A Stratified Simulation Scheme for

Inference in Bayesian Belief Networks

R.R. Bouckaert

UU-CS-1994-16
March 1994

Utrecht University

Department of Computer Science

Padualaan 14, P.O. Box 80.089,
3508 TB Utrecht, The Netherlands,
Tel. ; ... + 31 - 30 - 531454

A Stratified Simulation Scheme for

Inference in Bayesian Belief Networks

R.R. Bouckaert

Technical Report UU-CS-1994-16
March 1994

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 0924-3275

A Stratified Simulation Scheme for Inference in Bayesian Belief
Networks

Remco R. Bouckaert

Utrecht University
Department of Computer Science
P.0.Box 80.089 3508 TB Utrecht, The Netherlands
remco@cs.ruu.nl

Abstract

Simulation schemes for probabilistic inference in Bayesian belief networks offer many
advantages over exact algorithms; for example, these schemes have a linear and thus
predictable runtime while exact algorithms have exponential runtime. Experiments have
shown that likelihood weighting is one of the most promising simulation schemes. In this
paper, we present a new simulation scheme that generates samples more evenly spread
in the sample space than the likelihood weighting scheme. We show both theoretically
and experimentally that the stratified scheme outperforms likelihood weighting in average
runtime and error in estimates of beliefs.

Keywords: Bayesian belief networks, evidence propagation, simulation, stratification.

1 Introduction

Simulation schemes [1, 8, 11, 12] offer simple and general-purpose procedures for inexact
probabilistic inference in Bayesian belief networks. The basic idea underlying these schemes
is to generate a set of samples and to approximate beliefs of various variable values by the
frequency of appearance in the sample.

Exact inference in Bayesian belief networks has been proven NP-hard, [2]; so, exact algo-
rithms [9, 10, 13] all have an exponential in the number of variables complexity. Though when
demanding a certain accuracy in beliefs, runtimes of simulation schemes are also NP-hard [5],
the runtime is linear in the number of samples and variables.

The complexity of exact methods strongly depends on the topology of the network; es-
pecially when many loops occur in a network, the performance of exact methods decreases
dramatically. However, for simulation schemes the topology of the network does not matter.
In many applications exact inference may not be necessary since, due to inexactness of the
probability assessments in the network, approximate beliefs suffice.

However, observation of values of variables and propagation of this evidence tends to
decrease the performance of simulation schemes; many samples may be very non-specific for
the observed situation and only a small portion of the samples may influence the estimates of
beliefs. Therefore, it is important that a simulation scheme generates a lot of samples evenly

distributed over the sample space. Generating such samples in an efficient way is the topic of
the present paper.

In Section 2, we review some of the most popular simulation schemes in a general frame-
work. In Section 3, we present a new scheme based on a popular statistical technique called
stratification. The complexity and several optimizations of this scheme are described. In
Section 4, we present experimental results comparing various simulation schemes. We end
with conclusions in Section 5.

2 Simulation Schemes for Bayesian Belief Networks

Let U = {z1,...,%a}, n > 1, be a set of variables; for simplicity we assume the variables are
discrete. A Bayesian belief network B over U is a pair (Bs, Bp) where the network structure
By is a directed acyclic graph with one node for each variable in U. Bp is a set of conditional
probability tables. For every variable z; € U, the set Bp contains a conditional probability
table P(z;|m;) that enumerates the probabilities of all values of z; given values of the variables
in its parent-set m; in the network structure Bs. The probability distribution represented by
such a belief network B is [,,cv P(2ilm), [10]-

Let E be the set of values of observed variables. Inference in a belief networks amounts
to calculating the beliefs Bel(z) in each variable z, that is the probability of the values of
each variable given E, P(z|E). Simulation schemes aim to approximate these beliefs by
randomly generating samples. A sample is a value assignment to all variables in U, also
called instantiation. The scheme keeps track of the relative frequency of variable values in
the samples called the score.

In Figure 1, a general sampling algorithm is depicted which we will use as a general
framework to describe various simulation algorithms. Depending on the method of sample
generation, an initialization procedure is executed. Then, m samples are generated and for
each generated sample S, the quotients of the probability of the instantiation, P(S), and the
probability of generating the instantiation, P(selecting §), is calculated. With this value, the
score is updated. Eventually, the scores are normalized to obtain the beliefs.

First, we concentrate on methods for generating samples and initialization, and turn to
scoring methods shortly. Henrion [8] introduced a sampling algorithm for belief networks.
The value assignments of the separate variables are chosen equiprobable; the probability of
selecting an instantiation therefore is equal for all instantiations. No initialization is performed
for this scheme. A slight optimization is to generate only values for the variables for which no
evidence has been obtained. These variables get assigned their observed value in each sample.
The value of p is calculated by [1,,cv\g P(zilm). We call this scheme the simple scheme.

Another method of generating samples was proposed in [8]. First, values for the root nodes
of the network are generated with probabilities equal to the probabilities of the probability
table first. Then, for the nodes of which all parents have been assigned a value values are
generated with probabilities equal to the chance of these nodes given the values assigned to
their parents. For this procedure it is handy to have a topological ordering on the variables
which needs to be calculated during initialization. Again, evidence nodes are assigned their
observed values in each sample. The value of p is calculated by [1..ce P(xilm:). We call this
method likelihood weighting. This method is also known as logic sampling [8] and evidence
weighting [6, 12].

The last method considered here was proposed by Pearl [11] which relies on Markov
blankets. The Markov blanket Bl(z;) of a node z; consists of the parent-set of z;, the children
of z; and the parents of these children except for z; itself. In this method, a sample is not

Initialize

for i « 1 to m do
S « generate sample
p « P(8)/P(selecting 5)
Score(S, p)

Normalize scores

Figure 1: General Sampling Algorithm.

generated independent of the previous samples. When generating a new sample the previous
sample is taken into account: the new value of a node z is chosen with probability proportional
to the product of probabilities in its Markov blanket Bl(2), [..epie) P(xilm:). Note that the
probability of selecting a sample § is P(S),so p = 1. Asin the other methods, evidence
nodes are assigned their observed value. We call method procedure Pearl’s scheme.

We consider two scoring methods; simple scoring and Markov blanket scoring. Simple
scoring is done by adding the value p yielded by the sample generating method for a sample
§ to the score of each variable with the value it has in S. A more effective approach [11] seems
to add p to every value of the variable weighted by the probability of its Markov blanket.
The latter method will be called Markov blanket scoring. For the simple and likelihood
weighting scheme extra work needs to be done when Markov blanket scoring is used namely the
calculation of the product of the probabilities over the Markov blankets. However, for Pearl’s

scheme these probabilities are already available, so little extra work needs to be performed
for this scheme.

3 A Stratified Simulation Scheme

Stratification is a popular statistical technique for obtaining samples that are more uniformly
spread in the sample space. A description can be found in any basic book on sampling. The
basic idea is to divide the sample space into so-called strata, and choose in each stratum
a given number of samples. Such samples represent the distribution better than randomly
chosen samples, because it is not possible that no samples are taken from a large area of the
sample space. So, less samples are required for a similar error in estimates. There is a large
freedom in selecting strata. In our approach, we will split the sample space into m equally
likely strata an choose one sample from each stratum. As in Pearl’s scheme, we allow some
dependence among samples. This dependence makes it possible to generate the samples faster
than in the simple, the likelihood weighting and Pearl’s scheme.

3.1 Stratification for Bayesian Belief Networks

Let the variables in U be ordered zi,...,%n. For ease of exposition, assume all variables to
be binary taking values from {0, 1}. Then, instantiations of U can be ordered according to
0 < 1 taking order of variables in account. With each instantiation S of U we associate an

abc

1
1(111)
08 < 1(110)
s (101
0.5—L(100)
1(011)
P(clab) = 0.9 0.32
P(cla=b) = 0.5 1(010)
P(c|-ab) = 0.5 0ist < I(001)
P(c|ma—b) = 0.1 . 1(000)

Figure 2: Belief network and corresponding intervals.

interval I(.9) defined by,
I1(8) = [1o(5), hi(5)),

where lo(8) = P(U < §) = Ygics P(5'), and hi(S) = lo(S) + P(S). The unit interval is
divided into subintervals and every instantiation of U is assigned such a subinterval. Alter-
natively, every number 7 in the unit interval corresponds to an instantiation 5 of U such
that r € I(S). For example, let U = {a,b,¢} and let P(U) be defined by the Bayesian
belief network depicted in Figure 2. Suppose that the variables are ordered a,b,c, we have
for the values @ = 0, b = 1, and ¢ = 0, that is instantiation S = 010, the interval 1(010)
associated with S which is [0.15,0.325). Since lo(S) is P(000) + P(001) = 0.15 and hi(S) is
P(8) =0.5x 0.7 x 0.5 = 0.175 plus lo(S) which equals 0.325.

The stratified simulation scheme is based on using these intervals to determine samples. In
its simplest form, a number r is randomly chosen from the unit interval and the instantiation
corresponding to the interval that includes 7 is the sample generated. In our example, suppose
that the number 7 = 0.2345 is chosen. Then, 7 is in the interval [0.15,0.325) corresponding
to instantiation S = 010. So, the sample a = 0, b=1 and, ¢ = 0 is generated.

By imposing certain restrictions on the number chosen from the unit interval, a more
efficient simulation scheme is yielded. Suppose m random numbers are chosen in the unit
interval and these numbers then are considered in ascending order. Now suppose that the
numbers 7, = 0.2345, r, = 0.4567, and r3 = 0.6789 have been generated. The sample
corresponding to the first number is §; = 010, to the second §, = 011, and to the third
Ss = 110. Observe that for the samples S, and S, only the least significant bit has changed.
In general, when the random numbers are considered in ascending order, then only the k
least significant bits change and the n — k most significant bits do not. This property can be
exploited to get a more efficient simulation scheme. We only have to put computational effort
in assigning values to these least significant variables, while in the other simulations schemes,
all variables need to be updated. However, we need to do some extra work to determine which
variables need to be updated. To do so, we generalize the definition of intervals to apply to
prefixes of instantiations.

Let prefi(S), 0 < k < n, be the prefix of k bits of instantiation S. So, prefs(0111) is
011 and pref1(0111) is 0. Then, the intervals generalized to prefixes I(S) associated with

a ab abc

(11, 1(111) I(110
na| 45()

I;(10.} I(101

I{i00)

I(011)
Lo.) Ix(01. 0.325

1(0-- 1(010) %1(001)
15

0.135

0

0.56
0.5

I5(00.}] 1(000)

Figure 3: Intervals of prefixes.

instantiation S is defined by,
I(S) = [tox(5), hir(5)),

where loy(S) = P(prefi(S') < prefi(S)) = Loresi(s')<presi(S) P(8") and hix(S) = lox(S) +
P(prefie(S') = prefi(S)) = Lpresu(s)grresn(s) P(S"). Note that for k = n we have the original
definition for intervals, that is I;(S) = I(S), and for k = 0, we have the entire unit interval,
Io(S) = [0,1). Figure 3 shows the intervals for our example; I5(01.) starts at 0.15 since
P(prefo(S) < 01) = P(000) + P(001) = 0.15 and ends at 0.5 since P(prefo(S) = 01) =
P(010) + P(011) = 0.35. Also from this definition follows that I(S) C Ir-1(5).

Therefore, when we are looking for an interval that contains r; and we the previous sample
is instantiation S;_1, first we check if r; is in I,(S;-1). If it is not, we check if it is in I,_1(Si=1)
and so forth, until we find a k such that r; is in Ii(Si-1) = [lox(Si-1), hia(Si-1)). Now observe
that for all j, lo;(S;—1) is smaller than r;. So, only hi;(S;—1) need to be considered; looking
for k such that hip(Si—1) > 7 and higy < 7 is sufficient. Since hip(Si—1) is a descending
function of k, this procedure can be performed with binary search, which costs at most logn
operations (all logarithms in this paper are to base 2 unless stated otherwise). Note that this
procedure easily generalizes to non-binary variables.

However, we will not generate numbers randomly in the unit interval and then consider
them in ascending order. Instead, we divide the interval into m equal strata where m is the
number of required samples, and for each stratum we generate one random number 7;. This
procedure guarantees that the samples are uniformly chosen from the sample space.

3.2 An Algorithms for the Stratified Scheme

Based on these observations we formulate a stratified scheme for generating samples that
fits in the general algorithm shown in Figure 1 of the previous section. The strata are
regarded in ascending order. In each stratum a number r is randomly chosen. For that
stratum, dynamically a new instantiation and new intervals are calculated. We need to
define initialization and sample generation methods. In Figure 4 and 5, pseudo-code for these
methods is shown. The values of the variables for a sample is stored in the array val. We
keep track of the intervals in the arrays ! and h for respectively the lower and upper bound
of the intervals of the instantiation stored in val. For initialization, an instantiation So is
generated in which the value of each variable is set to 0 except when there is evidence for

5

lo «0; ho «1
for i+ 1 to n do
L «0
if z; € E then
val; « ¢;
hi « hi_y
else
val; « 0
h.' — hi—l * 15,(0)

Figure 4: Initialize Stratified Scheme.

the variable. Obviously, the lower bounds of the intervals are 0 initially, that is lo;(So) = 0,
0 < j < n. The upper-bound hi;(So) is the upper-bound of the previous interval h;_1(So)
times the probability 13,-(0) of choosing the value of variable z;. There are several ways of
defining P. When P, is chosen the reciproce of number of values z; can take, all states are
equiprobable and this scheme will be referred to as the stratified simple scheme. However,
one can also take for P the probability of choosing that value of variable z; given its parent as
instantiated in val. This scheme will be referred to as the stratified likelihood scheme. Note
that evidence nodes do not contribute to the interval.

Figure 5 shows pseudo-code for the method for generating a sample. First, a random
number 7 in the ith section is generated. Using binary search, the first variable z; for which
h; < rand hj_y > is identified. For the variables z; up to z, a new value will be calculated
while the values val; up to val;_, remain unchanged. The boundaries of the intervals of z;
are calculated from the boundaries of z;_y; if z; is an evidence node then the boundaries are
the same as for z;_;. If ; is not an evidence node then they are bounded by the boundaries
of z;_,. The value of variable z; is calculated by stepping through the range of z; until the
boundary encloses 7.

3.3 Performance of the Stratified Scheme

When generating a new sample, our scheme saves the work of determining values for k vari-
ables at the cost of at most logn comparisons. We investigate the computational complexity
of our scheme in further detail. Suppose all variables are binary. Then, the most significant
non-evidence variable gets assigned a value at most twice by our scheme, the second most
significant non-evidence variables at most four times, etcetera; the |log m|th up to the nth.
Less significant non-evidence variables all get assigned a value at most 7 times because they
cannot get 2U°8™I+* (k > 0) times an assignment in m samples. So, at most

llogm|

E 2 + (n — |logm| - 1).m,

i=1

variable assignments are performed. At most m times a binary search is performed. Using
T _02¥ = 2° — 1 and including the binary searches, we find that sample generation involves

6

f « (random([0:1) 4+ i —1)/m
j « Binsearch (f,h)
while j <= n do
if z; € E then
lj «— lj—-l
hj «— hj—l
else
k0
lj «— lj-l _
hi U + (hj—1 — lj-1) * Fi(K)
while f > h; do
kk+1
lj «— hj
hi b + (hj-y = L) * Fi(K)
’U(llj «k
je3+1
return(val)

Figure 5: The ith Sample Generation Method for the Stratified Scheme.

at most,
ollogm| _ 9 4 (n — |logm] — 1)m + mlogn,

operations. We find that our scheme has a computational complexity of order O((n—log 2)m).
When the arity of the variables is at most k, this becomes O((n -* 1og%log2 n)m). Note
that if the number of samples m is larger than the number of variables, the stratified simple
and likelihood weighting scheme are more efficient than the simple and likelihood weighting
schemes which are of complexity O(n.m).

We conclude our analysis by observing that the complexity bound is conservative; if prob-
abilities of the lower ordered variables are close to one and the stratified likelihood weighting
scheme is used, a much smaller number of samples is chosen for stratified schemes. It is as-
sumed that the work for one comparison in a binary search is equally expensive as determining
the value of a variable; however, for determining the value of a variable z, its probability table
need to be looked up which may be relatively expensive if has many parents.

In general, estimates of beliefs become more accurate when the number of samples in-
creases. Dagum and Horvitz [4] showed that for the likelihood weighting scheme, to output a
belief in a value of a variable z that with probability higher than 1 — & has relative error less
than e, at least a.ln(4/8)/(e?Bel(z)) samples are required where a is the maximum value of
the weighting distribution. Consider once more the example of Figure 2. For even numbers
of samples, always an equal number of samples with ¢ = 0 and witha =1 will be generated.
This results in a correct estimate of the probability of a namely P(a) = 1/2. So, the algo-
rithm also produces better samples, a point stressed in [1] to be very important. Especially
for variables that are low in the ordering good samples are produced. I feel that the bound of
Dagum and Horvitz may be taken as upper bound to the number of samples to be generated.

array
representation
[0.9]0.1[0.5] 0.5] 0.5 0.5] 0.1] 0.9]

a

tree 0 1
representation b / \b
V \1 0 1
[0.9] 0] [0.5]0.5] 0.5] [0.1]0.9
0

.5
collapsed b=

tree

0

a
0/\1

Figure 6: Storing conditional probability table of node c.

3.4 Further Optimizations

The previous section presented a new sample scheme that is shown to be faster than other
popular sampling schemes. In this section, we give attention to details of the scheme in order
to get a better performance.

It is desirable to generate many samples in a small amount of time. To do so, it is
important to choose the data-structures to be used carefully. Since conditional probability
tables are accessed very often, we focus on the data-structure to store these tables. These
tables may be stored in an array; the basic idea is illustrated in Figure 6 for the probabilities
from the tables of variable ¢ of the example of Figure 2. For example, in CABeN [3], a
collection of algorithms for belief networks, probability tables are implemented this way. Note
however that to access the array an index needs to be calculated from the instantiation of the
parents of this variable. The calculation of such an index requires computationally expensive
multiplications. If the network contains binary variables only however, the multiplications can
be replaced by shift operations. In experiments on a HP-9000 series 700 using a C-program
using shift operations instead of multiplication for calculating the array index resulted in a
15% reduction of computer time.

Instead of arrays, search trees offer an alternative data structure for storing probability
tables. A search tree is a tree in which on a node a choice is made which branch to take
and the leafs contain information. In Figure 6 such a search tree for the probability table of
the variable ¢ from Example 6 is depicted. To find the required probability, only a pointer
needs to be passed through the tree and no multiplication is performed. In experiments on a
HP-9000 series 700 using a C-program using search trees instead of arrays to store probability
tables resulted in a 30% reduction of computer time.

The search tree also offers other advantages. When evidence is observed, outgoing arcs of
the observed nodes can be removed [7] and the probability tables can be collapsed; the idea is
that if variable z is observed to be 1 then all children of z will not use probabilities conditioned
on instantiations in which z is not 1. Therefore, those probabilities can be removed from the

probability table. To implement this, a search tree that stores the probability table can be
pruned; only those leaves in the search tree for which the observed value is present need to be
stored. This is an almost trivial action for trees while it would require considerable computing
for arrays. For example when b is observed to be 0, the search tree for the representation of
the probability table of ¢ can be replaced by the lower tree depicted in Figure 6.

Not only the choice of data structures is important for optimal performance. The stratified
likelihood weighting scheme needs a topological ordering on the variables. Such an ordering is
not unique. To fully exploit the reduction in time achieved by the stratified scheme, variables
with high probabilities should occur foremost in the ordering; in that case they won’t need a
change of value too often. Therefore, when determining a topological order of the variables,
their probability tables should be taken in consideration. In our experiments, we used the
average probability to the power four 3., ., P(z;|m)*/ X;, x; 1 as an extra criterion to sort
the variables since it assigns extra weight to probabilities close to one; small probabilities
vanish while large probabilities contribute a lot to this sum. However, we think it is worth
to investigate other criteria. Since when evidence is observed, outgoing arcs of the observed
nodes can be removed, less constraints are left for choosing a topological ordering; children
of observed nodes may be shifted lower in the ordering if their probabilities are high enough.

So far, we assumed that a random number in each section was chosen. However, also
the median of the interval can be taken. At least for the lower ordered nodes, no change in
estimates are expected. In fact, these estimates will become better because less errors due to
random fluctuations are introduced. For variables high in the ordering however, it has the
same effect as choosing a random number.

Care must taken when networks with many variables are used; the values of lox(S) and
hix(S) may be erroneously calculated as equal due to numerical round off errors. Therefore,
the representation size used for log(5) and hig(S) need to be taken large enough. If a random

number is chosen from a section, also this random npumber must have enough precision to
avoid biases.

4 Experimental Results

We have performed some experiments to compare the stratified simulation scheme with the
simple scheme, likelihood weighting and Pearl’s scheme. We generated randomly ten belief
networks with fifty binary variables and a poly-tree structure. The networks were generated
by ordering the variables, randomly pick two nodes a and b and adding the arca = bif ais
lower ordered than b. Otherwise the arc b — a is added. This step is repeated but now one
variable is randomly chosen from the variables that are connected to at least one arc and one
variable is chosen from the variables that are connected to no arc. This last step is repeated
till all arcs are placed.

With these ten networks we applied the four algorithms generating 100 up to 1000 sam-
ples, increasing by 100 in each test, and further, from 1000 with steps of 1000 up to 10000
samples using logic sampling. So, with every network 19 different sets of samples were gen-
erated. The probability tables were stored in search trees as described in Section 3.4. The
performance of the algorithms was measured in time in milliseconds used to execute the al-
gorithm according to the UNIX time-function. Furthermore, we judged the quality of the
approximated beliefs by the divergence, that is the average logarithm of the estimated belief
and real belief, 1/|U| Tuev P(¥) Lueqo,1) log(P(u)/P(u)).

-gurI008 AIRPUNOQ AOYIRUI JNOYIIM PUR YIim sIMSAY 01 a3ty

(sw) swmy
0000t 000T 001 01
T T T T LI R A T T T T Y 90-°1
Ry 3 g0t
L +g]
*Nxv@O]
: o, m
= P 4 10000
- b, .
N + AWV)
E A 3
3 X -
- N__w 4 1000
i O] 10110
| 4+ ws4I-jen)s Soi
L O stayens O S
FO | 1 i 1 fia0 1 1 Fl 1 | AT | L i 1 3 .ﬂo.o
() oy -suoryeziur}do snowrea 10} s)NsAY :6 aIn3rq
00001 000T 001 01
————— —r————— T G0-°1
%X Sy :
E X] .
— X « P 4 1000°0
| & -
| X]
: xx “
3 Ky 1 100°
3 X (< 41000
| x pooyIReyY < o
L O stiTrens X 10119
[+ stryens 5 30
F O Tyens X] ueow
r- JE | 1 L i Joa a1 1 1 I i Lig 1 41 1 1 L E H0.0

-8uLI00s AIepuUNOq AOYIRUI [} S)nsyY 8 a3

(sux) owury
00001 0001 00T 01
H Xx.x. T LA T T 60-°1
0 g T 1 10000
y=laile .wmxx&ﬂ ¥ x]
* l
- [m]
a 0D o * 4 1000
L 0 0 4
[oD 0o .
- O 4 100
SRR 9 .
I~ X Em.aﬂu% %%%% % W 310
[y wsjens
[O wpead 3 {010
[+ w4-pooyIaAl 17 801
| O wr-ofduuts | weow
L4)) I I L Lig g1 1 1 1 oo g 1 1 1 3 OM
(sua) sy "suIyjLIog[e JUIIIYIpP I0f sHMSY - J a1m8iq
00001 0001 001 01
T e T A S LIS e G021
1%
- Fhyy XX x .
5 X 4 1000
(GO ++ + V.A+. N 1 1000°0
! D X 1.
- oo P { 1000
i oBo_ g] + L .
i 0] 10°0
Hl % T1RUSG o 410
v w.zsm%mm@@ \V Y .
L 0O [Teed 40 v %&W @ % <& 4 10118
[+ pooutey v 1" s0p
Y o[durts] ueaur
P U I | rl Fl 1 [oe s 19 J 1 1 Jax a1 1 1 1) O.H

e P S

Figure 7 shows the results for the simple scheme (simple), likelihood weighting (likelihood),
Pearl’s (pearl) and, the stratified schemes for both the simple (strat.s) and likelihood weighting
(strat.]) variant. For all schemes simple scoring was used. The ordering of the variables
was the same as the order used to generate the networks; the probability tables were not
considered for the ordering. The closer the data-points are to the left lower corner, the better
the performance of the scheme. The simple algorithm performed poorly and stratification
does not really help. The reason for this behavior is that the samples chosen are mostly non-
specific for the distribution. Therefore, many samples are required to get a good performance
and stratification does not influence this behavior very much. This is also expressed by the low
slope of the data-points for the simple schemes. Likelihood weighting performed considerably
better than Pearl’s and the simple schemes, as was also reported in [3, 12]. With the stratified
likelihood weighting scheme even better performance is obtained, which was expected after
the analysis in Section 3.

Figure 8 shows the results for the same algorithms as depicted in Figure 7, this time
using Markov blanket scoring. All data-points have shifted in the direction of the corner right
under except for the points of Pearl’s scheme. This could be expected since Markov blanket
scoring results in much extra work for all but Pearl’s scheme as pointed out in Section 2. So,
the estimates become better at the cost of additional computational effort. Markov blanket
scoring seems to help for Pearl’s scheme.

Figure 9 shows the effects of incorporating various optimizations to the stratified like-
lihood weighting algorithm (strat.l): sorting the variables and using the extra criterion in
the previous section (strat.l+s) and with random generation of numbers in a section versus
taking median of the section (strat.l-r+s). The figure suggests that sorting helps but it helps
only marginally. This could be expected since sorting with the extra criterion influences the
order only marginally. The effect of using the median of a section instead of a random value
does not seem to influence results though it makes the program simpler. Also this could be
expected because it is only a minor adjustment of the algorithm. For a better comparison,
the likelihood weighting algorithm (strat.l) is also depicted. For equal error levels, up to 30%
less time is used by the best stratified scheme.

Figure 10 shows results for the best stratified algorithm, that is, with sorting and with
taking the median of the section instead of a random value, with (strat.-r+s+m) and with-
out (strat.-r+s) Markov blanket scoring. The figure suggests that Markov blanket scoring
improves per test-set of samples the estimated probabilities yet takes extra time because of
the additional computational effort that is required. These effects cancel each other out, so
Markov blanket scoring does not seem to help but it also does no harm.

5 Conclusions

In this paper, we presented a stratified simulation scheme for probabilistic inference in
Bayesian belief networks. The scheme generates samples evenly spread in the sample space
and can be implemented efficiently. The scheme is indeed more efficient than the likeli-
hood weighting scheme. Due to the evenly spread samples, the scheme also result in better
approximations of probabilities. We showed both theoretically and experimentally that ap-
proximation of beliefs is not only faster but also better than with existing schemes.

Though for special network structures exact algorithms may outperform simulation
schemes, our algorithm offers a robust general purpose method for probabilistic inference

11

without restrictions on the topology of networks.

The effects of various optimizations specific for the scheme were investigated. A variant
where no random numbers are used performs equal to variants where random numbers are
used. For the best variant of the stratified scheme, the extra computational effort necessary
for Markov scoring cancels out the gain of better approximations of beliefs. The experiments
have shown that some extra performance can be gained by choosing a clever ordering on
the variables. Further research is necessary to investigate various sorting criteria on the
performance of the algorithm.

References

[1] R.M. Chavez and G.F. Cooper. Hypermedia and randomized algorithms for medical expert
systems. Computer Methods and Programs in Biomedicine, 32:5-16, 1990.

[2] G.F. Cooper. The computational complexity of probabilistic inference using Bayesian belief
networks. Artificial Intelligence, 42:393-405, 1990.

[3] S.B. Cousins, W. Chen, and N.E. Frisse. Caben: A collection of algorithms for belief networks.

Technical Report WUCS-91-25, Medical Informatics Laboratory, Washington University, St Louis,
MO, 1991.

[4] P. Dagum and E. Horvitz. A Bayesian analysis of simulation algorithms for inference in belief
networks. Networks, 23:499-516, 1993.

[5] P. Dagum and M. Luby. Approximating probabilistic inference in Bayesian belief networks is
NP-hard. Artificial Intelligence, 60:141-153, 1993.

[6] R.Fung and K. Chang. Weighting and intergrating evidence for stochastic simulation in Bayesian
networks. In Proceedings Uncertainty in Artificial Intelligence, volume 5, pages 209-219, 1990.

[7] L. van der Gaag. Evidence absorption for belief networks. Technical Report RUU-CS-93-35,
Utrecht University, Department of Computer Science, 1993.

[8] M. Henrion. Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In
Proceedings Uncertainty in Artificial Intelligence, pages 149-163, 1988.

[9] S.L. Lauritzen and D.J. Spiegelhalter. Local computations with probabilities on graphical struc-
tures and their applications to expert systems (with discussion). Journal of the Royal Statistical
Society (Series B), 50:157-224, 1988.

[10] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufman, inc., San Mateo, CA, 1988.

[11] J. Pearl. Evidential reasoning using stochastic simulation of causal models. Artificial Intelligence,
32:241-288, 1992.

[12] R. Shachter and M. Peot. Simulation approaches to general probabilistic inference on belief
networks. In Proceedings Uncertainty in Artificial Intelligence, volume 5, pages 221-231, 1990.

[13] R.D. Shachter. Probabilistic inference and influence diagrams. Operations Research, 36(4):589-
604, 1988.

12

