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Abstract

Conditional independence relations appear in many different fields of science such as
probability theory, theory of belief functions, and possibility theory. Directed acyclic
graphs (DAGs) are a powerful means for representing conditional independence re-
lations. However, it is not possible for all independence relations to find a DAG
that perfectly represents all conditional independencies in the relation. We present
the IDAG formalism that provides for an exact representation of any independency
relation. The basic idea is to enhance the formalism of DAGs with a special kind of
arc for modeling induced independencies.

1 Introduction

In the last twenty years, conditional independence has been studied in many different areas
of computer science and mathematics. Applications of conditional independence can be
found in probabilistic inference, theory of relational databases, theory of belief functions,
theory of ordinal conditional functions, and possibility theory, [13].

In this paper, we are especially interested in the use of conditional independence in
probabilistic inference: reasoning with a joint probability distribution over a set of vari-
ables. In probabilistic inference, the volume of information would be unmanageable if no
assumptions about independence could be made; the independence assumptions justify an
efficient division of the joint probability distribution. The notion of independence is closely
related to the notion of relevance and relevance exhibits a monotonic and non-monotonic
behavior. When information is gained, previously relevant information may become ir-
relevant, and on the other hand, previously irrelevant information may become relevant.
Conditional independence has a firmly mathematical basis, 3, 12].

The formalism of directed acyclic graphs (DAG) is a powerful means for representing
conditional independencies [6, 8, 10, 11]. Furthermore, efficient algorithms are known for
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probabilistic inference (7, 9, 10] that exploit the represented conditional independencies in
DAGs. However, the formalism of DAGs is not expressive enough to perfectly represent
all independencies of any distribution [10]. For independence relations that cannot be
exactly represented, some irrelevancies are not reflected in the DAG causing an unnecessary
computational burden in probabilistic inference. Extended formalisms have been proposed
to capture all independencies of an independence relation in a collection of graphs [5, 6];
however, inference with a collection of graphs is still computational expensive.

In this paper, a new formalism for representing independencies called IDAGs is pre-
sented that provides for exact modelling of all independencies of any positive distribution,
or to be more precisely, of any independence relation that satisfies the graphoid axioms.
The basic idea is to enhance the formalism of DAGs with a new type of arc that allows
for representing induced independencies. These arcs closely resemble the justifications
used in truth maintenance systems, [4]: the arcs specify a monotonic part as well as a
non-monotonic part. In Section 2, we present some preliminaries concerning conditional
independence and DAGs. In Section 3, we introduce the IDAG formalism. We end with
conclusions and some suggestions for further research in Section 4.

2 Conditional independence

Let U be a non-empty finite set of statistical variables. In the sequel, we will use capital
letters to denote sets of variables and lower-case letters to denote single variables; to prevent
abundant usage of symbols, we write z to denote {z}, XY to denote X UY, zy to denote
{z,y}, and zY to denote {z}UY. Further, we let union be of higher priority than exclusion;
we write WX \yz to denote (W U X)\({y, z}). Let X, Y, Z be disjoint subsets of U where
X#0,Y #0. We write I(X, Z,Y) to denote that X and Y are conditionally independent
given Z; I(X,Z,Y) is called an independency statement over U. An independence model
is a set of independency statements. A graphoid independence model, is an independency
model that is closed under the the following rules called graphoid azioms or independency
azioms,

symmetry I(X,Z2)Y) & I1(Y,Z,X)
decomposition I(X,Z,WY) = I(X,Z,W)
weak union I(X,Z,WY) = I(X,ZW,Y)
contraction IX,ZW,Y)ANI(X,Z,W) =I(X,Z,WY)
intersection IX,ZW,Y)ANI(X,ZY, W) =I(X,Z,WY)

The graphoid axioms can be considered rules of inference for graphoid independency
models. For example, if I(X,Z,WY) is in a model then, by the decomposition axiom,
I(X,Z,Y) is also in the model. In this paper, we consider graphoid independency mod-
els only: every independency model mentioned is assumed to be graphoid unless stated
otherwise.



Graphs offer a powerful means for representing independency models. We review some
basic definitions from graph theory. A directed graph G is a pair (U, A) where U is a set
of nodes and A is a set of ordered tuples (z,y) called arcs where z,y € U. In the sequel,
an arc (z,y) is denoted by £ — y or by y « z, alternatively. A path in a directed graph
G is an ordered set of arcs 7 — ¥1,Z2 — Y2,...,ZTk — Yx such that y; = z;4; for all
i =1,...,k — 1; the path is called a cycle if z; = yx. A directed acyclic graph (DAG) is
a directed graph that does not contain cycles. A traslin a DAG is a path that does not
consider the direction of the arcs. A head-to-head node on a trail is a node x such that a
triple of consecutive nodes y,z,z (y # 2) are on the trail and arcs y — z, z «+ z in the
DAG.

DAGs can be used for the representation of independency statements. With every
variable 4 € U a node in the DAG is associated. Independency statements can be read
from the structure of the DAG with the notions of blocked and separation [6, 10].

Definition 2.1 Let G be a DAG. A trail in G between two nodes ¢ and y is blocked by a
set of nodes Z if at least one of the following two conditions holds:

o the trail contains a node z such that x € Z and z is not a head-to-head node on the trail;
o the trail contains a node x such that x is a head-to-head node on the trail, and = and
every descendant of x is not in Z.

Definition 2.2 Let G be a DAG. Let X, Y, and Z be sets of nodes of G. We say that X
is d-separated from Y given Z in G, written <X, Z,Y >¢, if every trail between any node
z € X and any node y € Y is blocked by Z in G; <X, Z,Y >¢ is called a d-separation
statement.

In the sequel, we will write <X, Z,Y > instead of <X, Z,Y >¢q as long as no ambiguity
occurs. For d-separation statements, the graphoid axioms apply, [10]; for example, if
<X,Z,WY> holds, then <X, Z, W> also holds by the decomposition axiom.

Definition 2.3 Let G be a DAG and let M be an independency model. G is an indepen-
dency map or I-map of M if <X,Z,Y> in G implies I(X,Z,Y) € M. An independency
map of M is minimal if no proper subgraph of G is an independency map of M. G is a
dependency map or D-map of M if I(X,Z,Y) € M implies <X,Z,Y> in G. G is a
perfect map or P-map of M if it is both an independency map and a dependency map of
M.

Not every independency model has a perfect map. Consider for example, the well known
coins and bell experiment, [10]; two coins are flipped and a bell rings if the outcomes
of both coins is the same. In this experiment we have three variables a, b, and c. These
variables are pairwise independent, so the independency model M comprises the statements
I(a,0,b), I(a,0,c), I(b,0,c), and symmetric statements. Yet, given the third variable any
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Figure 1: A DAG representing the coins and bell experiment.

pair of variables is dependent. This property cannot be perfectly represented by a DAG.
For a statement <z, 0, y> to hold in a DAG, there cannot be an arc between z and y. So,
a DAG representing the coins and bell experiment should not have any arcs; yet, such a
DAG would represent I(a,b,c), a statement that is not in the model.

It is better to represent fewer independencies than in a model by a DAG than to
represent some independencies that are not in the model; representing more independencies
would imply adding more irrelevancies and may cause erroneous conclusions in for example
probabilistic inference. So, the best we can do is to represent a model by a minimal I-map.
For the model of the coins and bell experiment, Figure 1 depicts an example of a minimal
I-map. A minimal I-map can be constructed from an independency model M using the
notion of causal input list [11].

Definition 2.4 Let M be a graphoid independency model over U. Let 0 be a total ordering
on U. A causal input list Ly over M is a set of independency statements such that for
each z € U the set contains a statement I(x, 75, U\ n,) where Uy, = {y|0(y) < 0(z)} and
75 is the smallest subset of U, for which I(z, 75, U\7z) € M. =, is called the parent set
of x.

From a causal input list Ly over an independency model M, a DAG Gy is constructed
by taking for the parent sets of the nodes the corresponding parent sets in Lg. The thus
constructed DAG Gy is a minimal I-map of M, [11]. The model My represented by Gy by
d-separation is equal to the closure of Ly under the graphoid axioms (follows from [11]).

An application of the theory of independency models is employed in probabilistic net-
works. A probabilistic network is a pair (G,T') where G is a DAG and T’ is a set of conditional
probability tables P(z|x,) for every variable £ € U. A conditional probability table enu-
merates the probabilities of a given variable given the values of its parents in the DAG. The
conditional probability tables taken together define a probability distribution that respects
the independency model represented by the DAG, that is, if X and Y are d-separated by
Z in G, then the independency statements I(X, Z,Y") holds in the distribution represented
by the network, [6, 10].



3 IDAGs

In this section, we present a new formalism, called the IDAG formalism, for representing
independency models. We begin by introducing a new type of arc called independency
inducing arc.

Definition 3.1 Let G = (U, A) be a DAG. An independency inducing arc (IIA) on G is
an ordered triple v, a, B, written (o | § — v), where v = (z,y) is an unordered pair
of nodes and a, 8 C U\zy are two disjoint sets of nodes of G; « is called the monotonic
support of v and B is called the non-monotonic support of ~.

A DAG can be extended with these arcs, resulting in an ITA-directed acyclic graph (IDAG).

Definition 3.2 Let G' = (U, A) be a DAG. An I1A-directed acyclic graph (IDAG) is an
ordered tuple G = (U, A, Q), where Q is a set of independency inducing arcs on G'; G' is
called the embedded DAG of G.

The independency inducing arcs are modelled after the justifications in truth maintenance
systems [4]. An independency inducing arc (a | 8 = (z,y)) is taken to represent that the
nodes z and y are independent given a set of nodes Z if all nodes of the monotonic support
« are in Z and no node of the non-monotonic support 8 is in Z; if at least one of these
conditions does not hold, then the arc does not indicate a change to the independencies
represented by the embedded DAG. Note that independency inducing arcs may exists for
nodes that are not adjacent in the embedded DAG. For example, a DAG a = b « ¢
may contain an independency inducing arc (b | @ — (a,c)). As for DAGs, this meaning is
formulated in a criterion for reading independency statements from an IDAG.

Definition 3.3 Let G = (U, A, Q) be an IDAG. A trail between two nodes z and y in the
embedded DAG G’ is I-blocked by a set of nodes Z in G if at least one of the following
conditions holds:

o the trail is blocked by Z in G';

o there is an independency inducing arc (o | B = (z,y)) in Q such that « C Z and
BNZ=49.

Definition 3.4 Let G be an IDAG. Let X, Y, and Z be sets of nodes of G. We say that
X is I-separated from Y given Z itn G, written <X,Z,Y >q if every trail between any
node x € X and any node y € Y in the embedded DAG of G is I-blocked by XY Z\zy.
<X,Z,Y>q 1s called an I-separation statement.

Note that we use the same notation for I-separation as for d-separation. The context will
make clear which kind of separation is meant. I-separation can be regarded an extension
of d-separation. Let G’ be a DAG and G be an IDAG that has G’ as its embedded DAG.
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Suppose that G does not contain any independency inducing arc. If <X, Z,Y>¢, then also
forallz € X and y € Y, <z, XY Z\zy, y>¢, because d-separation obeys weak union and
symmetry, [10]. But <z, XY Z\zy,y>¢g for all z € X and y € Y, implies that X and Y
are I-separated by Z in G. For an IDAG that does not contain any independency inducing
arc, the set of I-separation statements is equal to the set of d-separation statements in the
embedded DAG.

The notions of I-map, D-map and P-map for IDAGS are defined similar to the way it
has been done for DAGs.

Definition 3.5 Let G be a IDAG and let M be an independency model. G is an indepen-
dency map or I-map of M if <X, Z,Y> in G implies I(X,Z,Y) € M. An independency
map of M is minimal if no proper subgraph of G is an independency map of M. G is a
dependency map or D-map of M if I(X,Z2,Y) € M implies <X,Z,Y> in G. G is a
perfect map or P-map of M if it is both an independency map and a dependency map of
M.

We give three examples of independency models that cannot be perfectly represented by a
DAG an represent them by an IDAG. Consider once more the independency model of the
coins and bell example in Section 2. The IDAG shown in Figure 2 is a perfect map of this
model. The IDAG has embedded the DAG of Figure 1 and comprises two independency
inducing arcs, namely (8 | a = (b,c)) and (0 | b = (a,c)); in the figure an independency
inducing arc is depicted as an edge labeled with a rectangle specifying the monotonic
and non-monotonic support separated by a ‘|. Note that in the IDAG not only I(a,,b)
but also I(a,®,c) and I(b,0,c) (and their symmetric statements) are represented. The
dependencies in the model, for example —I(a, b, c) and —I(a,c,b), are also represented by
the IDAG: <a,b,c> and <a,c,b> are no valid I-separation statements.

Consider the venereal disease example described in [10]; two males and two females
have mutual heterosexual contact. Let the variables a, b, ¢, and d represent whether the
persons a, b, ¢, and d have a venereal disease, where a and ¢ are male and b and d are
female. The independency model of this example is defined by the statements (b, ac, d)
and I(a,bd,c). This model cannot be perfectly represented by a DAG, [10]. Figure 3
however, shows an IDAG that is a perfect map of the model.

el

Figure 2: An IDAG that is a P-map for the coins and bell experiment.
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Figure 3: An IDAG that is a perfect map for the venereal disease example.

Another independency model that cannot be perfectly represented by a DAG is the
model that is obtained as follows. Let the DAG in Figure 4 be a perfect map of an inde-
pendency model of a given probability distribution. Then, for the distribution marginalized
over ¢ no DAG exists that is a perfect map for the independency model over the four remain-
ing variables. The IDAG depicted in the figure, however, does represent this independency
model perfectly. In fact, for every graphoid independency model an IDAG exists that is a
perfect map of this model. To proof this, we need the following lemma.

Lemma 3.1 Let M be a graphoid independency model over U. Let X,Y,Z C U. If for all
z€X andy €Y we have I(z,XYZ\zy,y) € M, then I(X,Z,Y) € M.

Proof: Let X = {z4,...,2,} and Y = {y1,...,ym}, n > 1, m > 1. Now suppose that for
allz; € X,y; €Y,i=1,...,n,5 =1,...,m the statement I(z;, XY Z\z;y;,y;) is valid.
Then, for all z; € X we have

I(zi, XY Z\ziy1, 1)
= { Intersection with I(z, XY Z\zy,,y2) }

I(zi, XY Z\zy1y2, y192)
= { Intersection with I(z, XY Z\zys,y3) }
I(zi, XY Z\x:y1y2Y3, Y1Y2¥s)

(@) (e) (o) (=Lrh (e
ONO ‘;‘iﬁ

Figure 4: A DAG that is a perfect map and an IDAG that is a P-map for {a,b,d,e}.



I(z:, XY Z\2it192 - - - Y1, Y192 - - - Ym—1)
= { Intersection with I(z, XY Z\zym,ym) }
I(:E;, XZ\S,‘;, Y)
= { Symmetry }
(Y, X Z\z;, ;)

Applying a similar argument to z;,...,z,, we find I(X, Z,Y). Since M is a graphoid inde-
pendency model, it satisfies the graphoid axioms. Therefore, we conclude that I(X,Z,Y) €
M. a

Theorem 3.1 Let M be a graphoid independency model. Then, there exists an IDAG G
such that G is a perfect map of M.

Proof: Consider the following construction of an IDAG for an independency model M.
First construct any fully connected DAG. Then, add for every independency statement
I(z,Z,y) € M, an independency inducing arc (Z | (U\Z)\zy — (z,y)). We show that
the IDAG G obtained by this construction is a perfect map of M, that is, I(X,Z,Y) €
M&<X,Z,Y>q.

First, assume that I(X,Z,Y) € M for some X,Y,Z C U. From the weak
union and symmetry axioms, we have that I(X,Z,Y) implies that for all z € X and
y € Y the statement I(z,XYZ\zy,y) holds. By method of construction, for ev-
ery statement I(z, XY Z\zy,y) the IDAG G comprises an independency inducing arc
(XYZ\zy | U\XYZ — (z,y)). Therefore, by definition of I-separation, we have that
<X,Z,Y>q.

Now assume that <X, Z,Y>q. By method of construction and from the definition of
I-separation, we have that for all + € X and y € Y there is an independency inducing arc in
G of the form (XY Z\zy | U\XY Z — (z,y)) in G. But then, forall z € X and y € Y the

statement I(z, XY Z\zy,y) holds. Using Lemma 3.1, we conclude that I(X,Z,Y) € M.
O

Consider once more, the IDAG construction mentioned in the above proof. This construc-
tion would take (})2"? consultations of a given independency model M and would result
in an IDAG with a huge number of arcs. A computationally less complex way to construct
an IDAG which is a perfect map of the given independency model M is to first generate
a DAG Gy from a causal input list Ly of M and then add independency inducing arcs
(Z | (U\Z)\zy — (z,y)) for every statement I(z, Z,y) that is not yet represented by the
IDAG. In other words, an I-map of an independency model M can safely be extended with
independency inducing arcs of the proper form, as shown in the following lemma.



Lemma 3.2 Let M be a graphoid independency model over U. Let G' be a DAG that is
an I-map of M. Now, let G be an IDAG such that G' is embedded in G and G comprises
independency inducing arcs (a | B — (z,y)) only if for all « C S C U\zypB we have that
I(z,S,y) € M. Then, G is an I-map of M

Proof: Suppose that <X,Z,Y> in G. From the definition of I-separation it follows that
forallz € X and y € Y, <z,XYZ\zy,y> in G; this statement follows either from d-
separation of z and y by XY Z\zy in the embedded DAG G, or from the presence of an
independency inducing arc (a | 8 — (z,y)) with a € S C U\zyfS. In the former case,
we have I(z, XY Z\zy,y) is in M because the underlying DAG is an I-map of M; in the
latter case, we have this independency statement from the conditions for GG stated in the
lemma. By Lemma 3.1, we have that I(X,Z,Y) € M. O

In the construction of an IDAG for a given independency model M starting with DAG
G' that is a minimal I-map, not all possible independency inducing arcs that could be
generated from M need to be inserted in G'; if two nodes z and y are already d-separated
by Z in G’, then the independency inducing arc (Z | U\zyZ — (z,y)) does not add
any new independency statement not yet represented by G’. The fact that the embedded
DAG is a minimal I-map can be used to exclude more independency inducing arcs to be
considered. Certain separation statements cannot hold in a DAG that is a minimal I-map;
if they would hold, it implies an independency statement with which it can be shown that
the DAG is not a minimal I-map. For example, let U = {a, b} and let G be a DAG with one
arc @ — b being a minimal I-map of an unknown independency model M. Then I(a,0,b)
cannot be in M: if it were in M, then the arc a = b could be omitted and G would not
be a minimal I-map of M. In [2] a graphical criterion has been presented to read some of
these statements from a DAG that is a minimal I-map.

The following rules can be used to reduce the number of arcs of an IDAG that has
embedded an I-map of the independency model represented; in presenting the rules we use

D, to denote the set of descendants of node z and 7, to denote the set of parents of z in
the embedded DAG of the IDAG at hand.

e Intersection:

(aU{z}| B = (z,y)) and (a | BU {2} = (2,y)) can be replaced by (a | 8 = (z,y)).

e Arc removal:

y — = can be removed if there exist an IIA (a | = (2,y)) in G with aN D, = 0 and
BNxz=0.

e ITA removal:

(a] B — (z,y)) can be removed if x, C o and D, C 5.

The idea of these rules is that application results in a new IDAG representing an indepen-
dency model implied by the original IDAG, yet with fewer arcs. The new independency
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model need not be exactly the same as the original model. However, all independency
statements in the new model follow from the independency statements in the model before
application of one of the rules and the graphoid axioms.

The intersection rule is justified by the fact that an I-separation statement that is
satisfied through the independency inducing arc (a | 8 — (z,y)) is either satisfied by the
independency inducing arc (aU{z} | 8 = (z,y)) or by (a | BU{2} — (z,y)). Arc removal
of the arc y — z with the appropriate independency inducing arc is justified by the fact
that the independency inducing arc implies that the represented independency model is
implied by the independency statements represented in the original IDAG. Independency
inducing arc removal is valid because all trails I-blocked by the independency inducing arc
(a | B = (z,y)) are also blocked in the embedded DAG. Applying the transformation rules,
therefore, does not change the model represented by the IDAG if the IDAG is a P-map, as
is stated more formally in the following theorem.

Theorem 3.2 Let M be a graphoid independency model and let G be an IDAG that is a
perfect map of M. Now, let G' be an IDAG obtained from G by applying the intersection,
arc removal, or independency inducing arc removal rule shown above. Then, G' is a perfect

map of M.

Proof: From Lemma 3.2 we have that to assure that G’ is an I-map of M it is sufficient to
show that after application of one of the rules, the embedded DAG is an I-map of M and G
contains only independency inducing arcs (a | 8 — (z,y)) such that foralla C S C U\zyp
I(z,S,y) is in M. Further, to assure that G’ is a D-map of M we have to show that the
independencies represented in G are still represented by G’. From these two properties, we
then have that G’ is a perfect map of M.

The validity of the intersection rule follows from the definition of I-separation. First,
we observe that the presence of the independency inducing arc (e U {z} |  — =z,y)
implies for each set S such that a U {2} C S C U\pB that I(z,S,y) € M. Equally,
(a | BU{z} = (=,y)) impliesfor each set S such that a C S C U\(BU{z}) that I(z,S,y) €
M. So, for each set S such that o € S C U\B we have that I(z,S,y) € M. This property
is also represented by the single independency inducing arc (a | 8 = (z,y)). Not that the
embedded DAG is not affected by the applying intersection rule. From these observations
we have that after application of the intersection rule G’ is a P-map of M

The validity of the arc-removal rule follows from the following observation. Let G” be
the DAG embedded in G. Then, G" is an I-map of M. Let U, = U\zD, for all z € U. Let
0 be a topological ordering on G” thus defining the sets U, for each node z. Then, for all
z € U we have I(z, %, U;\7;) € M. From the presence of the independency inducing arc
(a| B — (z,y)) in G with aND, = B and BNx, = @, we have that I(z,U,\y,y) € M. Using
intersection, we we find that I(z, r.\y, (U:\7;)y). Using the causal input list construction
with ordering 6 results in a DAG Gjy that has for node z a parent set that does not contain
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y. We know that Gy is an I-map of M, [11]. Adding arcs, thus obtaining the embedded
DAG of @, still results in an I-map. So, G’ is an I-map of M by Lemma 3.2. Observe that
no dependencies are added by removing the arc y — = and that G was supposed to be a
P-map. Therefore, G’ also has to be a P-map.

The validity of the independency inducing arc-removal rule follows from the following
observation. Consider an independency inducing arc (@ | 8 — (z,y)) such that , C a and
D, C 3. By definition of independency inducing arcs, y cannot be in « nor in # and thus
not in 7, nor in D,. Now observe that every trail between z and y in the embedded DAG
of G is blocked by any set S such that =, C S and SN D, = @ since y is not a descendant of
z. In any independency statement I(z, S, y) represented by the independency inducing arc
the set S contains 7, and SN D, = 0. Such statements however are already represented
in the embedded DAG. So, no independencies are removed by removing the independency
inducing arc. In addition, the embedded DAG is not affected. Hence after independency
inducing arc-removal, G’ is a P-map of M. a

Note that if the rules are applied to an IDAG that is an I-map of a model M but not
a perfect map, the model may change due to application of the arc removal rule. For
example, an IDAG over {a,b,c} with two arcs a — b and b — ¢ and an independency
inducing arc (§ | @ = (a,b)) may be transformed using arc removal; the arc a — b can be
removed. Then, <a,,c> holds in the new IDAG while it did not in the original IDAG.
Application of the two other rules does not influence the represented model.

A major drawback of the IDAG formalism is that an IDAG over a set of n variables
may contain an exponential in the number of arcs, that is, exponential in n. Therefore,
graphical representation may become infeasible for large networks.

4 Conclusions and Further Research

We have presented the IDAG formalism for perfectly representing any graphoid indepen-
dency model. The formalism basically enhances the DAG formalism with the notion of
independency inducing arc. Similar to the d-separation criterion for DAGs, we have in-
troduced the I-separation criterion for reading independency statements from an IDAG.
IDAGs can be used for probabilistic inference by enhancing them with probability tables in
the same way DAGs are enhanced with probability tables to obtain a probabilistic network.
Efficient algorithms for probabilistic inference based on lazy evaluation of the network may
be developed that exploit the independencies induced by independency inducing arcs. It
is well-known that algorithms for probabilistic inference with a belief network perform
better from a computational point of view when more independencies are represented.
As the IDAG formalism allows for more independencies to be represented, especially in
large IDAGs the enhanced algorithms for inference may yield a computational saving over
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algorithms currently known for inference in probabilistic networks.

IDAGS can also be helpful for constructing a DAG from a given independency model.
For the construction of a DAG from an independency model, in [1] an algorithm has been
presented that optimizes a total ordering 8 of a set of variables by applying simple opera-
tions to #. Changing such an ordering implies a change in the causal input list generated
from the ordering, and thus a change in the associated DAG G4 and the represented in-
dependency model M. The strategy is to apply an operation to @ only if the represented
independency model after the operation contains the one before the operation. This strat-
egy has been shown to yield a DAG with a minimal number of arcs in a local minimum.
In order to find the global minimum, we believe the IDAG formalism can be of help, since
after an operation on the totalj ordering 6, independency inducing arcs can be added in
order to let the new independency model contain the old one.

Conditional independence relations are used to reflect irrelevancy in knowledge based
systems. The notion of irrelevancy that is reflected by conditional independence is global in
the sense that it applies to all values of variables. However, variables may be independent
for certain combinations of values, yet dependent for other combinations of values. It may
be worth while to look for formalisms and efficient inference and explanation algorithms
that explore these independencies; introduction of a special kind of arc similar to the
independency inducing arc employed by the IDAG formalism may be used to reflect such
independencies.
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