

Corollary 2.3 The connected components of a set S of n orthogonal segments in the plane
can be preprocessed in time O(nlogn) into a data structure of size O(nlogn), such that
all k connected components of S intersecting an orthogonal query segment can be reported
in O(logn + k) time.

Similarly, we also obtain

Corollary 2.4 A set of simple rectilinear polygons, consisting of n line segments in total,
can be preprocessed in time O(nlogn) into a data structure of size O(nlogn), such that
all k polygons intersecting an orthogonal query segment can be found in O(logn + k) time.



3 Dynamic Orthogonal Colored Segment Intersection

In this section we describe another data structure that maintains a collection S of orthog-
onal segments dynamically and supports the following operations:

INSERT (S, e, i): Insert the segment e of color i to the set S.
DELETE (S, e, i): Delete the segment e of color ¢ from S.

REPORT (S, v): Report the colors of segments of S that intersect a query (orthogonal)
segment ~y.

As mentioned before, the data structure of Theorem 2.2 does not allow efficient up-
dates, so we have to use a different approach. As in the static case, we only consider
the situation where S consists of only horizontal segments, the segment to be inserted
or deleted is horizontal, and the query segment is vertical. The other case is completely
symmetric and we use a separate structure for it.

We store § in a two level data structure—the primary structure is a balanced binary
tree and the secondary structure is an interval tree. The secondary structure answers the
one-dimensional version of the colored segment intersection queries. That is, it maintains a
collection of colored intervals so that the intervals containing a query point can be reported
efficiently.

We first describe the data structure for maintaining intervals and then present the
overall data structure.

3.1 Dynamic colored interval intersection

We wish to store a collection B of intervals into a data structure so that an interval can
be inserted into or deleted from the structure, and the colors of intervals in B containing
a query point € R can be reported quickly.

We maintain a dynamic interval tree T' that supports insert and delete operations, see
e.g. Mehlhorn [18, pp. 192-199]. A real number z, is associated with each internal node
of T. An interval b € B is stored at the highest node of T for which z, € b. Let B, C B
denote the set of intervals stored at v. We maintain three secondary structures on B,.

(i) TCL,: It stores the set of colors of intervals in B, as a balanced binary search tree
(e.g. red-black tree). Each node of the tree, storing the color i, in turn stores two
lists L and R: of left resp. right endpoints of intervals of color i. They are also
stored as balanced binary search trees.

(ii) TL,: A balanced binary tree on the colors of intervals of B,.
(ili) TR,: A balanced binary tree on the colors of intervals of B,.
We perform three operations on the interval tree: (i) INSERT (b, T, i), (ii) DELETE (b,

T, i), and (iii) REPORT (z, T'). The third operation reports the colors of intervals that
intersect a given point . The structures TL, and TR, are used for the REPORT-operation,



and the structure T'CL, is needed for the DELETE-operation. Intuitively, to answer a query
we are only interested in determining whether an interval of color ¢ contains . Therefore,
the structures TL, and TR, store the intervals of each color that are ‘most likely’ to be
an answer to the query.

Inserting an interval: To insert a new interval b = [I, 7] of color ¢ into T, we first add
b to T using the standard procedure, see [18] for details. Let v € T be the node at which
b is stored. First, we insert its color ¢ into T'CL,, using the standard insertion procedure
for balanced binary search trees. Then we insert the endpoints of b into the lists L} and
R;,. Finally, if I (or ) is the leftmost (resp. rightmost) endpoint of the intervals in B, of
color ¢, we update TL, (resp. TR,).

Since the secondary data structures of two nodes can be merged in linear time, and an
interval can be inserted into a secondary structure in O(logn) time, the total amortized
time required for inserting b is O(logn) (see [18]). An interval is deleted in O(logn) time
using a similar approach. We leave it to the reader to fill in the details.

Answering a query: To report the colors of intervals intersected by a query point z,
we follow a path in T starting at the root. At each node v we do the following. Suppose
z > x,. Then an interval b = [l,r] € B, intersects « if and only if r > z. So, we traverse
TR, from right to left until we encounter an endpoint p < . We report the colors of
intervals corresponding to the endpoints traversed. We then descend to the right child of
v. The case z < z, is analogous.

We visit O(logn) nodes of T and a color is reported at most once at each node.
Furthermore, a binary search tree supports the max-operation in constant time, and hence,
the overall query time to report k colors of intervals intersecting a query point z is O((k +
1)logn). Hence, we have

Lemma 3.1 We can maintain a set of colored intervals in a data structure of linear
size so that an interval can be inserted into or deleted from the structure in O(logn)

amortized time, and all k colors of intervals containing a query point can be reported in
time O((k + 1) logn).

Semi-dynamic case: If we perform only insert operations, the secondary data structure
structure stored at each node v can be simplified and the amortized query time can be
improved to O(logn + k) (though a specific query may take much longer). In this case we
do not need the secondary structure T'CL,, since it was needed only to find a new leftmost
or rightmost interval when an interval was deleted from L, or R,. A second change is
the following. For each color i, let U* denote the union of the intervals in B of color i.
Instead of storing the intervals of B at each node of T, we now store another collection
€ of (colored) intervals so that, for each color 4, the union of intervals in £ of color 7 is
exactly U*. This ensures that an interval in B of color i intersects a point z if and only
if an interval in £ of color ¢ intersects that point. Moreover we no longer require that all
endpoints in L,, R, have distinct colors. (We should point out that we neither attempt
to store a minimum number of intervals, nor require the intervals of the same color to
be disjoint.) As usual, an interval b € £ is associated with the highest node v such that
z, € b. Let £, be the set of intervals associated with v. At each node v, we maintain
two binary search trees L, and R, storing the left and right endpoints, respectively, of
intervals in &,.



Inserting an interval b is straightforward. We first insert b into the primary tree T as
earlier. If b is stored at a node v, we add the left and right endpoints of b to L, and R,.
The total time spent is obviously still O(logn).

The colors of intervals containing a query point z are answered in the same way as
earlier except that we perform an additional step. If we find ¢ intervals by, ... ,b, of
the same color, say i, we delete them from the corresponding secondary structures. Let
b= U§=1 b;; b is a single connected interval, because « € b; for all j < t. We insert b into
T. If the above procedure returns k' intervals of k£ distinct colors, then the actual running
time for reporting and updating is

O(k' +logn) + O((k' — k+1)logn) = O(logn + k) + O((k' — k) logn).

Since there are at most twice as many deletions as there are insertions, and any interval
can be deleted at most once, we charge the O(logn) time spent in deleting an interval
to its insertion, so the amortized insert and query time are O(logn) and O(logn + k),
respectively. Hence, we have

Lemma 3.2 We can maintain a collection of colored intervals in a data structure of linear
size, so that a new interval can be inserted in O(logn) amortized time, and all k colors of
intervals containing a query point can be reported in O(logn + k) amortized time.

3.2 Two-dimensional structure

To obtain a dynamic data structure for the two-dimensional colored segment intersection
problem, we apply a so-called range restriction, see e.g. [25, 27]. Basically, this comes
down to maintaining a balanced binary tree on the y-coordinates of the segments, and
every node stores a data structure as described above. The effect of the performance is

a multiplicative factor of logn in the update and query time and the space requirements.
Hence, we obtain

Theorem 3.3 We can maintain a set S of colored orthogonal segments in a data structure
of size O(nlogn) so that a segment can be deleted from or inserted into the structure in
O(log’ n) amortized time, and all k colors of segments intersecting an orthogonal query
segment can be reported in time O((k+1)log®n). If we allow only insertions, the amortized
query time can be improved to O(log® n + k log n).

4 Maintaining Connected Components of Orthogonal Seg-
ments

The data structure as described above cannot be used directly for maintaining the con-
nected components of A(S), because insertion of a segment can merge several connected
components into one. Therefore, if we label the segments in the i** connected component
by color ¢, then the insertion of segment can change the colors of many segments explicitly.
It will be very expensive to update the colors of all these segments. The data structure
for maintaining the connected components should support the following operations:



INSERT (S, €e): Insert a new segment e to the set S.

REPORT-COMPONENT (S, 7): Report the connected components of S that intersect the
query segment «.

SAME-COMPONENT (e;, €;): Determine whether two segments e;,e; € S lie in the same
connected component of the arrangement of S.

We assume that the color of a segment is 4 if it is in the 7** connected component of
the arrangement. Let §* C S denote the set of segments in the i* connected component
of § (or the segments of color ¢). The connected components now change dynamically as
we insert segments. Since it will be very expensive to change the color of every segment
explicitly, we will do it implicitly. In particular, we maintain a union-find data structure
UF(S) to update the colors of segments. It can merge two sets in O(logn) amortized
time, and can report the connected component containing a given segment (or the color
of a given segment) in O(1) time, see [8]. Throughout this section, we will use UF(S) to
find the color of a segment, and by the phrase ‘find the color of a segment e’ we will mean
‘perform FIND (e) using UF(S)’. Using the structure UF(S), the SAME-COMPONENT
query can easily be answered in O(1) time.

Apart from UF(S), we preprocess S into a data structure described for the semi-
dynamic case in Section 3.1. A query is answered in the same way as earlier except that
we use UF(S) to find the color of an interval. To insert a new segment e we find the colors
of all segments in S that intersect e, merge these connected components using UF(S), and
then insert e as in Section 3.1. The same analysis as above implies that the amortized
query time is O(log’ n + klogn). As for the insertion time, if e intersects ¢ components
of A(S), then we spend O(log® n + tlogn) amortized time to find these components and
another O(log® n) time to actually insert e. Notice that after inserting e, the number of
connected component reduces by £ — 1, so the amortized insert time can be shown to be
O(log? n). Hence, we have

Theorem 4.1 We can store a collection S of n orthogonal segments into a data structure
so that a new segment can be inserted in O(log® n) amortized time and the set of connected
components intersecting a query segment can be reported in O(log> n + klogn) amortized
time. Given two segments in S, we can determine in O(1) time whether they are in the
same connected component of the arrangement of S.

The above theorem immediately gives an on-line algorithm to compute the connected
components of a set of n orthogonal segments. An optimal O(nlogn) time solution to the

off-line problem was given by Imai and Asano [15].

Corollary 4.2 There exists an on-line algorithm that computes the connected components
of n orthogonal segments in O(nlog® n) time.

5 Reporting Connected Components in Segment Arrange-
ments

In this section we consider the problem of preprocessing a set S = {e;, ... ,e,} of n seg-
ments with arbitrary orientations, so that the connected components of A(S) intersected
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by a query segment can be reported quickly. Recall that each connected component of
A(S) is labeled, and the goal is to report these labels (not the segments in those con-
nected components). In other words, let S*, ... ,S8™ be the partition of S induced by the
connected components of A(S). Set x(S*) =i. We wish to preprocess S for colored seg-
ment intersection queries. However, unlike in the colored segment intersection searching
problem, where the color of each segment is given, we have to compute the color of each
segment in S.

Let G(S) be a graph with n vertices {1, ... ,n} with (i, j) being connected by an edge
if there is a nonconvex face f of A(S) (a face that contains an endpoint of some segment
in §) such that both e;,e; appear on the same connected component of 8f. It can be
shown that two segments e;,e; € S are in the same connected component of A(S) if and
only if  and j are in the same connected component of G(S) [12]. We compute in time
O(n*/3log® n), the faces of A(S) that contain an endpoint of some segment in S [1]. By a
result of Aronov et al. [4], the total number of edges in these faces is O(n*/3). We index the
connected components of A(S) arbitrarily. Next, we construct G(S) in additional O(n*/?)
time and compute the colors of all segments in §. After having computed the colors of
segments, we preprocess S as follows.

We construct a segment tree T on S; see [23] for details on segment trees. Each node
u of T is associated with an z-interval b, and a vertical strip I, = b, X [—00,+00|. The
left bounding line of I, is denoted L,, and the right bounding line R,. A segment e € S is
associated with a node u if b, C € and bp,ens) € €, Where € is the z-projection of e. For
a node u, let S, denote the set of segments associated with u, and let £, denote the set of
segments associated with the proper descendants of u; set n, = |S,| and m,, = |&,|. The
segments of S, &, will be referred to as long and short segments, respectively. We have:

Znu—Onlogn Zmu—O(nlogn) (1)

ueT ueT

We clip the segments of S, and &, within I,. We store two secondary data structures at
each node u of T':

(i) We preprocess S, so that the colors of all segments of S, intersected by a query
segment contained in I, can be reported quickly.

(ii) We preprocess £, so that the colors of all segments of £, intersected by a query line
can be reported quickly.

5.1 Preprocessing long segments at node u

Let 81,82, ... ,S8% be the connected components of A(S,). The segments of the same
color (1 e., the segments of the same connected component in .A(S)) may split into several
connected components of S,. For each S!, we choose an arbitrary segment 7! € S as a
representative of Si. Let R, = {rl, ... ,rt}, sorted in decreasing order of thelr heights.
The segments of R,, are pairwise disjoint, and partition I, into trapezoids. The secondary
structure associated with S,, TA,, is a minimum height binary tree on the segments of
R.; the i** leftmost leaf of TA, stores r%. For each node v € TA,, let R,, C R, denote
the set of segments stored at the leaves of the subtree rooted at v. We store the set of
colors of segments of R, in a linked list TAP,,. At the i*" leftmost leaf of the binary
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tree, we also preprocess the lines containing the segments of S’ into a linear size data
structure for segment intersection detection queries. Let Si* be the set of points dual to
the lines supporting the segments of S;. We construct in time O(|S?|log|S¢|) a linear size
partition tree TAQ(S:) that stores S* that determines whether a query double-wedge W
contains any point of Si*; see [17]. If W NS # @, then it also returns a point of Si* lying
inside W as a witness. The total time spent in preprocessing S,,, is O(n, logn,,).

Finally, we also preprocess S;, the set of points dual to the lines supporting S, in
time O(n%/3+¢) into a data structure TB, of size O(n/3+), that determines whether a
double-wedge contains any of the input points, and returns a witness if the answer is ‘yes’.
The query time of this structure is O(n'/3), see [17]. This data structure is required only
to preprocess short segments stored in the subtree rooted at u. Once they have been
preprocessed, TB,, is discarded.

Figure 2: The long segments S, bold edges denote the segments of R.,,.

5.2 Preprocessing short segments at node u

Next, we describe how to preprocess &, so that the colors of £, intersected by a query
line can be reported quickly. Let £1, ... ,£: be the connected components of £,. A line
£ intersects £ if and only if it intersects an edge of the convex hull of £. Moreover,
¢ intersects at most two edges of the convex hull of £i. This suggests the following
approach for preprocessing £,: Compute the convex hull of each connected component
£, preprocess the edges of these convex hulls for answering line intersection queries (i.e.,
preprocess a set of edges into a data structure so that all edges intersected by a query
line can be reported efficiently; see [3]), and report a color if £ intersects a convex hull
edge of a connected component of that color. The problem with this approach is that
several connected components in £, may have the same color in which case a color will
be reported several times. However, observe that if x(£:) = x(£7), then there must be
a segment in S (not necessarily a segment of £2) that intersects £ and the boundary of
I,, and the same holds for £ (see Figure 3). Moreover, if both £ and £J intersect the
half-plane lying above (or below) ¢, then ¢ intersects a segment of £ U £J if and only if £
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intersects an edge of CH(E: UE) (Figure 3). This is the basic idea of our data structure,
which we now describe in detail.

Figure 3: Short segments; FL = {£2,€2}, FR = {£3}, and FM = {£,£3 £8}; bold
segments are leaders; A(£2) € &,.

We partition the connected components of £, into three subsets:

o FL: A connected component £ € FL if a segment e; € £ intersects the left
boundary L, of I, or if there is a segment e € S that intersects £ as well as L,. It
is easily seen that, in the latter case, e € S, for some ancestor z of u. We will refer
to e; as the leader of £, and denote it by A(E:). If e; € €%, we clip it within I, and
add it to .

e FE: A connected component £ € FE if £ ¢ FL, and if £ contains a segment e;
that intersects the right boundary R, of I,. We refer to e; as the leader of £, and
denote it by A(E}).

e FM: All the remaining connected components are in F*. The connected compo-
nents of FM are also the connected components of the whole set S and they lie
completely in the interior of I,. Therefore, the colors of all connected components
in FM are distinct.

The connected components of £, can be computed in O(m%/3log’ m.,) time as men-
tioned above. If a segment e of £, intersects the left (resp. right) boundary of I,,, we assign
it to F (resp. FF), and set A(€:) = e. Let £ be a component which has not be assigned
to any of FL, FE. For every ancestor z of u, we query TB, with the segments of £ until
we find a segment g of S,, if any, that intersects £J. If g is found, we clip g within I, add
a copy of it to £J, assign £} to FL, and set A\(€7) = g; otherwise we add £J to FM. The
total time spent in this step at u is O(m,n'/3logn), and O(n*/3log? n) over all nodes of
T.
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After having computed FZ, F® and FM, we process each of them separately, so that
the colors of the segments of each subset intersected by a query line can be reported
efficiently.

e TC,: Let p; be the intersection point of A(E?) and the left boundary of I,,. Let
Pe={p:| &, € F.}.

Assume that the points in P~ are sorted by their y-coordinates. TC, is a balanced
binary tree whose leaves store P in sorted order. For a node v € TC,, let FL C Fk
be the set of connected components £ such that p; is stored at a leaf of the subtree
rooted at v. For a color c, let BS, denote the set of segments in FZ of color c, defined
as

B;, = (&L | €. € L, and x(€)) = ¢} .

We compute the convex hull of B, for each ¢ with B, # 0. Let EZ, denote the set
of edges in CH(B;,). Set x(E¢,) = ¢, E,, = U, E¢,, and m,, = |E,|.

* TCP,,: We preprocess E,, into a data structure TCP,, of size O(m,, log m.,,)
for line intersection queries using the algorithm described in [3]. All £ segments
of E,, intersected by a query line can be reported in time O(ml/**< + k).
It constructs a two-level partition tree of which each node stores a subset of
segments, and the query output consists of O(ml/?>*¢) canonical subsets. For
each canonical subset, we store the set of colors of these segments instead of
the segments themselves.

The total size of TC,, is O(m, log® m,).
e TD,: Analogous to the previous structure, but for the components of FX.

e TE,: For each connected component £ € FM we compute the convex hull of
its segments. Let E: denote the set of edges in the resulting convex hull, and let
E, = Ugicrm E,. We set x(E;) = x(£;). We preprocess E, into a data structure

TE, for line intersection queries, as we preprocessed E,, in TCP,,.

This completes the description of our data structure. Summing over all secondary
structures, the total size of the data structure is O(n log® n) and the preprocessing time is
O(n#/3+¢), for any fixed € > 0.

5.3 Answering a query

Let v = pg be the query segment. Without loss of generality assume that p is the left
endpoint of 7. Let z be the leaf of T such that p € I,, and let 7, denote the path from
the root of T to z. Similarly, we define the path m, for ¢, and let U(y) denote the set
of highest nodes u such that b, C 7, where 7 is the z-projection of . Let £ be the line
supporting v. The following lemma is well known:

Lemma 5.1 A segment v intersects a segment e of S if and only if there is a node u € T
such that
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1. u € m,Um,, e is stored as a long segment at u, and yNI, intersects the line containing
e, or

2. u € U(y), e is stored as a short segment at u, and ¢ intersects eN I,.

In view of this lemma, we answer a query in two steps. First, we query TA, for all
nodes u € m, U, with v N I,, and then we query with ¢ in TC,, TD, and TE, for all
u e U(y).

Searching among long segments: Let u be a node on m, Um,, and let 4 =yNI,. Let
P, 4 be the endpoints of 4. We query TA, with ¥ and report the colors of the segments
in S, intersected by 4 as follows. Searching with the endpoints p and ¢ of 4 in TA,, we
compute O(log n) maximal subtrees of TA, that lie between the search paths to P and §.
Assume without loss of generality that p lies below §. At the root v of each such maximal
subtree, we report all colors stored in the associated lists TAP,,. Let ri be the segment
in R, lying immediately below p. By querying TAQ(S}) with 4*, the double-wedge dual
to 4, we determine whether 4 intersects any line supporting the segments of S;. If the
answer is ‘yes’, we also report the color of ri. Next, we repeat the same procedure for the
representative lying immediately above §. At each node v € TA,, a color is reported only
once, so the total time spent in searching over all long segments is O(nt/?¢ 4 k log® n),
where k; is the number of colors reported.

Searching among short segments: Next, let u be a node in U(y). We report the
colors of the segments of £, intersected by the line £ containing . Let o be the intersection
point of £ and the left boundary of I,. We search TC., with o and determine the leaf 2
that stores the point lying immediately above . The subsets FL,, associated with the
descendants v of the nodes on the path from the root of T'C, to z, partition the connected
components of FL into O(logn) canonical subsets such that, either o lies below p; for all
£3 € FL, or it lies above all of them. It is easily seen that £ intersects a segment of B, if
and only if £ intersects an edge of E¢,. Therefore we query TCP., and report the colors
of all segments of E,, that intersect £. At each node v, a color is reported at most twice,
so the time spent at v is O(ml/>*¢ + k,,), where k,, is the output size. Next, we repeat
a similar procedure for TD, with intersection point of £ and the right boundary of I,.
Finally, we search TE, with £ and report all colors of the convex hull edges intersected
by £. Summing over all nodes in U(y), the time spent in querying the short segments is

O(nl/*¢ + k,log® n), where k, is the number of colors found. The overall query time is
thus O(n/?*¢ + klog® n).

Lemma 5.2 A set of n line segments in the plane can be preprocessed in O(n*/3+¢) time
and space into a data structure of size O(n log®n), so that all k connected components
intersecting a given query segment can be reported in O(nt/?*< + klog’n) time, for any
fized € > 0.

5.4 Improving the running time

The query time of the above lemma can be improved to O(n/?*< 4+ k) at the expense of
slight increase in the size of the data structure. The space used will be O(n't¢). The basic
idea is to replace all binary trees in the above structure with nd-ary trees, for some small
constant 0 < § < ¢/4.
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To this end, we replace the binary tree TA, by a minimum height nl-ary tree on the
segments in R,. The height of TA, is now O(1/8). For an internal node v € TA,, let
Wy, ... ,w (¢ < nd) be the children of v. For each 1 < i < j <t, let Cyuy(s,5) denote
the set of colors of segments in U;<j<; Ruw,- We store Cy, (4, ) in a list at v. The space
required by TA4,, including its secondary structures, is easily seen to be O(nL*?’ logn.,).

In order to compute the colors of segments in R, intersected by a segment ~y, we locate
its endpoints, in time O(3lognf) = O(logn,), among the segments of R,. Let m,, 7,
be the same as defined before. At each node v € =, if {w;, ... ,w;} is the maximal set
of children of v such that the segments in U,cs<; Ruw, intersect vy, we now report the
colors stored in C,,(i,j). We leave it to reader to check that all colors of segments in R,,
intersected by v can be reported in time O(logn, + k).

Similarly, one can show that colors of segments in £, intersected by a long segment =
can be reported in time O(m,'/?*¢ + k), using O(m1*% log’ m,) space.

Finally, we replace the primary segment tree T by an n’-ary tree. Let wy, ..., w,
t < n?, denote the children of u. For each 1 < i < j < ¢, let the strip I,(¢,7) = Uicngj L
We define the set of long and short segments S,(,j) and £,(4,5) in a similar way. We
then preprocess S,(i,j) and £,(i,j) as before, but replace binary trees with the trees of
constant depth. The space requirement is O(n'*% log’ n) = O(n'*¢). Since the depth of
each tree is constant, a color will be reported only a constant number of times. Therefore
we can conclude

Theorem 5.3 A set of n line segments in the plane can be preprocessed in O(nt/3+<)
time and space into a data structure of size O(n**¢), so that all k connected components
intersecting any query segment can be reported in O(n'/?*¢ + k) time, for any fized € > 0.

Remark 5.4: Using the space/query time tradeoff for simplex range searching and line
intersection data structures [3, 6], one can obtain a space/query-time tradeoff for Theo-
rem 5.3. In particular, for any n < N < n?, one can preprocess S into a data structure
of size O(IN'*¢), so that all k¥ connected components intersected by a query segment can
be reported in time O(%}—%— + k). The preprocessing time is O(n*/3+¢) for N < n*/® and
O(Nt¢) for N > n*/3.

6 Intersection Queries for Simple Polygons

Let P = {P, P, ..., P,} be a set of simple polygons, and let S denote the set of n edges
of these polygons. We wish to preprocess P into a data structure so that all the polygons
intersecting a query segment can be reported quickly. Again, we only wish to return the
indices of polygons intersected by a query segment. By coloring the edges of P; with color
i, we reduce the problem to the colored segment intersection searching problem.

Our basic data structure is the same as in the previous section, i.e., we construct a
segment tree T on the segments of S, associate two subsets S, and £, of segments with
each node u of T, and preprocess each of them into a data structure for colored segment
intersection queries. The segments in S of the same color form a connected chain, therefore
if two connected components £, €7 of £, have the same color ¢, then there is a segment of
color ¢ that intersects the boundary of I, and a segment of £:. Hence, we can preprocess
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the segments of £, as described in Section 5.2, but we do not have to find leaders at
ancestors of u (this results in more efficient preprocessing than in the previous section).
However, we have to preprocess long segments into a different data structure, because,
unlike the previous section, segments with different colors may intersect each other.

L, R, TPZL

@) (i1)

Figure 4: (i) Partitioning of polygons into long and short segments; bold segments are
long segments; (ii) TPZ L

6.1 Preprocessing long segments

We want to preprocess S, into a data structure so that the colors of segments intersected
by a query segment 7y can be reported efficiently. (We assume that the segments of S,
are clipped within I,.) We now use the fact that the relative interiors of segments of the
same color do not intersect except perhaps at their endpoints. Let S, C S, be the set
of segments of color i. The segments of S partition I, into a set TPZ:, of trapezoids,
two of which are unbounded. For the sake of convenience we add two edges, one at —oo
and another at +00, so that all trapezoids in TPZ i become bounded. We set the color of
trapezoids in TPZ;, to i. A query segment 4 = v N I, intersects a segment of S;, if and
only if the endpoints of 4 lie in different trapezoids of TPZ ‘. We can determine whether
the endpoints of # lie in different trapezoids of TPZ,, by binary search, but we cannot
afford to do binary search for each color separately. Instead, we set TPZ, = U, TPZ,
and construct a two-level data structure TA, to report the trapezoids that contain the
upper endpoint of 4, but not the lower endpoint of 4. For any color, there is precisely one
trapezoid that contains the upper endpoint, so a color will be reported at most once.

Let S be the set of points dual to the lines supporting the segments of S,. We pre-
process S;; for double-wedge range queries; see Matousek [17]. This algorithm constructs a
partition tree on S, each of whose node v stores a canonical subset S, C S;. The points
lying (or not lying) in a query double-wedge can be represented as the union of O(n,}/?+¢)
pairwise disjoint canonical subsets. Let S,, be the set of segments corresponding to the
points of 87, and set S, = Su NSi. For each segment e € S;,, pick up the edge in S?, that
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lies immediately above e. Let E}, denote the set of resulting segments and E,, = U; E:..
Let EZ, denote the set of points dual to the lines supporting the segments of E,.,. We
preprocess E, for double-wedge range queries, as described above, and store the result-
ing structure at v as the second-level structure of v. At each node w of the second-level

structure, we store the colors of the segments corresponding to the canonical subset of w.

The standard analysis for multi-level partition tree implies that TA, requires O(n,logn,)
space and time. The total time spent in preprocessing long segments over all nodes of T
is thus O(n'*¢), for any constant € > 0.

6.2 Answering a query

Let v = pg be a query segment. We only have to describe how to report the trapezoids
of TPZ:, for some node u € T, U Ty, that contain the upper endpoint of ¥ =y N I,. Let
~* denote the double wedge dual to 4. We query the first-level structure of TA, with v*.
It computes a collection of O(nl/?+¢) canonical subsets such that all points in a canonical
subset lie in * (which correspond to trapezoids whose bottom edges intersect 4). Let S,
be a canonical subset of the query output. A trapezoid 7 whose bottom edge is a segment
corresponding to a point of S, contains the upper endpoint of v, if ¥ does not intersect
the top edge of 7. This can be accomplished by querying the second level structure of v
with v* and reporting the colors of segments corresponding to the points in S}, that do
not lie in 4*. Since each color is reported at most once, all k colors of segments in S,
intersecting 4 can be reported in time O(n,'/?*< + k).

Lemma 6.1 The above procedure reports all k colors of segments in £, intersecting @
query segment in time O(n,'/** + klogn,).

Thus, all k polygons of P intersecting a query segment can be reported in O(n'/?*< +
klog® n) time, which can be improved to O(n!/2*¢ + k) as in Section 5.4. Hence, we have

Theorem 6.2 For any constant € > 0, a set P of simple polygons with a total of n edges
can be preprocessed in time O(n'*¢) into data structure of size O(n't¢), so that all k
polygons intersecting a query segment can be reported in time O(n'/?*¢ + k).

Remark 6.3: (i) As in the previous section, one can obtain a space /query-time tradeoff
by using the standard techniques; see 3, 6].

(ii) The above algorithm returns only those polygons whose boundaries intersect a
query segment. If one also wants to report the segments whose interiors contain -y, we
triangulate each polygon and preprocess the set of resulting triangles in a data structure
of size O(n log’ n) for point location as described in [2]. We query this data structure with
one of the endpoints of the query segment and return in time O(n'/?+< + k) all k polygons
corresponding to triangles that contain the query point.
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7 Maintaining the Connected Components of Arbitrary Seg-
ments

Next we describe a semi-dynamic data structure for maintaining the connected components
in the arrangement of a set S of arbitrary line segments in the plane under insertions. The
data structure supports the following three operations:

INSERT (7, S): Insert a new segment <y to S.

REPORT-COMPONENT (,S): Report (the label of) all connected components in S that
intersect .

S AME-COMPONENT (ey, €2,S): Given two segments €1, €2 € S, decide whether they lie in
the same connected component of A(S).

We will dynamize the static data structure described in Section 5 using the ideas of
Section 4 and some new ideas. As stated in Introduction, one of the main features of
the semi-dynamic data structure is the ‘lazy’ INSERT operation — a lot of work by the
insert procedure is postponed for subsequent query procedures without sacrificing the
correctness of the query output. Consequently, a specific query may be very expensive,
but we will show that the amortized query time (over a sequence of INSERT and REPORT-
COMPONENT operations) is close to its static counterpart. We will analyze the amortized
update and query time using the so called accounting method, see [8, 26]. Translated to
our application, it means that when we insert a new segment 7 into S, certain units of
cost are assigned to vy as credits. Part of the actual cost of subsequent operations may be
paid by these credits. If = credits of an operation are charged to a segment 7, then the
credit of v reduces by z. The credit of each segment must always be nonnegative. The
amortized insertion time of a new segment 7 is the difference in the actual time and the
cost paid by credits, plus the credits assigned to v, and the amortized time for a query is
the difference of the actual running time and the cost paid by credits.

This section is organized as follows. First, we describe the overall tree structure T
and its adaptation for the maintenance of the connected components of S. Then we
describe the secondary structures for long segments completely, with the insertion and
query procedures. To describe the secondary structures for short segments, we first present
a solution to a special case of a query problem related to connected component searching,
where the query object is a line. We use a variant of this structure for the secondary
structures for short segments. The time complexity of update and query procedures is
analyzed in Section 7.4.

7.1 The global solution

The structure for maintaining the connected componentis of a set S of line segments is
basically the same as in Section 5. The main tree T is a segment tree on the z-projections
on the segments of S, and every node u € T stores five secondary structures TA,, TB.,
TC,, TD, and TE,. As in Section 5, TA,, TB, store the subset of segments that are
long at u, and the other three structures store the set of segments that are short at u.
One of the differences is that we replace T and the five secondary structures with dynamic
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versions of these trees. For the main tree T', we maintain a dynamic segment tree on the
segments in S, as described in Mehlhorn (18, pp. 212-221]. As before, we denote the strip
associated with u by I,, the left boundary of I, by L., the right boundary of I, by R,,
the subset of segments short at u by &, and the set of segments long at u by S.. All the
segments in &, and S, are clipped within the vertical strip L.

Another difference with the static structure, but analogous to the data structure for
maintaining the connected components of orthogonal segments described in Section 4, we
will use a union-find data structure UF(S) on S to maintain the colors of segments in S.
We will refer to the standard union and find operations as COLOR-UNION and COLOR-
FIND. COLOR-UNION requires O(logn) amortized time and CoLOR-FIND requires O(1)
time. In what follows, by the statement ‘report the color of a segment e;’, we mean that
we perform COLOR-FIND (e;).

The secondary structures for the long and short segments will be described in Sec-
tions 7.2.1, 7.3.3 and 7.3.4.

7.1.1 The global query

Let v = Pg be a query segment. As in Section 5.3, let m, (resp. 7,) be the path in T from
the root to the leaf z such that p € I, (resp. ¢ € I,). Let U(y) be the set of nodes u such
that 7 is long at u, but not at the parent of u (where 7 is the z-projection of 4. We query
TA, at nodes u € 7, U, with the segment 4 =~vnNI,, and we query TCy, TD, and TE,
at nodes u € U(y) with the line ¢ containing 7. The queries in the secondary structures
for the long and short segments will be described in Sections 7.2.3 and 7.3.6, respectively.

7.1.2 The global insertion

To add a new segment  to S, we first have to determine the connected components of A(S)
that ~ intersects. This is precisely the REPORT-COMPONENT query. These components
along with v now become a single larger component. If ci,...,¢k is the set of colors
returned by the query, we perform COLOR-UNION (cy,¢;) for all 2 < i < k.

The actual insertion of v = pq into T is performed as described in Mehlhorn (18, pp.
212-221]. This algorithm also finds the sets of nodes m,, m, and U(y) as defined for the
query in the previous section. For every node u € U(%), the segment 4 = yNI, is inserted
into TA, and TB, as described in Section 7.2.2. For every node u € 1, U7, the segment
4 is inserted into one of the structures for short segments TCy, TD, or TE,,, as described
in Section 7.3.5.

7.2 The long segments

This section describes the structures, insertions and queries for the structures TA, and
TB,, which store the subset S, of segments that are long at a node u € T.
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7.2.1 The long segment structure

As in Section 5.1, we construct a balanced binary tree TA, on the representatives of each
connected component of A(S,). Since the colors of representatives change dynamically,
instead of storing the colors of R, the list TAP,, now stores (at least) one representative
of each color in the set R, (i.e., for each color present in R, we pick an arbitrary segment
of that color and add it to TAP,,). The colors of these segments are obtained using UF(S).
As we will see below, we do not update the list TAP,, as soon as the color of a segment
in R, changes, so there may be more than one representative in TAP,, of one color. At
each leaf of TA,, storing the representative ri, we store S} in a dynamic data structure
TAQ(S:) for segment intersection detection queries, see [3]. The query time is o(ni***)
and amortized update time for TAQ(S;) is O(ni;), where n.; = |Sz1.

Let S* be the set of points dual to the lines supporting the segments of S,. We
preprocess S into a dynamic data structure TB, for determining whether S; N w=20
for a query double-wedge W; see [3, 17). If W N S; # 0, the structure returns a segment
corresponding to one of the points in 8 NW as a witness; we will refer to this query
procedure as EMPTY-DOUBLE-WEDGE (S, W*), where W* is the segment dual to W.
The query time is O(nt/**¢) and the update time is O(ns). This structure will be used
to find the new leaders of short segments stored in the subtree rooted at a node u of the
main tree T.

7.2.2 The long segment insertion

We update the secondary structures TA, and TB, as follows. Let v =Pq be the segment
to be inserted. We first show that a representative segment can be inserted into or deleted
from TA, efficiently. Using this as a subroutine, we describe the actual insertion of +.

Suppose we want to insert a segment 7% that does not intersect any segment of R,. We
find the segment 74 of R, lying immediately below 7%. Let v be the node of TA, storing
ri. We create a new leaf z to the right of 4, and store 7% at z. For each node v on the
path from the root of TA, to z, we insert rt into TAP.,, at the front of the list in O(1)
time. A segment is deleted in the same way except that the lists TAP,, are not updated.

The actual insertion of v is as follows:

(i) We add the point dual to the line containing 7 to the segment intersection detection
structure TB,.

(ii) We search TA, with the endpoints of 4 and find the set R(y) C R, of all represen-
tatives that intersect 4. Let «° be the segment of R, lying immediately below the
lower endpoint of 4. If v intersects S?, we add 4° to R(7). Next, we repeat the same
procedure for the representative lying immediately above the upper endpoint of 7.

(iii) We delete all segments of R(y) from TA,, but do not update the lists TAP,,. Next,
we insert 4 into TA,. ‘

(iv) Let Si, ... ,87 be the connected components of S, whose representatives belong
to R(y). We merge the TAQ-structures for 8i, ... ,S) by repeatedly inserting the
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segments of a smaller structure into a larger structure; see Algorithm 1 for the
details. Also, insert 4 into the resulting structure, and store it at the leaf with 4.

Algorithm 1: MERGE TAQ-STRUCTURE

Input: Si,...,S], aset of groups.
Actions: The structures TAQ(S:),... TAQ(S]) are
merged into one TAQ-structure.

I'=S§,;
forh=1+1to jdo
if | S| > |T| then swap (T, S});
for each e € S» do
p = point dual to the line supporting e;
Add p to TAQ(T);
end-for
end-for

7.2.3 The query in long segments

We query TA, with ¥ =70 I, as described in Section 5.3, with one addition. Suppose v
is a highest node in TA, such that all representatives in R, intersect 4. We traverse the
list TAP.,, report the colors of TAP,,, and remove duplications from TAP,,. In more
detail, for each segment e € TAPy,, we find the color x(e) of e, and if x(e) has not yet
been reported, report x(e) and mark it ‘reported’. If x(e) has already been reported (i.e.,
it is marked ‘reported’), we remove e from TAP,,. After traversing TAP., this way, it is
traversed a second time to unmark all marked colors. It is easily seen that the list TAP .,
can be updated in time linear in its size.

7.3 The short segments

We describe the dynamic versions of the structures TC,, TD, and TE, for storing the
short segments £, at anodeu € T. We also present the insertion and query algorithms.
Recall that in Section 5, we partitioned the segments of £, into the connected components
£L,...,EL inside I,. Each connected component was assigned to one of three sets Fr,
FR and FM. In the dynamic version of our structure, we maintain a partition £, ... , &}
of £, such that each A(E}) is a connected planar graph. However, unlike the static data
structure, A(E?) is not necessarily a maximal connected component of A(E,) (ie., £, and
&J may intersect). We will call each & a group of &,. The groups of £, are partitioned
into three subsets FZ, FE and FM, as before. Each group stored in FL satisfies the same
condition as in Section 5.2, i.e., either there is a segment e; € £: that intersects the left
boundary L, of I, or there is a segment € ¢ E: that intersects L, as well as E:. The
segment e; N I, is called the leader of £}, and is denoted by MEL). Ife; ¢ E., weadd a
copy of it to £5. All groups in FE intersect the right boundary of I,,. However, some of the
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groups satisfying these conditions may be in FM. Intuitively, the reason is that when we
insert a new segment 7 into S, it may intersect the left or right boundary of I, and also a
group in FM. It will be too expensive to detect all such groups of FM and to move them
to FL or FF. Instead, we wait until TE, is visited by the query procedure. If the query
procedure detects that certain groups of FM can be moved to F or FE it will do so.
What we gain is that the query procedure can detect this for free, whereas the insertion
would require a lot of work for detection, even if no groups can be moved. The groups of
FM have the following crucial property (already observed in Section 5.2): If two groups
£i and £ have the same color, then either they lie in the same connected component of
E., or the connected components containing them touch the boundary of L.

This section begins, however, with a related problem, a variant of which is used in the
structures TC., TD,, and TE,.

7.3.1 Line intersection searching

Let £ be a set of n line segments in the plane, and let £, ... ,E™ be a partition of £
into m groups. We develop a data structure Y(£) for £ that supports the following four
operations:

GRrROUP-REPORT (£): Let £ be a line such that for any i < m, £ intersects CH (&) if and
only if it intersects £i. Report all groups of £ that intersect £. More precisely, for
each group £* intersected by £, return one of the segments of £*.

GROUP-INSERT (£°): Given a set of segment £°, create a new group Egmtl = £°.
GROUP-MERGE (i,j): Merge £, into a single group £:; the new group is called E.

GROUP-FIND (€): Return i if e € £*.
T(€) consists of the following three structures:

Semi-dynamic convex hull structure: For each i, we maintain the convex hull of £* using
the algorithm of Preparata [22]. A new segment can be inserted in O(logn) time.
Let E° denote the edges of CH(E®). For each segment g € E, store some segment
of £ with g and denote it by ¢(g). Let E = ur, B

Dynamic partition tree: Using the algorithm of Agarwal and Sharir [3], we maintain the
edges of E into a two-level dynamic partition tree TU(E) that can report all segments
intersected by a query line. Moreover, a segment can be inserted into or deleted
from ¥(E) in time O(n), and all k segments of E intersected by a query line can
be reported in time O(n'/?*< + k). The size of the data structure is O(nlogn).

Union-find structure: We maintain a union-find structure UF(E) on the segments of £
that merges two sets in logarithmic (amortized) time and finds the set containing a
segment in O(1) time.

We now describe how to perform the four operations on £. The GROUP-FIND operation
is simply the standard FIND-operation and takes constant time. The maintenance of
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UF(£) under GROUP-INSERT and GROUP-MERGE is also standard, the latter being the
UNION-operation. It follows from [3] that GROUP-INSERT (£°) requires only O(|€°['*°)
time. Next, let £ be a query line such that ¢ intersects CH (&), for any 1 < m, if and only
if £ intersects £. We query ¥(E) with £ and determine all segments of E intersected by
¢. For each segment g € E of the query output, we report ¢(g). It is easily seen at most

two segments of a group are reported, so the total time spent in reporting k groups is
O(nt/?*c + k).

Finally, suppose we want to merge £, €. Without loss of generality, assume that
|€%] < |€9|. We insert all segments of £ into the convex hull structure of £’ one by one.
Let g1, ... ,g: be the edges of CH(&7) not in CH(E*UEY), and let hy, ... Jhe, T < 4|,
be the new edges of CH(E* U £7). We delete gy, ... , g from U(E) and insert hy, ... Jh,
into ¥(E). The total time spent is obviously O((t + r)n¢).

Lemma 7.1 Let € be a set of n segments in the plane, and let £Y, ... ,E™ be a partition
of E. Then £ can be maintained in a data structure of size O(nlogn), so that GROUP-
MERGE operations can be performed in O(n°) amortized time, a set £° can be inserted in
O(|€°|'*+<) time, GROUP-REPORT can be performed in O(n*/**< + k) time, where k is the
output size, and GROUP-FIND can be performed in constant time.

Proof: The size and the query time of the data structure are obvious from the above
discussion, so it remains to bound the insert and merge time. Suppose we perform a
sequence of insert and merge operations. Let h be the total number of segments inserted
by the GROUP-INSERT procedure into £. Each segment is deleted from E (and therefore
from ¥(FE)) only once, so we can charge the time O(n¢) spent in deleting it from ¥(E)
to its insertion in W(E). Moreover, the insertion of a segment into &7 (either by the
GROUP-INSERT or by the GROUP-MERGE) introduces at most 4 new edges in E. Assum-
ing that a segment is inserted d times, we can pay for all updates in U(FE) if we assign
8. c-d-nt units of credit to each new segment e added by the INSERT procedure; here ¢
is the constant of proportionality in the update time of U(E). Hence it suffices to bound
the value of d. Suppose e € &' just before GROUP-MERGE (i,7) and e is inserted into
£ during the merge operation. Then |E3| > €7, or |EF + |E7] 2 2|&%|, therefore, every
time a segment is inserted by the merge operation, the size of the set containing it at
least doubles. This implies that e will be inserted into convex hull data structures at most
log(n + h) times, thus d < log(n + h). Hence, the amortized cost of an insert operation
is O(n¢) + 8clog(n + h)n® = O(n'), where € is another but arbitrarily small positive
constant. This completes the proof of the lemma. O

7.3.2 A dynamic structure for TCP,, and TDP,,

We will use the data structure of Section 7.3.1 to dynamize the structures TCP,., and
TDP.,,, third-level structures stored at each node of TC.,, TD. (see Section 5.2). We only
describe TCP., below, TDP,, is completely analogous. The structure stores a set By, of
segments, and its partitioning B:,...,B;, into groups.

The structure TCP,, has the following additional properties:

(i) Every segment e; of By, has a color, which can be retrieved by CoLOR-FIND (e;).

24



EU———EE R

(ii) If two segments e; and e; are in the same group, then they have the same color.

(iii) If two groups have the same color, then they can be merged, because the property
that if a query line £ intersects Bi, if and only if £ intersects CH(B:,) will continue
to hold after the merge.

TCP,, supports the following operations:

COLOR-REPORT (TCP,,,f): Let £ be a line such that for any & < s, £ intersects CH (&Y)
if and only if it intersects B:,. Report all colors of segments intersecting £.

GROUP-INSERT (TCP,,,B°): Create a new group Bt = Be.
TCP,, is basically T(Bu.), described in Section 7.3.1, therefore TCPu, supports the
GROUP-REPORT, GROUP-INSERT, GROUP-MERGE and GROUP-FIND operations.

CoOLOR-REPORT (TCP,,,{) works in four steps. The first step is a call to GROUP-
REPORT (¢) as described above; it returns a set of segments €p;,. .., €n,s such that there
are at most two segments of any group. The second step identifies the groups By,,..., B2
that ‘contain these segments by GROUP-FIND. The third step identifies the colors of
€nys- - - »€n, using COLOR-FIND, and determines which groups of BY,,..., B2, have the
same color. Any two such groups are merged by GROUP-MERGE (i, j) in the fourth step,
as described above.

7.3.3 The short segment structures TC, and TD,

This section describes the dynamic counterparts of the structure TC.,, described in Sec-
tion 7.3. The structure TD, is completely analogous and will not be described.

We describe how to preprocess FL| the set of groups that have a connection to the left
boundary line L,. With a slight abuse of notation, let £X, ..., €. be the groups of FL and
let p; be the left endpoint of the leader A(E9) of £5. Without loss of generality assume that
p1,...,D; are ordered from bottom to top. We define the weight of p; to be the number of
segments in £J. We construct a weighted balanced binary search tree TC, on p1,...,D:

We define FZ, to be the set of connected components £J such that p; is stored in a leaf of
the subtree rooted at v. Let

B,, = {e|e€ & and £, € FL,}.

We maintain a partition BL,, ..., B3, of By, at v; all segments within each B:, have
the same color. Initially, the colors of all subsets are distinct, but as the new segments
are inserted into S, two different subsets may get the same color. The query procedure
periodically merges some of the subsets B:, of the same color. We maintain By, in a
structure TCP,, using the data structure described in Section 7.3.2.

Furthermore, we store a dynamic segment intersection searching structure II(FL) along
with TC,. This structure allows three operations:

SEG-INSERT (TI(FE),~) Inserts a segment 7 into (FLy .

SEG-DELETE (II(FL),7) Deletes a segment vy from (FL).
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SEG-DETECT (v, FL) : Detects whether - intersects any segment of | F~. If so, then it
also returns one of the segments intersected by 7.

Such a data structure is given by Agarwal and Sharir [3]. The SEG-INSERT and SEG-
DELETE require O(n¢) amortized time and the SEG-DETECT requires O(nk/2*€) time. The
size of TI(FL) is O(n, log’ n).

7.3.4 The short segment structure TE,

Let £,...,EL be the groups of FM (again, with a slight abuse of notation). We use a
variant of the data structure of Section 7.3.1 to obtain a dynamic structure TE,, which
replaces its static version described in Section 5.2. TE, has the following properties:

(i) Every segment e; of &7 has a color, which can be retrieved by COLOR-FIND (e;).
(i) If two segments e; and e; are in the same group, then they have the same color.

(iii) If two groups have the same color, then either they are in the same connected
component of A(£,) (and they may be merged), or both groups £, £J can be removed
from FM.

TE, supports the following three operations:

CoLOR-REPORT (TE,,£): Let £ be a line such that for any i < m, { intersects CH (&) if
and only if it intersects &i. Report all colors of segments intersecting £.

GROUP-INSERT (TE,,£°): Create a new group Em¥l = £°,

GRrouP-REMOVE (TE,,£:): Remove the group & from FM.

To be able to perform these operations, we let the data structure TE,, consist of four
structures, among which the three structures of T(FM) are as described above. The fourth
structure is a dynamic segment intersection searching structure II(FM), similar to the one
described in the previous subsection. The size of (FM) is O(n, log® n,), the update time
is O(ng), and the query time is O(nl/?*).

The GROUP-INSERT procedure is basically the same as the GROUP-INSERT for TCP
(cf. Section 7.3.2), with the extension that the new segments are also inserted into II(FM).
The CoLOR-REPORT (TE,, £) operation is performed in four steps; the first three steps
are the same as for COLOR-REPORT (TCP,,, £) of Section 7.3.2. Let £ and & be two
groups of F of the same color that intersect £. The fourth step tests whether £ and
&’ are in the same connected component of FM using a procedure GROUPS-IN-SAME-
COMPONENT (i,7). If so, they are merged by GROUP-MERGE (i,7) as described in
Section 7.3.1. Otherwise, the smaller one is deleted by GROUP-REMOVE (TE,,EL) or
GroupP-REMOVE (TE,, £]).

The GROUPS-IN-SAME-COMPONENT (i, j) procedure works as follows. Suppose |E}| <
|E7]. For each segment e € £, we test whether e intersects any segment of (UFM) — &
If there is no such segment, we return “false’, i.e., £ and & lie in different components
of A(£,). Next, suppose that there is a segment e € £, that intersects some segment
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g€ (UFM)-EL. If g € E], then we merge £i and £} into a single group and return ‘true’.
If g belongs to some other components £, then we merge £ and £, using GROUP-
MERGE (i, h), and determine whether £ UEr and £ lie in the same component of A(E.).
How we preform the last step depends on |ER|. If |ER| > |€;], then we start from the
scratch, otherwise we test those segments of £ U E!, that we have not tested so far,
whether they intersect any segment of (UFM) - (ELUEL), and repeat the same procedure.
See Algorithm 2 for a more detailed description.

73.5 The short segment insertion

The INSERT-operation for the short segments is fairly simple, because it performs the
updating of the structures TC,, TD, and TE, only partially, and leaves the remainder
of the work to be carried out by the subsequent REPORT-COMPONENT queries.

Let v = pg be a segment that we want to add to £,. We create a new set £, = {#}.
If 4 does not intersect the left or right boundary of I, we add £l to FM (i.e., insert
£t+! into TE, by calling GROUP-INSERT (TE,,EL) as described in Section 7.3.4).

k3

If 4 intersects the left boundary of I,, we add EHtl to FL. Let piy1 be the left
endpoint of 4. We set the weight of pi41 to be 1, and add piyy to TC,. Let z be the leaf
of TC, that stores py41. For each node v on the path from the root to z, we call GROUP-
INSERT ( TCP.,, {4}) — it creates a new set B+l = {4}, as described in Section 7.3.2. If
4 intersects the right boundary of I, we perform similar actions on TD,.

7.3.6 The query in short segments

We now have come to the description of the REPORT-COMPONENT procedure for short
segments. Since a lot of work of the INSERT-operation is postponed for later, the query
algorithm is fairly involved. Its main feature is the following. Whenever a color at some
node of the secondary structure is reported more than once or twice, depending on the
secondary structure, it either removes duplications or merges some groups to form larger
groups.

Let o be the intersection point of £ and the left boundary of I,,. As in Section 5.3, we
search TC, with o, and find the leaf z that stores the highest point lying below o. For
each node v, which is a descendant of a node on the path from the root to z, we query
the data structure TCP,, constructed on B,,. We report the segments of B,, intersected
by £ using COLOR-REPORT (TCP 4y, £). Next, we search TD, with the intersection point
of £ and the right boundary of L., and repeat the same procedure.

After having searched TC., TD., we search FM with £. We search TE, using COLOR-
REPORT (TE,,£) as described in Section 7.3.4. If we find two groups E:, &} of the same
color, we first check whether they are in the same component of A(£,), using the GROUPS-
IN-S AME-COMPONENT procedure. If they do not belong to the same component, then one
of them is removed from FM and added to F; or FR, depending on whether they have a
connection to the left boundary of I, or to the right boundary of . £! is moved to FL
or FE as follows. We first test whether any segment of £, intersects L. If we find such a
segment e, then we set ML) = e and insert £: into TC, using the procedure MOVE-TO-
TC, described below. If no such segment is found, we repeat the same procedure for R,.
If £ does not intersect Ry either, then we can conclude that there is a segment g € Sy
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Algorithm 2: GROUPS-IN-SAME-COMPONENT (3, j)

Input: £:,E5: two groups in FM of the same color; |€3] < |E2).

Actions: If £5,&7 are in the same component of A(E,), they are
merged, and possibly other groups in that component.
Otherwise, £} is merged with all other groups in the
component to which £, belongs.

Output: true if £3,&] are in the same component, false otherwise.

Q=0 (*Initialize a stack™)
for all e € EX do
SEG-DELETE (II(FM),e), push (e, Q)
end-for
while not empty (Q) do
= pop (Q), * = SEG-DETECT (II(FM),€)
if an z is returned then
h = GrouP-FIND (z, F))
if h = j then
for all e € £ do
SEG-INSERT (II(FM),e€)
end-for
GROUP-MERGE (4, )
return true
end-if

if |EF > |E2| then
for all e € &, do
SEG-INSERT (II(FM),e€)
end-for
GROUP-MERGE (4, h)
return GROUPS-IN-SAME-COMPONENT (2,7)
end-if
for all e € £ do
SEG-DELETE (II(FM),e), push (e, Q)
end-for
GROUP-MERGE (i, h)
end-if
end-while
return false
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Algorithm 3: FIND-LEADER

Input: A group £, formerly in FM,
Output: A leader of £; that connects it to L.

Q=10
for all e € £, do

push (e, Q)
end for

while not empty (Q) do
e=pop(Q),z=u
while z # NULL do
g = EMPTY-DOUBLE-WEDGE (TB., €)
if a g is found then
G=9n1L, NEN =3
£ = €043}
return §
else z = parent (2)
end-if
end-while
end-while

for some ancestor w of u that intersects both £ and L,. For all ancestors w of u, we
query TB, with all segments of £¢, using the procedure EMPTY-DOUBLE-WEDGE (see
Section 7.2.1), until g is found; see Algorithm 3 for details. We set MEL) = g N L, insert
g into II(TC,) and call MOVE-TO- TC.

Finally, £ is inserted into T'C, as follows (the MOVE-TO- TC-procedure). Let p =
&) N Ly; the weight of p is the number of segments in £,. We first insert p into TC,.
(Recall that the leaves of TC, store the intersection points of the leaders with L, in
increasing order of their y-coordinates). Let z be the leaf of TC, storing p. We insert o
into TCP,, at all ancestors of z in TC.; see Algorithm 4 for details. The insertion of £
into TD, is completely analogous.

7.4 The analysis

As mentioned in the beginning of the section, we will use the accounting method to bound
the amortized update and query time. We assign

C(e) = cn*/**“log’ n (1)

credit to each segment e when it is inserted into S, where c is a sufficiently large positive
constant. To simplify the analysis, we distribute this credit among various copies of the
segments stored in different secondary structures. For each copy of a segment e in the
following structures, we assign the credits as shown in Table 1 (the constants ci,...,Cs
are chosen sufficiently large):
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Algorithm 4: MOVE-TO-TC

Input: A group £; formerly in F}.
Actions: Insert & into TC,.

p=XME)NT,

INSERT (p, TC.)

2z = leaf of TC, storing p

while z # NULL do (% z has not passed the root *)
GROUP-INSERT (TCP.,,EL)
z = parent (2)

end-while

Structures Credits
TAP ., a
TAQ(S:) conflogn
TCP.,, csnflogn
TDP,, csnflogn
TE, cant/?**t<logn

Table 1: Credits assigned to various copies of a segment.

Lemma 7.2 The insertion of a segment e into T, ezcluding the the time spent by the
REPORT-COMPONENT procedure, requires O(n*/**<log® n) amortized time.

Proof: By the accounting method, the amortized insertion time is the actual insertion
time, plus the credits left behind, minus the work paid for by credits.

It is not difficult to see that the actual insertion time for all insertion procedures in
TB-, TCP-, TDP- and TE-structures is O(nflog’n). Furthermore, the insertion time
in all TA-structures is O(n¢logn) plus the time spent in merging TAQ-structures. We
charge the latter quantity to the credits of the segments in the TAQ-structures themselves.
Whenever two TAQ-structures are merged, the segments of the smaller one are inserted
into the structure of the larger one. Hence, any segment in a TAQ-structure is inserted
into another one at most log,n times. Each insertion requires O(n) time, so the total
charge to any segment is O(nclogn). Since each segment in a TAQ-structure was assigned
cone logn credits when it was inserted (or when a subtree with it was last reconstructed),
each segment has enough credits to pay for all insertions into other TAQ-structures if c; is
chosen at least as large as the constant hidden in the O(n¢) insertion time. Finally, during

the insertion of e, O(n'/**¢ log® n) credits are assigned in total to all its occurrences.

If the secondary structures stored at each node of a dynamic binary search tree can
be updated in time ¢, then the amortized update time of the overall data structure is
O(tlogn), see e.g. Mehlhorn [18]. It is straightforward to show that the construction time,
inclusive of the distribution of credits to all the occurrences of segments, is O(n3/?+<1log® n).
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Putting everything together and omitting all the straightforward details, we can conclude
the amortized insertion time, excluding the time spent by the REPORT-COMPONENT pro-
cedure, is O(n!/?+<1og’ n). |

We prove the amortized bound for REPORT-COMPONENT with the help of three lemmas
that bound the amortized time in three of the secondary structures.

Lemma 7.3 The amortized time for reporting the colors in a list TAP,, is O(k), where
k is the number of different colors reported.

Proof: Suppose that the list TAPu, contains K segments, of which k are distinct. Then
the actual time taken by the query is O(K), since the total time spent in processing
each segment of TAP,, is O(1). Recall than we have given ¢ credits to each segment
in TAP,, when it was inserted. If a segment e is deleted, then the credits assigned to
e pay for the cost of processing e. Since € is deleted only once from TAP.,,, it will not
be charged again. If ¢; is chosen larger than the constant in the big-O of O(K), then e
has sufficient credits to pay for the cost charged to it. Hence, the amortized cost is O(k). O

Lemma 7.4 The amortized time for COLOR-REPORT (TCP yy, L) is O(n'/**< + k), where
k is the number of different colors reported.

Proof: The actual time for the first three steps of COLOR-REPORT is O(n*/*** + K)
time, where K is the number of groups reported. Let k be the number of different colors
that are found. Then the fourth step of CoLOR-REPORT performs K — k GROUP-MERGE
operations. We charge O(K - k) plus the cost of GROUP-MERGE operations to various
segments, as described below, in such a way so that each segment of B, has enough

credits to pay for the cost charged to it. Therefore, the amortized cost of COLOR-REPORT
is O(n/?*re + k).

By Lemma 7.1, the cost of all GROUP-MERGE operations can be paid by charging
O(n®logn) to each segment of B,,. Next, we charge O(K — k) to segments of By, as
follows. Recall that a new group of By, is created either when a new segment is inserted
into B,, or when a group is moved from FM to FL. For a group By, let u(Bi,) denote
one of the segments belonging to B:, when it was created. (If B:, was created by inserting
a new segment e, then p(B.,) = e, and if B:, was created by moving a group E: from
FM  then p(Bi,) is a segment of £:.) If COLOR-REPORT merges two groups B:,,B:, and
the new group is called BJ,, then we charge ©(1) cost to pu(B,). Since B:, ceases to exist
after the merge, u(B:,) will not be charged again. Moreover, if COLOR-REPORT reports
K groups of k different colors, then K — k groups are merged, so the total charged is
O(K — k).

The total cost ever charged to each segment of B, is thus O(nclogn) + o(1) =
O(n<logn). If the constant cs in Table 1 is chosen sufficiently large, then the credits
assigned to each segment can pay for the cost charged to it. 0O

Lemma 7.5 The amortized time for COLOR-REPORT (TE,,t) is O(n*/*** + k), where k
is the number of different colors reported.
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Proof: As in the previous lemma, the time spent in reporting K groups with k different
colors intersected by £ is O(n'/?*¢ + K) plus the time spent in the fourth step of the
CoLOR-REPORT procedure. We charge O(K — k) and the time spent in the fourth step of
the COLOR-REPORT to various segments of UFM, as described below, so the amortized
cost of the procedure is O(n'/?+¢ + k).

First, as in the previous lemma, we can charge O(K — k) to various segments of UFM
in such a way so that each segment is charged only ©(1) and it is charged only once, so
we only have to describe how to charge the time spent in the fourth step of the COLOR-
REPORT procedure. Consider the GROUPS-IN-SAME-COMPONENT procedure. Observe
that every segment e that is pushed on the stack Q will either be moved to FL or FE, or
will end up in a group of FM at least twice the size as before the procedure. Therefore, e is
pushed onto Q at most logn times. By Lemma 7.1, the cost of GROUP-MERGE operations
can be paid by charging O(n‘log n) to each segment of UFM. For each segment e in
Q, we spent O(n'/**¢) in SEG-DETECT, O(n¢) time in SEG-DELETE, O(n®) time in SEG-
INSERT, and another O(1) time in other procedures. Hence, by charging O(n'/**<logn)
to each segment, we can cover the cost of all calls to the GROUPS-IN-SAME-COMPONENT
procedure.

Finally, if a group £, is moved from FM to Fr, we spend O(|Ei|n*/**<logn) time in
finding the leader of £, (cf. FIND-LEADER procedure), and O(n*logn) time to create the
new leaf z of TC, that stores £X. £. is also inserted into TCP,, at all ancestors v of z.
By Lemma 7.1, the amortized running time of the insertion procedure is O(|€;| - n¢). We
also assign cznlogn credits to each segment of e € &, stored at v to fulfill the invariant
that any segment inserted into TCP,, has csn®logn credits. Thus, the cost of moving &,
from FM to FL can be paid by charging O(nl/**<logn) to each segment of E:. The same
holds if &£ is moved to F,. Clearly, any group of FM can go to FZ or F;} only once,
and never go back. Thus this charge occurs once. If ¢, is chosen sufficiently large, then
the credits assigned to each segment of UFM are sufficient to pay for the cost incurred in
merging the groups of 7,/ and in moving the groups of FM to FL FE. This completes
the proof of the lemma. ]

By adding up the amortized query time at all secondary structures and by observing
that a REPORT-COMPONENT query does not hand out credits, the previous lemmas lead
to:

Lemma 7.6 Let S be a set of n segments in the plane. S can be stored into a data
structure of size O(nlog® n), so that a new segment can be inserted in time O(n'/>*<log® n),
and the connected components of A(S) intersecting a new segment can be reported in time
O(nt/**e log’n + klog®n), and constant time suffices to determine whether two query
segments of S are in the same component.

Proof: The bound on the amortized running time of the REPORT-COMPONENT fol-
lows from the previous three lemmas. As for the time spent in inserting a segment e,
by Lemma 7.2, the amortized time spent by the INSERT procedure, excluding the time
spent in REPORT-COLOR is O(n'/**¢). The amortized query time of REPORT-COLOR
is O(nt/?+ + klog®n), where k is the number of components reported. Since all these
k components are merged into a single component, we can charge O((K — k) log® n)
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cost to various segments of S in such a way so that each segment is charged at most
O(log? n) (cf. Lemma 7.4). Hence, the total amortized cost of the insert procedure is
O(n/2+) + O(n*/**< + k log?n) —b-klog’n = O(n!/?+¢), provided that the constant bis
chosen sufficiently large. o

Using the same ideas as in Section 5.4, we can improve the amortized query time to
O(n'/**¢ + k). We leave out the straightforward but rather tedious details. We thus have

Theorem 7.7 Let S be a set of n segments in the plane. S can be stored into a data
structure of size O(n'*<), so that a new segment can be inserted in time O(n'/?*€), and
the connected components of A(S) intersecting a new segment can be reported in time
O(n'/?*¢ + k), and constant time suffices to determine whether two query segments of S
are in the same component.

Notice that update time is O(n'/2*) because of the call to REPORT-COMPONENT
and assigning n!/2*¢ credit for searching segment intersection structures. If we allow
more space, the query time of all structures can be reduced, which will also improve the
amortized update time. In partigula.r, if we allow O(N'*¢) space, then a query can be

answered in amortized time O(%~ + k) and the update time is O(%) if N < n*/? and
O(XX) if N > n*/3. Again we leave out the details. This implies an O(n*/3*¢) time

on-line algorithm for computing the connected components of A(S).

Corollary 7.8 The connected components of the arrangement of a set of n segments can
be computed by an on-line algorithm in O(n*/3+¢) time.

8 Conclusions

In this paper we presented several data structures, static as well as semi-dynamic, for con-
nected component intersection searching and simple polygon intersection searching. For
orthogonal segments we presented data structures for the general colored segment inter-
section searching problem. We conclude this paper by mentioning some open problems:

(i) Can one answer the general colored segment intersection query for an arbitrary set
of segments in time O(n!/?*¢ + k), where k is the set of output colors, using close-
to-linear space? As a first step, one may want to consider the following problem:
Preprocess a set S of colored points into a linear size data structure, so that the

colors of points lying in a query strip (or a double-wedge) can be reported in time
O(n'/?*¢ + k).

(ii) No efficient algorithm is known for the counting version of colored segment inter-
section searching, even for orthogonal segments. Recently, Gupta et al. [14] have
presented algorithms in some special cases.

(iii) The data structures for connected component intersection searching described here
do not support delete operations. One difficulty lies in identifying the new connected
components that emerge because of the deletion of a segment.

33



(iv) Is there a simpler data structure for semi-dynamic connected component intersection

searching?
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