Domino Treewidth

H.L. Bodlaender and J. Engelfriet

UU-CS-1994-11
February 1994

Utrecht University

e <. Department of Computer Science
2 5
% Y Padualaan 14, P.O. Box 80.089,

1 NG

3508 TB Utrecht, The Netherlands,
Tel. : ... + 31 - 30 - 531454

Domino Treewidth

H.L. Bodlaender and J. Engelfriet

Technical Report UU-CS-1994-11
February 1994

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 0924-3275

Domino Treewidth

Hans L. Bodlaender* Joost Engelfriet!

Abstract

We consider a special variant of tree-decompositions, called domino tree-
decompositions, and the related notion of domino treewidth. In a domino
tree-decomposition, each vertex of the graph belongs to at most two nodes of
the tree. We prove that for every k, d, there exists a constant cx 4 such that a
graph with treewidth at most k and maximum degree at most d has domino
treewidth at most cx 4. The domino treewidth of a tree can be computed in
O(n?logn) time. There exist polynomial time algorithms that — for fixed k
_ decide whether a given graph G has domino treewidth at most k. If k is not
fixed, this problem is NP-complete. The domino treewidth problem is hard
for the complexity classes W[t] for all t € N, and hence the problem for fixed
k is unlikely to be solvable in O(n°), where ¢ is a constant, not depending on

k.

1 Introduction

A topic of much recent research in algorithmic graph theory is the treewidth of
graphs. Applications of this research range from VLSI theory to expert systems
(and many more). (See e.g., [5] for an overview.) In this paper, we introduce a
special variant of treewidth: domino treewidth. This notion is derived from the
usual notion of treewidth, by additionally requiring that every vertex v € V belongs
to at most two node sets X;. (See Section 2 for the precise definitions.) Our interest
in this notion is largely due to a maybe somewhat surprising result: for graphs of
bounded degree and bounded treewidth, there is a uniform upper bound on the
domino treewidth. The proof of this result is given in Section 3. We also investigate
the algorithmic aspects of domino treewidth. In Section 5, we show that the problem
to determine the domino treewidth of a given graph is NP-hard, and also is hard

*Department of Computer Science, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, the
Netherlands. This author was partially supported by the ESPRIT Basic Research Actions of the
EC under contract 7141 (project ALCOM II).

iDepartment of Computer Science, Leiden University, P.O. Box 9512, 2300 RA Leiden, the

Netherlands. This author was supported by the ESPRIT Basic Research Working Group COM-
PUGRAPH IL

for the complexity classes W(t], for all ¢ € N. The latter result tells us that it is
unlikely that the problem, for fixed k, to decide whether a given graph has domino
treewidth < k, can be solved in O(n°) time, where c is a constant, not depending on
k. Some special cases can be solved in polynomial time: for fixed k, one can check
in polynomial time whether the domino treewidth of a given graph is at most k. For
trees, the domino treewidth can be computed in O(n?logn) time. These results are
shown in Section 4.

2 Definitions and preliminary results
The notion of treewidth has been introduced by Robertson and Seymour [17].

Definition. A tree-decomposition of a graph G = (V, E) is a pair ({X; | i € [},T =
(I,F)) with {X; | i € I} a collection of subsets of V, and T = (I, F) a tree, such
that

o Uier Xi =V
e for all edges {v,w} € F there is an ¢ € I with v,w € X;
e forall 4,5,k € I: if j is on the path from ¢ to k in T, then X; N X} C X;.

The width of a tree-decomposition ({X; | ¢ € I},T = (I, F)) is max;es | X;| —1. The
treewidth of a graph G = (V| E) is the minimum width over all tree-decompositions
of G.

Let ({X; |i€ I}, T = (I, F)) be a tree-decomposition of G = (V, E). For each
vertex v € V, we let T, be the subgraph of T, induced by {: € I | v € X;}. Condition
(iii) above can be rephrased as: for every v € V, T, is connected, or as: for every
veV, T, is a tree.

We use size(G) to denote the number of vertices of G, and deg(v) to denote the
degree of vertex v. The degree of G is the maximum degree of its vertices.

Definition. A tree-decomposition ({X; | i € I}, T = (I,F)) of G = (V,E) is a
domino tree-decomposition, if for every vertex v € V, size(T,) < 2, i.e., every vertex
belongs to at most two sets X;. The domino treewidth of a graph G is the minimum
width over all domino tree-decompositions of G.

Equivalently, the definition of a domino tree-decomposition is obtained from the
first definition by changing its third condition into the following requirement: for
alls,j € I,if i # j and {¢,5} € F, then X; N X; = @. For a connected graph G, this
means that T is the intersection graph of the family {X; | ¢ € I'}.

Note that if d is the maximum degree of a graph G and k is its domino treewidth,
then d < 2k. Hence the domino treewidth of a graph is at least half its maximum
degree. This shows, e.g., that there is no bound on the domino treewidth of trees.

2

Figure 1: A domino tree-decomposition

As an example, the graph G in Figure 1 (and any similar graph) has domino
treewidth 3. The dotted lines indicate a domino tree-decomposition of width 3.
Note that domino tree-decompositions are easy to visualize. One easily observes
that G has treewidth 2: G is outerplanar and all outerplanar graphs have treewidth
< 2 (see e.g., [3]).

A well-known lemma for tree-decompositions is the following.

Lemma 1 Let ({X; | i € I},T = (I, F)) be a tree-decomposition of G = (V, FE).
Let vg,v1,...,v, be a path in G. Suppose vy € X;, v, € X, and j is on the path
fromitok inT. Then X; N {vy,...,v.} #0.

A slightly stronger variant holds for domino tree-decompositions. The following
lemma will be used later in this paper.

Lemma 2 Let ({X; | i € I},T = (I,F)) be a domino tree-decomposition of G =
(V,E). Let vg,v1,...,v, be a path in G. Suppose vy € X;, v, € Xk, and j is on the
path from i to k inT, j #14, j #k. Then |X; N {vo,...,v.}| > 2.

Proof: By Lemma 1, X;N{vo,...,v,} # 0. Suppose that X;N{vy,...,v,} = {v.}.
Let j' be the unique node with j' # j and v, € X;. As the neighbors of v, on the
path do not belong to X, they must belong to X;;. Either j is on the path from
j' toiin T, or on the path from j' to k in T. Suppose the former. If @ = 0, then
Vo € X; N Xy NX;, and ¢ # j': contradiction with dominoness. If @ > 0, then
Va—1 € Xjr, and hence, by Lemma 1, X; N {vo,...,ve—1} # @, contradiction. In the
case that 7 is on the path from j' to k, we can obtain a contradiction in a similar
way. We conclude that X; contains at least two vertices from the path vy, ..., v,. O

Another well-known lemma is the following (for a short proof, see e.g. [9]).

Lemma 3 Let ({X; | i € I},T = (I, F)) be a tree-decomposition of G = (V, E).
Suppose W C V forms a cliqgue in G. Then there must be a nodei € I withW C X;.

3 Bounded treewidth and degree corresponds
with bounded domino treewidth

In this section, we give the proof of a structural result: graphs with bounded degree
and bounded treewidth have bounded domino treewidth. A result like this was first
shown in the context of graph grammars in [14].

The proof of this result is rather lengthy, and will be given with the help of
several lemmas. First, we introduce some notions, needed for the proof.

For technical reasons, we assume in this section that the trees T taken from tree-
decompositions are rooted. This induces rootedness of each T, in a natural way: the
root of T, is the node of T, that is closest to the root of T. For a node i of a rooted
tree, the parent of 7 and children of ¢ (if they exist) are defined in the usual way.
The rank of 7 is the number of children of . The rank of a tree is the maximum
rank of its nodes. A leaf is a node of rank 0. Whenever we write down a tree arc
{i,5} as (i,7), this implicitly means that ¢ is the parent of j, i.e., ¢ is closer to the
root of T than j. The height of a tree is the maximum distance between the root
and the leaves. If 7 is a node, and T a tree, we sometimes denote the fact that z is
anodeof Tasx € T.

Also for technical reasons, we will, for each tree-decomposition, fix a mapping
Y : I — P(FE), such that

o for every i € I, {v,w} € ¢¥(i): {v,w} C X,.
e for every {v,w} € E, there is a unique 7 € I with {v,w} € ¥(3).

Note, that by the second condition of tree-decomposition, such a mapping ¥
always exists (but, in general, there may be more than one). The mapping 1 fixes
a distribution of the edges of G over the nodes in 1.

Let XT = ({X; |i € I}, T = (I, F)) be a tree-decomposition of G = (V, E), and
let mapping ¥ and subtrees 7, be defined as in Section 2 and above.

Let v € V, and let i € I be a node in T, (i.e., v € X;). We say that 4 is a useful
node of Ty, if there exists an edge {v,w} € 9(7), otherwise we say that ¢ is a useless
node of T,,.

Our first aim is to transform a tree-decomposition in such a way, that the tree
has no useless nodes of rank 0 or 1 (cf. Lemma 7.) We start with removing useless
nodes of degree 1.

We say that a tree-decomposition X7 has property (U1), if for every vertex
v € V, T, has no useless nodes of degree 1.

Lemma 4 Let ({X; | i € I},T = (I, F)) be a tree-decomposition of G = (V,E) of
width k. There exists a tree-decomposition ({Y; | i € I}, T = (I, F)) of G = (V,E)
of width < k that has property (U1).

Proof: If ¢ is a useless node of T, of degree 1, then remove i from T, i.e.,
remove v from X,. Repeat this procedure as long as possible. The resulting tree-
decomposition has property (U1), and width < k. O

We need some extra terminology. Let XT = ({X; |i € I},T = (I,F)) be a
tree-decomposition, let the subtrees T, and mapping 1) be as before. For every node
1 € I, define

chainxr(i) = {v € X; | i is a useless node of rank 1 in T}
For an arc (4, j) of T (recall that the notation means that ¢ is the parent of 5), define
passXT(i,j) = chainXT(i) N Xj

Note that if j, 5/ are distinct children of 7, then passxr(%,j) Npassxr(i,j') = 0. We
define

mazp(XT) = max{|passxr(i,j)| | (i,7) € F}

Lemma 5 For every k, r € N, there exist k', ' € N, such that for every graph
G = (V,E) and for every tree-decomposition XT of G with property (U1) and of
width < k, with the rank of T < r, if mazp(XT) > 0, then there exists a tree-
decomposition XT' = ({X] | i € I'},T' = (I', F")) of G with property (U1) and of
width < k' with the rank of T' < 7', such that mazp(XT') < maxp(XT). Moreover
the height and size of T' are at most the height and size of T, respectively.

Proof: We begin by making an intermediate tree-decomposition XT", fulfilling

the property, that for every arc (3,j), either |passxr»(i,7)| < mazp(XT), or for
every arc (j, h) it holds that |passx7(j, h)| < mazp(XT).

Proposition 6 For every k, 7 € N, there exist k", " € N, such that for every
graph G = (V, E) and for every tree-decomposition XT of G with property (U1)
and of width < k, with the rank of T < r, if mazp(XT) > 0, then there exists
a tree-decomposition XT" = ({X] | i € I"},T" = (I",F")) of G with property
(U1) and of width < k" with the rank of T" < 1", such that for every arc (i,)
in T", either |passxp(i,5)| < mazp(XT), or for every arc (j,h) it holds that
|passxr(j, h)| < mazp(XT). Moreover the height and size of T" are at most the
height and size of T, respectively.

Proof: We say that an arc (3,) is mazimal, if |passxr(i,j)| = mazp(XT), and
we say that a node 7 is maximal, if it has a maximal arc (i,j). The idea of the
construction is to fold certain paths of T, that consist of maximal arcs (i, 7), all
with the same set of vertices passxr(i,j). These vertices can then be removed from
the folded path. We first define these paths. To this aim, we define a marking of
the nodes and arcs of T, in a top-down fashion. A node can either stay unmarked,
or can be marked as initial, middle, or final. An arc (7, j) can either stay unmarked,
or can be marked with the set of vertices passxr(i, 7).

We now describe the marking procedure in detail. Consider a node 7 of T', and
assume that the nodes and arcs on the path from ¢ to the root already have been
considered. Let h be the parent of i, if existing. We distinguish two cases.

Case 1. The arc (h,i) is unmarked, or 7 is the root of T. If 7 is a maximal node,
then mark 7 as initial, and mark each maximal arc (i,j) with passxr(i,7). After
that, consider the children of .

Case 2. The arc (h,i) is marked with the set of vertices m. If there exists an arc
(i,7) with passxr(i,j) = m, then mark this arc with 7, and mark ¢ as middle. Such
an arc is necessarily unique. If there is no such arc, then mark ¢ as final. After that,
consider the children of i.

It should be clear that the marked subgraph of T is a disjoint collection of trees.
Each such tree has a root, marked initial, which is of rank at least 1; all other nodes
in such a tree are marked either as middle, in which case they have rank 1, or as final,
in which case they have rank 0. Moreover, all the arcs on one path from the initial
node to a final node have the same mark; we will call this the mark of the path.
Note that the marks of distinct paths are disjoint. Figure 2(a) shows an example of
a marked subtree (in which all unlabeled nodes are marked ‘middle’, and 7y, 7, are
disjoint sets of vertices); the figure also shows some (unmarked) arcs that do not
belong to the marked subtree.

We now describe the procedure, that computes the desired tree-decomposition
XT". Perform the following steps for each marked subtree of T'.

1. Identify the initial node with all the final nodes. The resulting node of T" is
called a bridge node.

2. For each path from the initial node to a final node, let 7y,...,is be the middle
nodes on the path, § > 0. For a, 1 < a < f, identify ¢, with ig_q41, i€, 01
with ig, i3 with ig_1, i3 with ig_,, etc. The resulting nodes of 7" are called
folded nodes.

3. Define the sets Xj of folded or bridge nodes as the union of the sets X; of
the corresponding identified nodes. The mapping " is obtained similarly.
(However, see below at point 5!)

initial

T2

®)

final

(@)

Figure 2: (a) A marked subtree of T. (b) The folded marked subtree.

4. Unmarked nodes of T will stay the same in XT"”, with the same values for X;
and . These will be called the old nodes of T".

5. For each folded node j, remove 7 from X7, where 7 is the mark of the path
to which the corresponding middle nodes belong.

In other words, each marked path from an initial node to a final node is folded in
two, and the vertices in the mark of that path are removed from the sets X;. Note
that if in Step 2, 5 is odd, then the node that is half-way the path is not identified
with another node. Figure 2(b) shows how the marked subtree of Figure 2(a) is
folded. The nodes of T” are shown as shaded circles, containing the corresponding
identified nodes of T' (where all unlabeled nodes of T" are folded nodes).

We first prove that X7 is a tree-decomposition of G. It is easy to see that after
we have applied Steps 1 — 4, we still have a tree-decomposition XT* of G. For each
path from an initial node to a final node with mark =, the middle nodes are useless
nodes of rank 1 in T, for every v € 7. Hence, in T, the corresponding folded nodes
form a chain of useless nodes of rank 1, ending in a useless leaf. So, we can safely
remove v from all X7 for all folded nodes j (as in the proof of Lemma 4), which is
done in Step 5.

Since at most r + 1 nodes are identified with each other, the width of XT" is at
most (r + 1)(k + 1) — 1, and the rank of 7" is at most (r + 1)r.

It remains to show that XT"” has property (U1) and the property, stated in the
proposition. For the second property, it is clearly sufficient to show that for every
arc (4,7) in T":

e if j is a folded node, then |passx(%,7)| = 0.
e if 7 is an old node or a bridge node, then |passxr~ (%,)| < mazp(XT).

We first show that if j is a folded node, then |passxr«(i,j)| = 0. Consider a
path from an initial node iy to a final node ig4;, and let ¢,...,is be the middle
nodes on the path, in top-down order. Let 7 be the mark of the path.

First, we consider the case that ¢ and j are both folded nodes. Suppose i is
the result of identifying i, and ig_q+41, and j is the result of identifying 4,4, and
i6—o. Suppose v € passxrn(i,j). Then v ¢ m, (i,7) is an arc of T, and ¢ is a
useless node of rank 1 in 7. Then, by the third property of tree-decomposition,
either (iq,%a+1) OF (4—a,ig—a+1) is an arc of T,, and i, and ig_q41, when belonging
to T, are useless in T,. The arcs (iq, h) with h # ia4; and the arcs (ig_q41, '),
h' # ig_q42 do not belong to T, otherwise, ¢ has rank more than 1 in 7. In the
case that (ia,%a+1) is an arc of T, then we obtain that v € passxr(ia,ias1) = T,
contradiction. In the case that (ig_q+1,%-a+2) is an arc of T, then we obtain
that v € passxr(ig—at1,ip—a+2) = 7, contradiction. The remaining case is that
(#8—asip—a+1) is an arc of Ty, but (is_a+1,is—a+2) is not. In this case, ig—a+1 18 @
useless leaf of T, which contradicts property (U1). So, if ¢ and j are both folded
nodes, then passxr(i,7) = 0.

The other case to consider is that 4 is a bridge node. Suppose ¢ is the result
of identifying iy with all final nodes, including ig41, and suppose j is the result of
identifying 4; with ig. Assume that v € passxr=(i,j). As before, we have that
v ¢ m, and either (ig, 1) or (ig,%g+1) is an arc of T;,. In the case that (4o, %) is an arc
of T,, we obtain that v € passxr(ig,?1). In the case that (ig,7g41) is an arc of T,,
we obtain that i1, is a useless leaf of T,. In both cases, we have a contradiction.
This proves that if j is a folded node, then |passxr(i,J)| = 0.

Next, we show that for old nodes i, |passxr(i,7)| < mazp(XT). j is either
an old node, or the result of an identification of some nodes, one of which is a
child of 7. Let jo be the node in T, corresponding to j, such that there is an
arc (z,7) in T. Since (3,jp) is unmarked in T, (%,7p) is not maximal, and hence
lpassxr (i, jo)| < mazp(XT). Clearly, passxr(i,jo) = passxr«(i,j): i is a useless
node of rank 1 in T, if and only if it is a useless node of rank 1 in 7). Hence
|passxn(i,5)| < mazp(XT).

We now show that for bridge nodes i, |passxr(i,7)| < mazp(XT). Let iy be
the initial node, and fi,..., f,» be the final nodes of T, corresponding to 7. There
are three cases. '

Case 1. There is an unmarked arc (49, jo), such that jy corresponds to j. Consider
v € passxrn(i,7). Then (i, jo) is in T, and hence v & passxr(ig, h) for all b # jo
(otherwise, we would get a contradiction with the rank of iy in T,). So, every child
h of iy with v € X}, corresponds to a node A’ in T” with v € X},. It follows that
v € passxt(io, jo). As (ig,jo) is unmarked, and hence not maximal, we have that
lpassxr(i,7)| < |passxr(io, jo)| < mazp(XT).

Case 2. There is a marked arc (i, jo), such that j, corresponds to j and jo is
a middle node. Then j is a folded node, and hence, by the proof given above,
|passXTu(i,j)| = 0.

Case 3. j corresponds to a node jo, that is a child in T of a final node fs, for
some 0, 1 < 6 < m. Let (4p,h) be the first arc of T on the path from ¢y to fs.
We now claim that passxr(i,j) = passxr(io, h) N passxr(fs,jo). It is easy to
verify that passxr(io, h) N passxr(fs,jo) € passx(i,j). For the other direction,
let v € passxyn(3,7). It is easy to see that v € passxr(fs,Jjo). To show that
v € passxr(io, h), we consider two cases.

The first case is that h # f5. Then, by property (U1), f5 is not a node of degree
1in T,, hence (k/, f5) is in T, where h' is the last middle node on the path from
io to fs. In T”, h and h' are identified (or equal), and so there is an arc (i, h") in
T* with A" # j. (Recall that XT* is the tree-decomposition after Steps 1 — 4 of
the operation, described above. h” is either the result of identifying h and h' or
h" = h = h'.) Since (i,h") is not in T (because v € passxy(i,7)), v is removed

from X/ in Step 5 of the procedure, so v belongs to the mark of the path from o
to f5, hence v € passxr(io, h).

The second case is that h = fs5. Since f5 is not a node of degree 1 in T, (ig,)
is in T,. From this it easily follows that v € passxr(io, h).

We conclude that passxn (i,) = passxr(, h) N pass x1(fs5,J0). Now, since fs
is final, passxr(fs,jo) # passxr(io, h). Since (o, h) is maximal, [passxT(fs, Jo)| <
|passxr (i, h)|. Consequently, passxr(io, h) N passxr(fs, jo) is a proper subset
of passxr(io, h), and hence |passxru (i, j)| < lpassxr(io, h)| = mazp(XT). This
proves the desired property.

Finally, we show that property (U1) holds for XT". As this proof is very similar
to the proofs given above, we just consider a few cases, and leave the remaining
cases to the reader. Consider a path from an initial node ¢ to a final node ig41, let
i1,...,1s be the middle nodes on the path, and let 7 be the mark of the path.

Let 1 < a< fBwitha+1l<f—a,andletq be the node of T” that is the
result of identifying middle nodes i, and ig—q+1- Assume now that 7 is a useless
leaf of T (of degree 1). Then either (ia—1,%) Or (ig-ot1,p—at2) is in Ty, All arcs
(ia,j) are not in T, arc (ig—a»ip—at1) is ot in Ty, and all arcs (ig—a+1,h) with
h # ig_q+2 are not in T,. Hence, if (iq_1,1q) is in T, then i, is a useless leaf of T,
and if (ig—a+1)ip—a+2) i8 in T, then ig_q+1 is a useless root of rank 1 of T,,. This
contradicts property (U1) of XT.

As a second and last case, we assume (3 = 2y — 1, and consider the middle node
i, which is half-way the path from 4, to 5. Then i, is also a node of T". Assume
that i, is a useless leaf of T;. Note that this implies that v ¢ m. Either (iy_1,1,)
or (iy,iy41) is in Ty, and all arcs (iy,j) with j # i,y are not in Ty. If (iy,dy41) 18
in T, then v € passxr(iy, iy41) =7, & contradiction. If (i,%,4+1) is not in Ty, then
(iy-1,1,) is in Ty, and i, is a useless leaf of T, contradicting property (U1) of XT.
This ends the proof of Proposition 6 O

Now we can prove Lemma 5. First use the construction from Proposition 6.
Apply the following operation to XT": identify each node i in T" that is at even
distance to the root with all its children 4;,...,%s (0 < s < "), see Figure 3.
If j is the resulting node of T", then X} = Xj U Xj U---U X!, and ¥'(j) =
Do) U " (i) U -+ U g"(i). Let XT' = ({X! | i € I'},T' = (I', ")) be the
resulting tree-decomposition. The width &’ of XT" is at most (r" +1)(k" +1) — 1,
and the rank 7/ of T" is at most 7.

It remains to show that mazp(XT') < mazp(XT), ie., that |passxr (1,7)] <
mazp(XT) for every arc (i,7) of T".

Consider an arc (i,3) of T". Let i be the result of identifying a parent ip with its
children i1, 49, . . ., is, and let j be the result of identifying parent jo with its children
J1,...,js. Since (i,7) is an arc in T", there must be an arc (ia, jo) in 7" for some
a,1<a<ls.

We now claim that passxr:(i,5) = passxr(io,ia) N passxr (e Jo). The in-
clusion passxr(io,ia) N passxrn(ia,jo) C PasSSxT (i,7) is obvious. For the other

10

Ie———REIEE RS S

Figure 3: Example of operation in the proof of Lemma 5

direction, let v € passxr(i,j). It is easy to see that v € passxrn(ia,jo). As XT"
has property (U1), this implies that 4 is a node in T, i.e., that v € Xj. Since is
useless in T, 4o is useless in T,/. Suppose that 4 is not of rank 1 in T;. Then, for
some f # a, i is a node of T,. Since v € chainxr (i), ig must be a useless leaf of
T", contradicting property (U1). Hence v € passxr» (0, %a)-

From the equality passxt(i,7) = passxrn(io, i) N passxr(ia, jo), We can con-
clude that |passxt (i,)| < mazp(XT) as follows. If |passxrn (io, ia)| < mazp(XT),
then |passxr (3, §)| < |passxrn (i, da)| < mazp(XT). Otherwise, by Proposition 6,
mazp(XT) > |passxrn(ia, jo)| > |passxr (1, 5)|-

In a similar way, one can show that XT" has property (U1). O

Lemma 7 For every k, r € N, there exist k', r' € N, such that for every graph
G = (V, E) and for every tree-decomposition XT of G of width < k, with the rank
of T < r, there exists a tree-decomposition XT = ({X!|ieI'},2T = I, F))
of G of width < k' with the rank of T' < ', such that for every vertex v € V, if
size(T!) > 2, then T, has no useless nodes of rank 1 or 0. Moreover the height and
size of T' are at most the height and size of T, respectively.

Proof: First we apply Lemma 4. Let XT" be the resulting tree-decomposition.
Note that mazp(XT") < k + 1. By applying Lemma 5 at most k + 1 times, we
obtain a tree-decomposition X7T" of bounded width, and of bounded rank, such that
mazp(XT') = 0. This implies that chainxp (i) = @, for every node i in T", and
hence that for every vertex v € V, if size(T,) > 2, then T has no useless nodes of
rank 1 or 0. O

11

Lemma 8 For every k, v, d € N, there exist k', r' € N, such that for every graph
G = (V, E) with mazimum degree < d and for every tree-decomposition XT of G
of width < k, with the rank of T < 7, there exists a tree-decomposition XT' =
(X! |ieI't,T'=(I',F")) of G of width < k' with the rank of T' < r', such that
for every vertex v € V, T, has height at most one. Moreover the height and size of
T' are at most the height and size of T, respectively.

Proof: First, we apply Lemma 7. Let X T' be the resulting tree-decomposition
with width < k' and rank of T" at most 7'.

Note that every tree T/ contains at most deg(v) useful nodes, so at most deg(v)
nodes of rank 1 or 0. It follows that each T? contains at most 2d — 1 nodes.

Now apply the following operation to XT": let o be the root of T". Identify
all trees T! with v € X}, i.e., we have one node iy, with Xy = Ugery | vexy) X;.
Repeat this procedure with all subtrees in the forest, obtained by removing the set
{j €T |ve X]} from T

Let XT" be the resulting tree-decomposition. The width of X T" is at most
(2d—1)(k' +1)? — 1, and the rank of T is at most (2d — 1)(K' +1)r', as we identify
never more than (2d — 1)(k’ + 1) nodes.

Suppose j is a node in T, that is not the root of T". Suppose i is the root
node in T" of the subtree that was contracted to j. It follows that v € Xi,, hence
all nodes #' in T' with v € X that are a descendant of iy are contracted with ip to
j. So j is a leaf in T/. As nodes in T}’ are either leaves or roots of T/, the height of
T! is at most one. O

Theorem 9 For every k, 7, d € N, there exist K/, r" € N, such that for every
graph G = (V, E) with mazimum degree < d and for every tree-decomposition XT
of G of width < k, with the rank of T <, there exists a domino tree-decomposition
XT = ({X!|ieI'},T' = (I',F)) of G of width < k' with the rank of T' < 7',
Moreover the height and size of T' are at most the height and size of T, respectively.
Proof: First apply Lemma 8. Let XT' be the resulting tree-decomposition with
width < k' and rank < 7. Then apply the following operation: identify all nodes
that have a common parent in T”. Let XT" be the resulting tree-decomposition,
see Figure 4. The rank of 7" is at most 72 and the width of XT" is at most
7 - (k' +1) — 1. Moreover, each T,’ consists of at most two nodes. O

Corollary 10 For every k, d € N, there exists k' € N, such that every graph with
treewidth at most k and mazimum degree at most d has domino treewidth at most k'
Moreover, gwen a graph G = (V, E) with treewidth at most k and mazimum degree
at most d, one can find a domino tree-decomposition of width at most K i O(|V])
time.

Proof: It is well known that a graph with treewidth k has a tree-decomposition of
width k and of rank 2. The first part of the result now follows directly from Theorem
9. One can find a tree-decomposition of G with width < k and with O(|V{) nodes

12

Figure 4: Example of operation in the proof of Theorem 9

in O(|V|) time [4]. It is easy to transform this tree-decomposition into one with the
same width and of rank 2 in O(|V|) time. The constructions, described in the proofs
of Lemmas 4, 5, 7, 8, and Theorem 9 can be carried out in O(|V|) time in total.
(Each of the described operations costs O(|I]) = O(|V]) time, and at most 2k + 5
such operations are carried out.) O

Inspecting the proofs in this section, it can be seen that k' is double exponential
in k. We do not know whether this is optimal.

Corollary 11 For every k, d € N, there erists k' € N, such that every graph
G = (V, E) with treewidth at most k and mazimum degree at most d has a domino
tree-decomposition of width at most k' and with the height of the tree O(log|V]).
Proof: Using the algorithm of [16], one obtains a tree-decomposition of G with
width < 6(k + 1), and with the height of the tree O(log|V|). Observing this al-
gorithm, it follows directly that the rank of the tree is bounded by the maximum
number of components of a graph G[V — S] with |S| < 4(k + 1), which is at most
4(k+1)d, assuming that G is connected. (Otherwise, apply the algorithm separately
for every connected component.) So now we can apply Theorem 9. O

Corollary 12 For every class of graphs G, the following statements are equivalent:

1. There ezists a constant ¢ € N, such that every graph in G has domino treewidth
at most c.

2. There exist constants k, d € N, such that every graph in G has treewidth at

most k and mazimum degree at most d.

There is also a connection with the notion of strong treewidth, as introduced by
Seese [18].

Definition. A strong tree-decomposition of a graph G = (V,E)is a pair ({Xi |i€

I}, T = (I, F)) with {X; | i € I'} a collection of disjoint subsets of V, and T = (I, F)
a tree, such that

13

o Uier Xi = Vv

e for all edges {v,w} € E, either there is an i € I with v, w € X;, or there are
i, i € I, that are adjacent in T ((i,#) € F), and v € X;, w € Xy

The width of a strong tree-decomposition ({X; |7 €1 1L, T = (I, F)) is maXer | XGi).
The strong treewidth of a graph G = (V,E) is the minimum width over all strong
tree-decompositions of G.

Note that in general, a strong tree-decomposition of a graph G, is not a tree-
decomposition of G. Note also that every tree has strong treewidth 1 (take {X; |7 €
I} to consist of all singleton vertex sets).

As observed in [18], every graph of strong treewidth < k is of treewidth <
ok — 1. However, there is a set of graphs of treewidth 2, that is of unbounded strong
treewidth. As an example, consider the set of all paths with one additional vertex
that is adjacent to all vertices of the path. It is not difficult to see that if such a
graph has a strong tree-decomposition of width k, then the tree has height at most
1, and the graph has at most k(k 4 1) vertices. A similar example is the set of all
‘«wheels’. However, if a graph has bounded treewidth and bounded degree, then it
is also of bounded strong treewidth.

In fact, a domino tree-decomposition of width < k can easily be turned into a
strong tree-decomposition of width < k+ 1. if T, is a tree with two nodes i and
j with j the child of i, then remove v from X;. It is straightforward to check that
this procedure gives a strong tree-decomposition. Thus, the following extension of
Corollary 12 follows.

Corollary 13 For every class of graphs G, the following statements are equivalent:

1. There exists a constant c € N, such that every graph in G has domino treewidth
at most c.

9. There erist constants k, d € N, such that every graph in G has treewidth at
most k and mazimum degree at most d.

9. There exist constants k', d € N, such that every graph in G has strong treewidth
at most k' and mazimum degree at most d.

4 Algorithms for determining domino treewidth

4.1 Domino treewidth of trees

It is easy to see that every tree T has domino treewidth < d — 1, where d is the
maximum degree of T'; thus, its domino treewidth lies between %d and d — 1.

14

In this subsection we show that there exists an O(kn) time algorithm to deter-
mine whether the domino treewidth of a given tree is at most k. We use dynamic
programming to do this.

Let T = (V, E) be a tree. Choose an arbitrary vertex r € V, and consider T" as
a rooted tree with r as root. Denote the subtree of T, formed by a vertex v and all
its descendants by T(v) = (Va, Ev).

For each vertex v € V, let Wi(v) be defined as the minimum, over all domino
tree-decompositions ({X; | ¢ € I}, T = (I ,F)) of T(v) of width at most k, of the
minimum size of a set X; with v € X;. Wi (v) is 00, if there does not exist a domino
tree-decomposition of T'(v) with width at most k.

To test whether T has domino treewidth at most k, we compute for all v € v,
Wi(v), in a bottom-up order. Clearly, the domino treewidth of T is at most k, if
and only if Wi (r) # 0.

Suppose k > 1. For a leaf vertex v, one can observe directly that Wi(v) = 1.

We now describe how we can compute Wi(v) of a vertex v, given the values of
Wi(ws), - - -, Wi(wp), for the children wy,...,w, of v.

Proposition 14 Wj(v) = min{l + Yies Wi(w;) | S € {1,...,p}, jes We(w;)
<k AXjeQ,..p}-5S Wi(w;) < k}.

Proof: Consider a set S C {1,...,p}, such that 3jes Wi(w;) < k and
Yie{lp}—8 Wi(w;) < k. For j, 1 < j < p, take a domino tree-decomposition of
T(w;) with a set Xp; containing w; and of size Wi(w;). Now, merge these domino
tree-decompositions in the following way: take two new nodes 7o, 43 with an arc
between them. Put v in X;, and in Xj;. Identify all nodes hj, with j € S, with
io (s0, Xiy = {v} UUjes Xn;). 1dentify all nodes h;, with j € {1,...,p} — 5, with
i1 (50, Xi, = {v} YUjeqr,..p)-5 Xhp,;). The resulting domino tree-decomposition is a
tree-decomposition of T'(v), with width at most k, and with a set, containing v of
size 1 + T jes Wi(w;).

Now, suppose we have a domino tree-decomposition {X;|ieI}, T =(I,F))of
T(v) of width at most k with the minimum size of a set X; with v € X;. There must
be at most 2 nodes, say 4; and iy of which the sets contain v. (If there is only one such
node, add a new node i with Xy = {v}.) Let S = (G lw; € Xi,}. As ({XanVa, |1 €
I},T = (I,F)) is a domino tree-decomposition of T'(w;) of width at most k, it
follows that X;, contains at least Wi(w;) vertices from T(w;) for each j € S. So
1Xi,] > 1+ Tjes Wa(w;). Since Xy < k + 1, this implies that ¥;es Wi(w;) < k.
With similar arguments one can show that |X,| = 1+ eq,..p}-5 Wi (w;) and that
Tiett,..pp-s We(w;) < k. O

Finding the set S which achieves the minimum value, as described in Proposition
14 above, when given the values Wi (w;) for all children of v, corresponds to an
instance of a variant of the KNAPSACK problem, and can be solved by a standard
dynamic programming algorithm in O(p - k) time. (See e.g., [15], Chapter 5.) So,
Wi(v) can be computed in O(deg(v) .k) time, given the values Wi (w;) for all children
of v.

15

The total time to compute Wi(r) hence is O(Xyev deg(v) - k) = O(k - |VI|):
compute successively all values Wy (v), in a bottom-up manner in the tree.

Theorem 15 There exists an O(kn) algorithm to compute whether the domino
treewidth of a tree with n vertices is at most k.

The algorithm can output a corresponding domino tree-decomposition within
the same time bounds.

To find the domino treewidth of a given tree T, one can do binary search on the
value of k, and use the procedure described above. This approach costs, in the worst
case, O(n*logn) time. We conjecture that some improvements will be possible to
this bound.

4.2 Fixed parameter algorithms

In this section, we show that the problem whether the domino treewidth of a given
graph G is at most k, for constant k, is solvable in polynomial time. Our algorithm
has a similar structure as the O(n*+?) algorithm from Arnborg et al [2] to recognize
graphs with treewidth at most k. The additional technicalities are involved.

For R C V, GIR] = (R, {{v,w} € E | v,w € R}) denotes the subgraph of
G = (V, E), induced by R.

Forsets SCV,BCS,DC{{v,w}€E | v € S}, define

R(S, D) = {v € V| there exists a path from v to a vertex in S that does
not use edges in D}

Py(S,D,B) ¢ there exists a domino tree-decomposition ({X; | i €
I}, T = (I, F)) of G[R(S, D)] with width at most k, such that there
exists an ip € I with X;, = Sand forallz €[it ip=> X;NB=40.

Note that if v € R(S, D) — S, then v can only be adjacent to vertices in R(S, D).
From now on we assume (w.l.o.g.) that the node sets of a tree-decomposition are
non-empty.

Lemma 16 Let G = (V, E) be a connected graph. The domino treewidth of G s
at most k, if and only if there exists a set SCVuwithS#0,|S| <k+1, and
P(S,0,0).
Proof: =: Take a domino tree-decomposition (X;liel}, T=(,F)) of G
with width at most k, and take S = X; for an arbitrary ¢ € 1.

«: Note that R(S,®) = V. The result now follows from the definition. O

Note that P(S, D, B) is true if [S| <k +1 and R(S,D)=S.
Lemma 17 Let G = (V,E) be a connected graph. Let S €V, B C S, D C

{{v,wy€eE|veS}H S# 0, |S| <k+1, and R(S,D) #S. Pi(S, D, B) is true, if
and only if at least one of the following two properties holds:

16

1. 38' C R(S,D):3D' C {{v,w} € E | veS'}:

o |S'|<k+1
o S'£0
e BNS' =0

e ~JvesS -S:IweS-5:{v,weE
P.(S',D',SNS")

R(S,D) = R(S', D')u(S -5
(S—SYNR(S,D)=0

|R(S’, D")| < |R(S,D)| or (B = 0 and SNS' #0)

9. 3D, C {{v,w} € E|v € S} 3Dy C {{v,w} € E|v € S} 3B & S:
3B, C S:
e R(S,D,)U R(S,D;) = R(S,D)
e R(S,D;) N R(S, D;)=3S8
e |R(S, D1)| < |R(S, D)|
|R(S, D2)| < |R(S, D)|
Pi(S, D1, By)
Pi(S, D3, By)
e S=BUB
e BC BiUB,

Proof: =>: Suppose P(S, D, B) holds. Let ({Xi |7 € I},T = (I, F)) be a domino
tree-decomposition of G[R(S, D)] with width at most k, and let 5o € I such that
X;, = S and for all i #£ig: XsNnB=40.

Note that if v € U;er Xi — S, then v can only be adjacent to vertices in User X
if {v,w} € E and v € R(S,D) - 5, then we have w € R(S, D).

Let r be the number of neighbors of 4 in T'. As R(S,D) # S, we have that
r > 0. We consider two cases.

Case 1.

Suppose r = 1. Let i; be the unique neighbor of 49 in 7. We will show that the first
property, mentioned in the lemma holds.

Take S’ = X;,. Write W = Uier—{io} X, = R(S,D)— (S - 5"). Take D' =
{{v,w}e E|ve S, wgW}

Proposition 18 R(S',D")=W.

17

Proof: We first observe that vertices in W — S’ can only be adjacent to vertices in
W. In fact, let v € W — S’ and {v,w} € E. Since the tree-decomposition is domino,
v &S and sow € R(S,D). Using the definition of tree-decomposition, it follows
that w ¢ S — S'. Hence w € W.

Suppose v € R(S', D')—W. There exists a path from v to a vertex in S, avoiding
edges in D', say v, V1, . - -, Vsy ¥ = V0, Us € S'. Let v; be the last vertex on the path
that does not belong to W. j # s, because S' C W. Now {v;,vjs1} € E, v; & W,
vjy1 € W. Using the above observation, it follows that v;,1 must belong to S,
which contradicts the fact that {v;,v;11} € D'. So, R(S',D'YCW.

Suppose v € W. As G is connected, there is a path in G from v to a vertex in
§' et s be the first vertex in S’ on this path. By the above observation, the path
up to s does not use edges in D', so v € R(S',D'). O

From the proposition, it follows directly that (S—-SYNR(S, D)= @, and that
R(S,D) = R(S',D')u(S— S". Clearly, |S'| < k+1, S'# 0.

Py(8',D',S N S') holds: consider the domino tree-decomposition ({X; | ¢ €
I —{io}}, Tl — {io}])-

fveS —SandweS— 5, there is no X; containing both v and w, so by
definition of tree-decomposition, {v, w} ¢ E.

Finally, we consider two subcases:

Case 1.1. S C S'. Now R(S',D') = R(S,D), B=0,and SN ' =S #0.
Case 1.2. S ¢ S'. Clearly, now |R(S', D')| < |R(S, D)| holds.

Case 2.

Suppose r > 2. Let 4,..., % be the neighbors of 4, and let Ty = (I, F),..., T, =
(I, F,) be the subtrees of T [I — {4o}], such that T; contains the node i;. Write
I'=ILU-UL_, I"=I, Wi = Uier Xi U X, Wy = Use Xi U Xip. Using the
properties of tree-decompositions, we have that W, N W, = X,. Vertices inW,—-S
can only be adjacent to vertices in Wy; vertices in Wy — S can only be adjacent to
vertices in Ws.

Now take:

D, = {{v,'w}eElvES,w¢W1}
D, = {{v,w}EElvES,w¢W2}
B, = {veS|Viel:v¢X;}
B, = {veS|Viel:v¢Xi}

Similar as was done in Case 1 of this proof, one can show that Wy = R(S, D)
and W2 = R(S, D2) Now R(S, D) = W1 (@] W2 = R(S, Dl) U R(S, D2) R(S, Dl) N

18

R(8,Dy) = Win W, = Xy = S. As Uier X # 0 and Uier Xi # @, we have
R(S, D) — R(S, Dl) = UieI” Xi ?é @, and R(S, D) - R(S, D2) # @

Py(S, D1, B1) holds: look at the domino tree-decomposition ({X;|ielU
{io}}, TI'U{io}]). By definition of By, X; B, = 0 for all i € I'. In the same way
it follows that Pi(S, Ds, Bs) holds.

If v € S — By, then there exists an ¢’ € [! with v € Xy. When there exists also
an i" € I" with v € X, then v would belong to the three sets Xigy Xir, Xon. It
follows that v € S — B, implies v € Bs. Hence S = B, U Bs.

Finally, it is clear that when v € B, then alsov € By and v € By, so B C BiNBy.

This ends the analysis of Case 2, and of the = part of the proof.

«: First suppose we have sets S, D', fulfilling the first property mentioned
in the lemma. Write B' = SN S There exists a domino tree-decomposition
({Xi|i€I},T=(,F)) with width at most k of G[R(S', D)] with for some iy € I:
X;, =S’ and for all ¢ £4, XiNB' = 0.

Take a new node ip € I, and take X;, = S. Let T' be the tree, obtained by
making io adjacent to 4y in 7. We claim that ({X; | i € TU{io}}, T') isa domino
tree-decomposition for G[R(S, D) with Xi, = S, and for all i # 4, X; N B = 0.
Clearly, the width of this domino tree-decomposition is at most k.

First, Uicrugio} Xi = Uier X;UX;,, = R(S,\D')uS = RS, DYu(S-S) =
R(S, D). Secondly, if {v,w} € E,v,w € R(S, D), then

. ifv,weR(S’,D’):EieI:v,weXi.

oifve RS, D)weS—S, thenv € S'. Also, by assumption, v ¢ S’ — 5.
So v, w € Xiq-

o ifv,weS—95" v,we Xy

Using that S N R(S' ,D') C S, one easily verifies the third condition of tree-
decomposition.

Now we check dominoness. Vertices in .S — S’ only belong to X;, and to no other
set X;, i € I. Vertices in SN S’ belong to X;, and X;,, but, by assumption, not to
any set X;, i € I — {i1}. Clearly, all vertices in R(S, D) — S belong to at most two
sets X;, ¢ € I, and not to Xio-

Finally, for all v € B, and for all i € TU {ip}: if v € Xi, then v &€ S', v €S, so
v & R(S', D), hence i = 4. This ends the analysis of the case that the first property
holds.

Now suppose we have sets D, D,, By, B, fulfilling the second property men-
tioned in the lemma. Take domino tree-decompositions ({Xi |7 € LY, =, Fy))
of G[R(S, Dl)] and ({}/1, | 1 € I2},T2 = (Iz, Fz)) of G[R(S, D2)], with width at most
L and with for some 4, € Iy, iz € In: Xi, =Y, = S foriel; —{i}: XiNnB1= 0;
for i € Ig b {7,2} Xi N B2 = @

Let T be obtained by taking the union of T; and T> and identifying 4, and .
Whrite for i € I: Z; = X;, and for i € Iy: Z; =Y.

19

Consider the tree-decomposition ({Z; | i € Iy U Iz}, T). We claim that this is
o domino tree-decomposition of G[R(S, D1) U R(S, D,)] = G[R(S, D)] with width
at most k, such that Z;, = S, and for alie LulL —{ii}: BNZ; = 0. The
latter condition follows from earlier made assumptions, as B C B, N By Itis
straightforward to verify that we indeed have a tree-decomposition of width at most
k, using that R(S,D1) VU R(S, D,) = R(S, D), and R(S,D;) N R(S, Dy) = S.

Dominoness also holds: for v ¢ S, it follows directly that v belongs to at most
two sets Z;, 1€ [UL, Ifv € B,, then v does not belong to a set Z;, i € I, — {iz}.
So v belongs to at most two sets Z:, 1 € [LUI,, both with 7 € I;. A similar analysis
applies when v € By. This ends the analysis of the case that the second property
holds. O

Theorem 19 For fized k, there exists an algorithm, that checks whether a given
graph G with n vertices has domino trecwidth at most k in O(n?**3) time.

Proof: Since it clearly suffices to consider connected components, we may assume
that G is connected. First, we compute forall S C V with |S| < k+1, D C
{{v,w} € E | v € S}, the set R(S,D). Then, we sort all pairs (S,D) in order of
increasing size of R(S, D). In order of increasing size of R(S, D), we will compute
for all B C S, in order of decreasing size of B, the value of Pi(S, D, B). For this,
we use the result of Lemma 17. We check whether one of the properties holds. Note
that all values of Py, referred to in the characterization of Lemma 17 have been
computed before they are needed. The first property can be checked by looking at
all O(n**1) possible guesses for ', and all O(1) guesses for D'. (This number only
depends on the maximum degree of a vertex in G, and k; both may be assumed
to be bounded by constants.) For each such guess, the property can be verified in
O(n) time. The second property can be checked similarly. It follows that the time
per triple (S, D, B) to compute Px(S, D, B) is O(n¥*?). As we have O(n**1) triples
(S, D, B) to look at, the total time becomes O(n?+3).
Finally, we look up whether for any S, P«(S,0,0) holds. (Cf. Lemma 16.) O

The algorithm can be modified such that it outputs — when existing —a domino
tree-decomposition of the input graph with width at most k, and such that it still
uses O(n*+3) time.

It might be possible to improve the running time somewhat.

5 Hardness results

In this section, we show that the domino treewidth problem is Wt]-hard for all t €
N, where the notion of W{t]-hardness is taken from the work of Downey and Fellows
(see [11, 12, 13, 1]). Also, we prove the problem to be NP-complete. Both results
follow from the same transformation from LONGEST COMMON SUBSEQUENCE. To
be precise, we establish W{t]-hardness for the following problem:

20

e R R R I

DoMINO TREEWIDTH

Instance: Graph G = (V, E), integer k.
Parameter: k.

Question: Is the domino treewidth of G at most k7

The fact that domino treewidth is W{t]-hard for all t € N (as in the theory on
fixed parameter intractability, developed by Downey and Fellows), suggests strongly
that it is impossible to find algorithms for the domino treewidth < k problem
that use f(k)pol(n) time, i.e., where only the constant factor in the running time
depends on k. (Note that such algorithms do exist for some related problems, like
treewidth < k, pathwidth < k.) The classes W{t] denote classes of parameterized
problems: problems Q@ C {(k,s) | k € N, s € v*}, for some alphabet ¥, To
prove W t]-hardness for a problem P, it suffices to find a W{t]-hard problem Q and
functions f,h : N = N, g : N x v* — ¥* such that for all (k,s) € N x E*
(k,s) € Q <& (f(k),g(k,s)) € P, and f is any computable function, and g is
computable in time (k) - |s|° for some constant c. (Le., the time is polynomial in
the length of the non-parameter part of the input, but may depend in any way on
the parameter.)

The LONGEST COMMON SUBSEQUENCE problem is the following:

LoNGgEST COMMON SUBSEQUENCE

Instance: Alphabet ¥, strings s',...,s" € L*, integer m € N.

Parameter: 7.

Question: Does there exist a string in * of length at least m, that is
a subsequence of each string st,..., 8"

Very recently, it has been shown that LONGEST COMMON SUBSEQUENCE is
W t]-hard for all t € N [7, 8].

Theorem 20 For all t € N, DoMINO TREEWIDTH 15 W t]-hard.

Proof: We give a transformation from LoNGgEST COMMON SUBSEQUENCE.

Let an instance &, st,...,s", m of LONGEST COMMON SUBSEQUENCE be given.
We suppose we have a numbering of the characters in ¥, say £ = {01, .. , 01}

Let [= |E|, k=20r? +40r —1,¢ = m(Ir? +1).

We now define a graph G = (V, E), that consists of the following components:

Two anchors. Take two cliques, each with k + 1 vertices, with vertex sets A =
{a}|1§i§k+1}andA2={a3|1§i§k+1}.

The floor. Take g cliques of 2(k +1) = 872 + 16 vertices, {b? | 1 < i < 2(k+
1), 1 < a < ¢}. Take edges:

o (b0}, 1<a<q 1<4,j<g(k+1), 177

21

o {b2,027},1<a<g1<4,j< 2(k+1).

o {al,b1},1<4,j < 2(k+1).

R}
o {a,b?},1<4,j <3(k+1).
The number £ is chosen because 2 - 2<1,and 3 2> 1.

To ease presentation, we will denote vertices al with1 <¢< 2(k+1) also as v,
and vertices a? with 1 < i < 2(k +1) also as bIte,

The hills. We have m ‘hills’. Take vertices {cf; |1<a<m, 111 2, 1<
j < Lk +1) - (2r +1)}. Take edges:

o {czj,b(llrl’-{-l)-(a—l)—'ri}’ 1<a<m,1<i< 1.72,1<j < %(k +1) — (27« +1).

o {co, DY g <o <m, 1< <Lt 1S5S L(k+1) - (2r+1).

z)]’

Each hill, together with the adjacent floor vertices, represents a character of the
subsequence.

The string components. For each string s¢, 1 <1 < r, we have a string compo-
nent. Below, we describe the different parts for the ith string component. Suppose
st =sish. -5l

The string path. Take a path with I; - (Ir? + 1) + 2 vertices, and attach it to
aj and a: tal;e vertices {d} | 0 < j <L+ (Ir? +1) + 1}, edges {di,d% 1} {di,al},
{dli~(lr2+1)+1’ ai}.
The blobs. We take [; +1 cliques of 2r+2 vertices, and attach these to the string
paths. Take vertices {eial0<i<h, 1S §' < 2r +2}. Take edges:

o {e€), 05k 1< gt <2r+2,5 #4".

o {¢i,digo), 05 <l 1< <2r+2

L4 {e;,j’,dé.(1r2+1)+1}a 0 S .7 S li) 1 S jl S 2r + 2.

The idea is that blobs cannot come on top of hills. This forces a precise way
how the part between blobs falls over a hill (if it does). Each such part represents a
character in the string s*; the Ir? + 1 vertices in such a part are needed for symbol
checking.

22

1st anchor 2nd anchor

Isthiti ¢!

- : anchor (clique)
‘ : floor cliques

Figure 5: Anchors, floor, and hills.

1Ist character 2nd character

- : anchor (cligue)

S : string path vertices

% : blobs

Figure 6: The i-th string component: string path, and blobs.

23

The symbol checkers. These vertices are used to check that the chosen charac-
ters for the different strings are the same. Take vertices {f% ;_1)u+—ny+e | 1 S @ <
L, 1<j<r o0= s O{SfE onmanye | 1 S @<l 1S5 < 0r 7 st }. If ver-
tex f}, 5 exists, make it adjacent to the vertices di,_1yir241)4+8 and dig_1)ur241)4p4+1°

Let G = (V, E) be the resulting graph. Parts of this construction are illustrated
in Figures 5 and 6. We denote: B* = {b¢ | 1<i < }(k+ 1)}, C*={c}; |1 <i <
L2, 1<j< k-1 ~@+1}Ce={cg;|1<5<3(k—1)—(2r+1)}, and
Ei={ei; |1<j <2r+2}.

Proposition 21 The domino treewidth of G is at most k, if and only if s',...,s"
have a common subsequence of length at least m.

Proof: =: Suppose ({X; |i € I},T = (I, F)) is a domino tree-decomposition of G
of width < k. First, note that there must be nodes ho, with A; C Xp,, A2 C Xp,
(Lemma 3). Consider the path in T' between ho and h.,, and number the nodes on this
path consecutively hg, b1, he, ..., hy-1, hy. In fact, as |A1| = |A2| =k +1, A1 = Xp,
and Ay = Xp,. It follows that all vertices of the form a} or b}, 1<4,5< %(k + 1),
must be element of Xj,: these form a clique, which (by Lemma 3) must be contained
in a node-set of a node, adjacent to hg (by dominoness), and by Lemma 1, it cannot
be another node than h; (because there is a path in G from a vertex b} to a vertex
in A, that avoids vertices in A;).

Now, we claim, with induction to «, that for all j, 1 < j < %(k +1), b7 and b‘}‘“
are in X,,,. We know this holds for & = 0. Let 0 < a < ¢. All nodes b3 and b‘;ﬂ'l
form together a clique. By Lemma 3, there is a node #', with X; containing this
clique. i # hq, otherwise Xj, contains too many vertices. Hence ¢ is a neighbor of
ho (by dominoness). If i’ # hqq1, then note that there are 2(k + 1) vertex disjoint
paths from vertices in the set {63 | 1 < j' < 2(k + 1)} to vertices in the set Ay,
that avoid vertices of the form b;?“l or b%. By Lemma 1, this gives in total (k+1)
vertices that belong to X3, contradiction. So, all nodes of the form 5% and b;-",“
belong to X4, ,,. It follows that v = ¢ + 2.

For each hill vertex c;, note that thereis a unique node containing the neighbors
of the vertex, namely h(q_1)(r2+1)+i+1, SO cg; € Xn (1))t For each blob, there
must be a node, containing all vertices in the blob (as it is a clique). However, such
a node cannot be a node of the form h(,—1)@r2+1)+i+1, 8 the number of hill vertices
plus the blob size plus the number of floor vertices that would belong to the node
would be larger than k + 1. Call nodes of this form hall nodes. Nodes of the form
ho(ir241)41 are called wvalley nodes.

Note that each hill node also contains at least two vertices per string path (be-
cause of Lemma 2). These 2r vertices, with the hill vertices and the floor vertices
give in total k vertices, so only one extra vertex is possible.

Consider a blob, with vertices E = {e}; | 1 < j' < 2r +2}. There must be
a node 7' € I, with E; U {dj(l,2+1),dj(l,z+1)+1} C Xy (Lemma 3). We have already

24

argued that i’ is not a hill node. Suppose i" is the first node on the path from ' to
ho that is also on the path from hg to h,. We claim that ¢” is a valley node. If ¢ is
a valley node, then we are done, as in that case i’ = i". Suppose 4’ is not a valley
node, hence i’ is not on the path from hg to h,. It follows that X;» must contain at
least four nodes of the ith string path (Lemma 2), and, hence, that 3" cannot be a
hill node, so must be a valley node. Write f(i,j) = a, if the node i" as above is of
the form hqr241)+1- It is easy to see that o does not depend on the choice of 7.

Note that f(4,5) < f(i,j +1); if not, then the string path between blob E; and
blob E},; must go back over a hill: that hill then gets too many string path vertices
in its node sets. We also must have f(i,0) =0, and f(i,l;) = m. So, for each i,
there are exactly m values 8%,85,...,0},, with § < 8 < -+ < &, and for all p,
1<p<m: f(i,65—1)=p—1and fG,8)=p

We now claim, that all subsequences sg,i sg; ro- S are equal. Consider the two
characters sfs; = g and séi = 0. We must show these are equal.

Write p = (p—1)(Ir?+1)+1,and o' = p(ir? +1) + 1. h, is the valley node, just
before the pth hill, and h, is the valley node just after the pth hill. X}, must contain
a vertex dzé;', 1)(r241) 414 for some € > 0. Xj , must contain a vertex dfs;-] (Ir241)—¢! for
some ¢ > 0. Note that the distance in T' between h, and hy equals the length of the
path between these vertices for ¢ = € = 0, plus one. From dominoness, it follows,
that for all 3,0 < 3 < I72, we must have that d€5;_1)(lrz+1)+1+ﬂ € Xh,yp N Xn
A similar analysis holds for the nodes on the jth string path.

In particular, we have that " = Rpi (=)l (G-1)i+t 18 the unique node that con-

p+B8+1"°

tains dia;‘,-1)(zr2+1)+(¢—1)r;+(j—1)z+t and digi _1y(r241)+ -1+ (G- Dl and is the unique

. j g
node that contains i ;a1 Gi-nris-1ie and &y 10241y 4Gl G- DAL

] J LR =1
Both f3 (i-1yri+(-1i+t and f&;’,,(i—nrz Lo when existing, must belong to i"'. As
i is a hill node, they cannot exist both, otherwise X, contains too many vertices.

i : — i, J
As fa;,,(i—1)rz+(j—1)z+t exists (we assumed oy = 35;), we have that f&g,,(i—l)rl+(j—1)t+t

does not exist, and hence that sf;; =0y = sfs;-’ :
It follows that all subsequences sti st; +-+s% are equal, hence the strings s,
1 < i < r have a common subsequence of length m.
«: Suppose subsequences sfsg sf% e st;',, of strings s are all equal. We show how
to construct a domino tree-decomposition of G of width k. First, we take nodes ho,
.+ hqto, forming a path. Put all vertices of A; in Xp,, all vertices of Az in Xp s
and all vertices of the form b (0 <a<g+1,1<1< 2(k+1)) in Xn, and Xpoy;-
Next, put each hill vertex in the unique node set that contains the neighbors of
the hill vertex, i.e., put cf; in Xh(a_l)(lr2+1 i
Let 1 < 7 < . We now consider the 2t string component. Forall p, 1 <p <m,
B, 0 < B < l"'2a P“lt dza;—1)(lr2+1)+1+ﬁ in Xh(p—l)(l'r2+1)+l+ﬁ, and in Xh(p-1)(zr2+1)+2+ﬂ'
Put the vertices {ef;;-D 1 |1<j<2r+2}in Xh(p—l)(l'r2+1)+1’ and put the vertices

25

{egl1<i<2r+ 2} in Xn 2,10 I 8, +1 # 0}, we must ‘fold’ the part from
the 7th string component between what is put on top of the pth hill and what is on
top of the (p+ 1)st hill. First, we define sets Y, §-(Irt+1) <5< 884y - (Ir? + 1),
and put (for j in this range), d and d,, in Y. Also, for each blob and symbol
checker vertex v, if their neighbors belong to some set Y, put v in Y;. Note that the
maximum size of a set Y; is 2r + 4. The sequence of sets Y}gg.(l,,zﬂ), e ,Y,;;“_(lrzﬂ)
forms a domino tree-decomposition, with the tree being a path. Note that the first,
and the last set of this domino tree-decomposition are contained in Xn 5 ., We
now take [3(6% - (Ir? +1) — (814, - (Ir* 4+ 1)) — 1)] new nodes, by identifying the
second and one but last node of the node sets Y, the third and the second but last
node of the node sets Y, etc, i.e., we take sets ;= Yg;.(lrz_l_lHt U Y(;;;H,(l,,zﬂ)_t, and
make the new node with set Z; adjacent to the node with set Z;,1 in the tree 7'
Also, make Z; adjacent to hp(ir2+1)+1. Further, put vertices ep ;» and di in Xp,, put
el and dj g2 1y41 1D X4, and ‘fold’ the first and the last part of the ith string
path, in case &} # 1, or 4, £ [;, respectively.

Finally, symbol checker vertices that are not yet placed are put in that set that
contains both its neighbors.

It is a tedious but rather straightforward verification, that the construction above

gives a domino tree-decomposition of G with width k. We just note that X houn2 4141
contains at most 2(k +1) +2r(2r +4) = 4(k+1) + 3(k +1) vertices. U

The theorem now follows from the transformation, given above, and the fact that
LONGEST COMMON SUBSEQUENCE is W[t] hard for all t € N (7, 8]. O

Theorem 22 DOMINO TREEWIDTH S NP-complete.

Proof: Membership in NP is trivial. Observe that the transformation, given in the
proof of Theorem 20, is a polynomial time transformation from the NP-complete
LONGEST COMMON SUBSEQUENCE problem to DoMINO TREEWIDTH. Hence, the
latter is NP-complete. U

6 Conclusions

In this paper, we considered the notion of domino treewidth. We showed a corre-
spondence between bounded domino treewidth, and bounded degree and treewidth,
and obtained several results on the complexity of determining the domino treewidth
of a given graph.

We believe the notion of domino treewidth can be of use for other investigations
in the (algorithmic) theory on the treewidth of graphs. For instance, having a
domino tree-decomposition of logarithmic height, and of bounded width allows easy
schemes for some problems on graphs that can be changed dynamically under the
operations: delete an edge, change the weight or label of a vertex or edge, where

26

each such operation takes logarithmic time: for many problems, there are algorithms,
solving these problems in linear time, of the type, where for each node ‘something’
is computed, and this information can be computed, given the information for the
children of the node in constant time. For many problems, it is easy to see that
when the graph is changed by an edge deletion or a weight or label change of an edge
or vertex, for nodes that do not have an endpoint of the edge involved or the vertex
involved in its node-set, and this holds also for all its descendants, the information to
be computed is not changed. So, when we have a domino tree-decomposition, only
O(logn) nodes must have their information recomputed, so the update can be done
in O(logn) time. Unfortunately, the large constants involved make this scheme
impractical. Other approaches for dynamic algorithms on graphs with bounded
treewidth, which may be more practical, can be found e.g. in [6, 10].

References

[1] K. A. Abrahamson, R. G. Downey, and M. R. Fellows. Fixed-parameter
tractability and completeness IV: On completeness for W[P] and PSPACE
analogues. Technical Report DCS-216-IR, Department of Computer Science,
University of Victoria, Victoria, B.C., Canada, 1993.

[2] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embed-
dings in a k-tree. SIAM J. Alg. Disc. Meth., 8:277-284, 1987.

[3] H. L. Bodlaender. Some classes of graphs with bounded treewidth. Bulletin of
the EATCS, 36:116-126, 1988.

[4] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of
small treewidth. In Proceedings of the 25th Annual Symposium on Theory of
Computing, pages 226-234, New York, 1993. ACM Press.

[5] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1-
23, 1993.

[6] H. L. Bodlaender. Dynamic algorithms for graphs with treewidth 2. To appear
in proceedings WG'93, 1994.

[7] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and H. T. Wareham. The
parameterized complexity of sequence alignment and consensus (extended ab-
stract). To appear in: proceedings Conference on Pattern Matching '94, 1993.

[8] H. L. Bodlaender, M. R. Fellows, and M. Hallett. Beyond NP-completeness for
problems of bounded width: Hardness for the W hierarchy. Manuscript. To
appear in: proceedings STOC94, 1994.

27

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

H. L. Bodlaender and R. H. M6hring. The pathwidth and treewidth of cographs.
SIAM J. Disc. Meth., 6:181-188, 1993.

R. F. Cohen, S. Sairam, R. Tamassia, and J. S. Vitter. Dynamic algorithms for
optimization problems in bounded tree-width graphs. In Proceedings of the 3rd
Conference on Integer Programming and Combinatorial Optimization, 1993.

R. G. Downey and M. R. Fellows. Fixed-parameter tractability and complete-
ness I: Basic results. Manuscript, 1991. To appear in SIAM J. Comput.

R. G. Downey and M. R. Fellows. Fixed-parameter tractability and complete-
ness II: On completeness for W[1]. Manuscript, 1991. To appear in Theoretical
Computer Science, Ser. A.

R. G. Downey and M. R. Fellows. Fixed-parameter tractability and com-
pleteness I1I: Some structural aspects of the W hierarchy. Technical Report
DCS-191-IR, Department of Computer Science, University of Victoria, Victo-
ria, B.C., Canada, 1992.

J. Engelfriet, L. M. Heyker, and G. Leih. Context-free graph languages of
bounded degree are generated by Apex graph grammars. Technical Report 91-
16, Department of Computer Science, Leiden University, Leiden, the Nether-
lands, 1991. To appear in Acta Informatica.

E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms. Pitman,
London, 1978.

B. Reed. Finding approximate separators and computing tree-width quickly.
In Proceedings of the 24th Annual Symposium on Theory of Computing, pages
221-228, 1992.

N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of
tree-width. J. Algorithms, 7:309-322, 1986.

D. Seese. Tree-partite graphs and the complexity of algorithms. In L. Budach,
editor, Proc. 1985 Int. Conf. on Fundamentals of Computation Theory, Lecture
Notes in Computer Science 199, pages 412-421, Berlin, 1985. Springer Verlag.

28

