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Abstract

The belief network framework is becoming increasingly popular for building diagnostic knowl-
edge-based systems. The framework is especially suited for the task of diagnosis because it
provides for modelling and dealing with multiple interacting disorders. However, this ability
often is exploited insufficiently due to the computational complexity involved. In this paper,
we present a method for multiple-disorder diagnosis with a belief network that derives its
efficiency from focusing on small sets of related disorders which are constructed by taking
advantage of the independencies portrayed by the graphical part of the network.

1 Introduction

Although diagnosing multiple disorders has been a long-standing concern of knowledge-based sys-
tems research, it is only recently that fundamental paradigms for dealing with multiple disorders
have begun to arise. The paradigms of model-based reasoning [Reiter, 1987] and abductive reason-
ing [Peng and Reggia, 1990] especially are tuned to multiple-disorder diagnosis. The techniques
developed around these paradigms allow for diagnosing multiple disorders that occur simultane-
ously, yet do not interact. For example, GDE as an instance of model-based reasoning [de Kleer
and Williams, 1987] has been applied most successfully to technical domains where interaction
effects of disorders are only occasional. Interaction effects of disorders, however, are very com-
mon in for example medical domains. The basic techniques used for model-based reasoning and
abductive reasoning lack expressive power for modelling and dealing with such interaction effects.

At present, more and more diagnostic knowledge-based systems are being built using the belief
network framework [Shwe et al., 1991; Heckerman et al., 1992]. This framework also allows for
dealing with multiple disorders. The powerful formalism of the framework provides for explicitly
modelling knowledge concerning interaction effects of simultaneous disorders. In addition, the
framework has a firm foundation in probability theory and provides for exact and mathemati-
cally sound reasoning with uncertain information. This property contrasts approaches for dealing
with uncertainty generally employed with model-based reasoning [de Kleer, 1990] and abductive
reasoning [Wu, 1990], which often depart from (over-)simplifying assumptions.

The ability of the belief network framework to deal with multiple disorders often is exploited
insufficiently since the methods for diagnostic reasoning in use with the framework are over-
restrictive. For example, the methods for selective evidence gathering employed aim at gath-
ering information to distinguish between mutually exclusive disorders [Heckerman et al., 1992;
van der Gaag and Wessels, 1993]. The often made single-disorder assumption has its origin in the
computational complexity involved and is not inherent to the belief network framework itself.

In this paper, we present a method for diagnostic reasoning about multiple, simultaneous and
interacting, disorders with a belief network. In Section 2 we review the belief network framework
and briefly outline diagnostic reasoning with the framework. Section 3 introduces the basic idea of



our method. Section 4 presents a clustering algorithm that lies at the heart of our method which
is further detailed in Section 5. The paper is rounded off with some conclusions in Section 6.

2 Preliminaries

The belief network framework provides a formalism for representing a joint probability distribution
on a domain of application. A belief network comprises two parts: a qualitative representation
and a quantitative representation of the distribution.

The qualitative part of a belief network is a graphical representation of the independencies
between the statistical variables discerned in the problem domain; it takes the form of an acyclic
digraph G = (V(G), A(G)) with nodes V(G) and arcs A(G). Each node in the digraph represents
a variable that can take one of a set of values. In the sequel, we will restrict the discussion to
binary variables taking one of the values true and false; the generalization to variables with more
than two discrete values, however, is straightforward. We will adhere to the following notational
convention: v; denotes the proposition that the variable V; takes the value true; V; = false will be
denoted as —wv;. The arcs of the digraph represent dependencies between the variables. Informally
speaking, we take an arc V; = V; in the digraph to represent a direct ‘influential’ relationship
between the linked variables, where the direction of the arc designates V; as the effect of V..
Absence of an arc between two nodes means that the corresponding variables do not influence
each other directly.

The following definitions state the probabilistic meaning of the topology of the digraph of a
belief network more formally [Pearl, 1988).

Definition 2.1 Let G = (V(G), A(G)) be an acyclic digraph. Let t be a trail in G. We say that
t is blocked by a set W C V(G) if t contains three consecutive nodes Xy, Xo, X3 for which one of
the following conditions holds:

o X, « X5 and X5 = X3 are on the trail and Xo € W
e X; = X3 and Xo = X3 are on the trail and Xo € W;

e X1 = X5 and X5 « X3 are on the trail, and o*(X2) N W = @, where 0*(X2) is the set of
nodes composed of Xo itself and all its descendants.

The trail t is said to be active given the set W if it is not blocked by W.
Building on the notion of blocking, we define the d-separation criterion.

Definition 2.2 Let G = (V(G), A(G)) be an acyclic digraph. Let X,Y,Z C V(G). The setY is
said to d-separate X and Z, denoted as (X|Y|Z)&, if for each V; € X and V; € Z every trail
from V; to V; in G is blocked by Y .

The d-separation criterion provides for reading independency statements from a digraph G: if we
have (X|Y|Z)&, then X and Z are taken to be conditionally independent given Y.

Associated with the digraph of a belief network is a numerical assessment of the ‘strengths’
of the represented relationships: with each node is associated a set of (conditional) probabilities
describing the influence of the values of the predecessors of the node on the probabilities of the
values of the node itself. These sets provide all information necessary for uniquely defining a joint
probability distribution Pr that respects the independency relation portrayed by the digraph of
the network. For making probabilistic statements concerning the variables discerned, an inference
method is associated with the belief network formalism [Pearl, 1988; Lauritzen and Spiegelhalter,
1988).

The belief network framework is often employed for building diagnostic knowledge-based sys-
tems. In diagnostic reasoning, the main objective is to identify the most probable set of disorders
that explains the manifestations observed in a specific problem. In the sequel, we will refer to



this set as the diagnosis of the problem. Establishing a diagnosis is generally achieved by gath-
ering information on the problem at hand. In most domains, it is not necessary nor desirable to
obtain information on all possible manifestations before a diagnosis is reached. Hence, diagnostic
reasoning is a strategic reasoning process in which a selective approach to evidence gathering is
taken. The belief network framework does not provide for strategic control over reasoning and
therefore is enhanced to this end. Several methods for diagnostic reasoning with a belief network,
and selective evidence gathering more in specific, have been proposed in the literature.

For modelling the different roles the nodes of a belief network have in diagnostic reasoning,
generally the following types of node are distinguished [Henrion, 1989]: a hypothesis node represents
a disorder or hypothesis that may be confirmed or disconfirmed; an evidence node represents a
variable whose value can be obtained by observation; an intermediate node represents a variable
not classified in either of the former two groups. From now on, we take the nodes of the digraph
G of a belief network to be divided into three sets of nodes: H(G) = {H1,...,H,}, n > 1, is the
set of hypothesis nodes; E(G) = {E\,...,En}, m > 1, is the set of evidence nodes; I(G) is the
set of intermediate nodes.

In the methods for selective evidence gathering in use with a belief network, generally two
simplifying assumptions are made. First, a myopic approach to evidence gathering is taken, that is,
evidence nodes to acquire information on are selected one by one. It is conceivable that in practical
applications a non-myopic approach in which nodes are selected groupwise outperforms any method
based on a myopic approach. Naively adopting a non-myopic approach, however, poses serious
computational problems. Further research aimed at gaining insight in solving these problems is
underway [Heckerman et al., 1993]. Since adopting a myopic approach to evidence gathering is
quite common in diagnostic knowledge-based systems, we will equally take this approach in this
paper. Secondly, the number of nodes in the belief network representing disorders is often restricted
to one. This restriction prohibits reasoning about multiple interacting disorders. Relaxing this
restriction and applying evidence gathering in view of a set of hypothesis nodes straightforwardly
also causes problems from a computational point of view; in addition, such an approach would
strive to ascribe a value to all hypothesis nodes discerned, which is conceptually unattractive since
a diagnosis generally will not encompass all these nodes. In the sequel, we present an intuitively
more appealing and more efficient approach in which the latter restriction is eased.

3 Multiple-Disorder Diagnosis and Belief Networks

In many domains, a diagnosis may be composed of simultaneous and interacting disorders. As
mentioned before, diagnostic reasoning is the process of establishing a diagnosis for a given prob-
lem. Before a diagnosis is reached, generally several possible disorders are considered and either
confirmed or disconfirmed. It often is reasonable to assume that not all possible disorders dis-
cerned in the domain need be investigated. In fact, many possible disorders are never considered
for the problem and therefore will not be confirmed or disconfirmed. From the above observations,
we have that in the context of a belief network a diagnosis will generally not involve all hypothesis
nodes. We will therefore take a diagnosis to be a conjunction of values for a subset of the set of
hypothesis nodes of the network.

Diagnostic reasoning starts by gathering and processing information that is readily available. In
a medical context, examples are the patient’s history and information from physical examination.
In the sequel, we will use the phrase surface evidence to denote this type of information. For a
belief network, the surface evidence obtained is a conjunction of values for a subset of the set of
evidence nodes.

Diagnostic reasoning proceeds by selecting likely disorders to be considered for the problem
at hand. Generally, only disorders that are suggested by the surface evidence are selected at this
stage. In a belief network, we have to provide for identifying likely, possibly interacting disorders.
To this end, we partition the set of hypothesis nodes into disjunct subsets, called blocks. These
blocks are constructed to be mutually independent given the evidence obtained so far. Hypothesis
nodes from different blocks are independent, meaning that the represented disorders are deemed



unrelated in the problem under consideration at this stage of the reasoning process. Hypothesis
nodes from the same block, on the other hand, may be dependent, meaning that the represented
disorders may be related in the problem and have interaction effects. Especially in larger belief
networks modelling many, groupwise unrelated disorders, these blocks are expected to be rather
small, comprising a few hypothesis nodes each. Upon investigation, a block of hypothesis nodes
may contribute a partial diagnosis composed of simultaneous, possibly interacting, disorders to
the final diagnosis of the problem at hand; separate blocks may yield unrelated partial diagnoses.

The likely disorders that are selected for the problem at hand based on the evidence obtained
so far are further investigated by gathering additional information; we will refer to this type of
information as deep evidence. As opposed to surface evidence, deep evidence generally is not readily
available and may for example involve high costs of obtaining. The information to be acquired at
this stage of the reasoning process therefore is selected carefully. In a belief network, the evidence
nodes related to the likely disorders suggested by earlier acquired evidence will generally be most
advantageous to acquire information on. This observation has motivated clustering the evidence
nodes with respect to the constructed blocks of hypothesis nodes. We then focus selective evidence
gathering on the separate blocks of hypothesis nodes and their related evidence nodes.

Newly acquired evidence may contribute to the (dis)confirmation of some of the disorders under
consideration. The evidence may also suggest other disorders to be investigated. In addition, it
may provide a basis for concluding that in the problem at hand certain hypotheses have become
(un)related. The set of likely disorders to be considered thus changes dynamically as further
evidence becomes available.

4 Clustering

In the previous section, we have outlined the basic idea of our method for diagnostic reasoning
about multiple disorders with a belief network. In this section, we present the concepts involved
in our method in general terms; we will turn to their use in diagnostic reasoning in Section 5.
In Section 4.1, we introduce the notions of partition and clustering, and state some properties.
Section 4.2 presents an algorithm for computing a clustering of the nodes of the digraph of a belief
network; the algorithm is illustrated with an example in Section 4.3.

4.1 Definitions and Properties

The clustering of the set of nodes of the digraph of a given belief network that will be exploited
in the sequel is built on a partition of the set of hypothesis nodes of this network.

Definition 4.1 Let G = (V(G), A(G)) be an acyclic digraph. Let X,Y C V(G). A partition of
X given Y, denoted as W(X|Y), is a set of disjunct subsets X; C X,i=1,...,p, p > 1, called
blocks, such that

hd Ui-—'l,...,p Xi = X;
o foralljk=1,...,p, j #k, (X;|YIX0)%.

For a given set of nodes Y, each set of nodes X allows at least one partition given Y since
P(X|Y) = {X} is such a partition. We introduce the notion of an optimal partition as a partition
of which the separate blocks cannot be partitioned any further.

Definition 4.2 Let G = (V(G), A(G)) be an acyclic digraph. Let X,Y C V(G). A partition
PY(X|Y) of X given Y is optimal if each block X; € ¥(X|Y') allows one partition only.

Lemma 4.3 Let G = (V(G), A(G)) be an acyclic digraph. Let X,Y C V(GQ). Then, there is one
and only one optimal partition of X given Y.



Proof. Consider a node V; € X and the set 6({V;}) = {Vk € X | =({Vi}l Y|{Vk})&}, that is, the
set of all nodes from X that are not d-separated from V; by Y’; note that V; € 6({V;}). It will be
evident that this set of nodes is determined uniquely by the set Y and the topology of the digraph
G. For any partition ¥(X|Y) of X given Y we have that there exists a block X; € ¥(X|Y)
such that §({V;}) C X;. Applymg the argument recursively, we find that there exists a block
X; € $(X]Y) such that 8*({Vi}) C X;, where §* denotes the reflexive and transitive closure of 4.
Now, let ¢(X|Y) be an optimal partltlon of X given Y and let X; € ¥(X|Y) be the block with
§*({V:}) € X;. From ¥(X|Y) being optimal, we have that X; = §*({Vi}). Then, for each block
Xi € $(X|Y), we have that there is a vertex V] € X such that X} = §*({V/}). Since for each

vertex V! the set 8*({V/}) is unique, we conclude that there is one optlmal partition of X given
Y only. O

An independency relation may change as evidence becomes available. New independencies may
arise; yet, it is also possible that current independencies will no longer hold after observing the
evidence. In the sequel, we want to distinguish between independencies that hold no matter which
evidence may become available and independencies that may be invalidated by new evidence. To
this end, we distinguish between strong and weak d-separation.

Definition 4.4 Let G = (V(G), A(G)) be an acyclic digraph. Let X,Y,Z C V(G). The sets X
and Z are said to be strongly d-separated by the set Y if (X|Y|2Z)% and (X|Y U W|Z) for all
W C V(G). The sets X and Z are said to be weakly d-separated by Y if (X| Y|Z)e, and X and
Z are not strongly d-separated by Y.

Since an independency relation may change as new evidence becomes available, the optimal par-
tition of a given set of nodes X may change as well. Observe that for any partition of X we have
that any two nodes from different blocks are either weakly d-separated or strongly d-separated.
For an optimal partition, we have the additional property that two nodes from the same block are
either weakly d-separated or not d-separated at all. From these observations, it follows that the
changes to the optimal partition occasioned by a new piece of evidence are restricted in scope.

Lemma 4.5 Let G = (V(G), A(G)) be an acyclic digraph and let X,Y C V(G). Let %(X|Y) be
the optimal partition of X givenY. Now, let V € V(G) and let Y' =Y U{V}. Then, the optimal
partition ' (X|Y"') of X given Y' satisfies one and only one of the following conditions:

o Y(X]Y') = ¢(X]|Y);

o P(X|Y)={X1,...,.Xp}, p2 1, and ¥'(X|Y") = W(X| )\ {X:H U{Xi;,.. ., Xip} g > 1,
such that U, . . Xi, = Xi, for some 1 <1< p;

b "p(XIY’)_{Xl’ . P};p>1 and"/’(X|Y) (¢/(X|Y,)\{Xj})U{XJ'1""’qu}iQ> 1,
such that U;~, ., X —-X],for somel1 < j<p.

From the lemma we have that if a new piece of evidence occasions a change to the optimal partition,
then either one block of the current partition falls apart into two or more smaller blocks, or two
or more blocks of the current partition are combined into one large block.

The optimal partition of a set of nodes X given a set of nodes Y includes only the nodes from
X of the digraph at hand. This optimal partition is now extended to a clustering by inserting as
many of the remaining nodes into the separate blocks of the partition as possible, exploiting the
d-separation criterion.

Definition 4.6 Let G = (V(G), A(G)) be an acyclic digraph and let X,Y C V(G). Letp(X|Y) =
{X1,...,Xp}, p =2 1, be the optimal partition of X given Y. Fori =1,...,p, the cluster S;
associated with block X; of W(X|Y) is the set of nodes S; = {V € V(G)|~(Xi| YI{V})§}. The
clustering of V(G) with respect to X givenY, denoted as ((X|Y'), is the set {(X|Y) = {S1,...,5p}
where S; is the cluster associated with block X; of ¥(X|Y),i=1,...,p



Note that the clustering ((X|Y) of the set of nodes of a digraph G with respect to a set of nodes
X given a set of nodes Y is unique. Also, note that this clustering in general is not a partition of
V(G): different clusters may have nodes in common and there may be nodes that are not included
in any cluster.

4.2 The Clustering Algorithm

In this section, we present an algorithm for computing for a digraph G the clustering ((X|Y)
of the set of nodes V(G) with respect to a set of nodes X given a set of nodes Y. The main
procedure of our clustering algorithm is the cluster-nodes procedure. This procedure takes two
sets of nodes X and Y for its input and yields the clustering S = {(X|Y) as its output. The
procedure repeatedly selects a node V; from the set X and computes the cluster comprising V;, by

calling the dependent-nodes procedure; it collects the thus computed clusters into the clustering
S.

procedure cluster-nodes(X Y ,S)
T:=X;
while T # @ do
select V; € T},
dependent-nodes(X,V,,Y,S);
T :=T\{Vi}
od
end

The dependent-nodes procedure is based to a large extent upon the algorithm by Geiger et al. for
identifying all (in)dependencies implied by the topology of a digraph [Geiger et al., 1990]. For a
node V; € X, the procedure determines the set of all nodes that can be reached from V; via an
active trail given Y in G. Note that this set not necessarily constitutes the cluster for node V;
as a cluster may also contain nodes that are weakly d-separated. This situation only arises when
the set of non-d-separated nodes for a node from X comprises at least one other node from X. In
the dependent-nodes procedure, therefore, the set of non-d-separated nodes computed for a node
V; € X is taken as a temporary cluster. For each newly created temporary cluster it is verified
whether it has nodes from X in common with earlier computed temporary clusters; if so, the set
of temporary clusters is adapted by combining two or more temporary clusters into a new one.

procedure dependent-nodes(X,V,Y,S)
T :={Vi};
for each V; € V(G) do
if there is an active trail given Y in G
from V; to V; then
T :=TUu{V;}
fi
od;
while there is a temporary cluster T € S
withT'NTNX # @ do

T:=TuT'

S :=S\{T"}
od;
S:=Su{T}

end

The correctness of our algorithm follows from the observation that the algorithm performs the
construction of the optimal partition given in the proof of Lemma 4.3 straightforwardly.

To conclude, we note that the worst-case computational complexity of the cluster-nodes proce-
dure is polynomial in the number of nodes of the digraph.



4.3 An Example

Consider the example digraph G depicted in Figure 1. Let X be the set of nodes drawn in shading
and let Y = @. The cluster-nodes procedure is called upon to compute the clustering {(X|Y’) of
V(G) with respect to X given Y.

Figure 1: An Example Digraph.

Suppose that node V; is the first node selected from X by the cluster-nodes procedure. For this
node, the dependent-nodes procedure computes the temporary cluster 1 = {V5,V6}. This tem-
porary cluster is inserted into the (also temporary) clustering S. Now suppose that subsequently
node V, is selected from X. For Vy, the temporary cluster T; = {Vl,%,%,Vg,Vlz,Vlg,VM,Vw} is
computed. The dependent-nodes procedure detects that node Vs € ToNX has been included earlier
in the temporary cluster T3; Ty and T, therefore are combined into the new temporary cluster T,
and T} is removed from S. The final clustering S contains the three clusters {V2,V7,Vs,V11,Vi2,V14},
{V3,V7,V3,V11,V12,V14} and (W Vi, Vs, Vs, Vo,V12,Va3,V14,Vi5 }. Note that in this clustering, node Vio
does not appear in any of the clusters, and that nodes Vy2 and V14 are comprised in all clusters.

If the cluster-nodes procedure had started with node Vs instead of Vs, then the necessity
of combining the temporary clusters Ty and T> would not have arisen. In general, combining
temporary clusters is minimized by selecting the nodes from X in decreasing topological order.
Combining temporary clusters, however, cannot be avoided in all.

5 The Method for Multiple-Disorder Diagnosis

The main procedure of our method for diagnostic reasoning about multiple, simultaneous and
interacting, disorders with a belief network is the multiple-disorder-diagnosis procedure. This pro-
cedure takes the digraph G of a belief network and the set E of nodes corresponding with deep
evidence for its input and yields a diagnosis D as its output.

procedure multiple-disorder-diagnosis(G,E,D)
enough := false;
while E # @ and not enough do
cluster-nodes(H(G).E(G) \ E.S);
select-cluster(S,S;,enough);
if enough = false then
select-node(S;,E.E;);
process-evidence(E;);
. E := E\{E;}
i



od;
diagnosis(D)
end

The algorithm begins by computing the clustering of the set of nodes V(G) with respect to the set
of hypothesis nodes H(G) given the set of nodes for which evidence has been obtained (initially,
the set of nodes modelling surface evidence). To this end, the cluster-nodes procedure from the
previous section is used as will be further detailed in Section 5.1.

From the clustering yielded by the cluster-nodes procedure, one cluster is selected to focus
attention on by the select-cluster procedure, which is described in Section 5.2. From the selected
cluster, the evidence node to best acquire information on is determined by the select-node proce-
dure, detailed in Section 5.3. The user then is prompted for a value for the selected node and the
value entered is processed in the network by the process-evidence procedure.

Before the next evidence node is selected, it is verified whether or not enough evidence has
been gathered to establish a diagnosis. Further evidence gathering may be stopped as soon as for
all relevant clusters a partial diagnosis has been found. To verify whether information gathering
may be stopped, a local stopping criterion for examining sufficiency of confirmation per cluster is
employed as well as a global stopping criterion for examining relevancy of clusters. In Section 5.2,
we briefly describe the latter stopping criterion; here we will not further elaborate on the local
stopping criterion. After evidence gathering has completed, the diagnosis procedure collects all
partial diagnoses that have been confirmed to sufficient extent and presents these to the user.

At several stages of the reasoning process, strategic decisions are taken as to the focus of
attention. These decisions are based on probabilistic considerations. In Section 5.4 an example
illustrates how the probabilities involved are computed efficiently.

5.1 Computing the Clustering

Our method for multiple-disorder diagnosis focuses attention on mutually independent subsets of
hypothesis nodes. To this end, the set of hypothesis nodes is partitioned into blocks as described
before. These blocks should be as small as possible to allow for controlling the computational
complexity involved. By departing from the optimal partition of the set of hypothesis nodes the
idea of focusing is exploited to the fullest extent since for this partition the blocks are smallest.

The cluster-nodes procedure from the previous section is used to compute the clustering of
the set of nodes V(G) with respect to the set H(G) given the set of nodes E for which evidence
has been obtained. Now note that, instead of just the optimal partition of H(G) given E, this
procedure computes the sets of dependent evidence and intermediate nodes along with the blocks
of hypothesis nodes. We have chosen to compute these sets for all blocks of hypothesis nodes
along with the partition, since the set of dependent evidence nodes needs be computed anyway
for the subset of hypothesis nodes on which attention will be focused: for this subset, a node to
acquire information on needs be selected among the dependent evidence nodes. Also, the sets
of dependent evidence and intermediate nodes can be yielded as a byproduct of computing the
optimal partition without adding to the time complexity of the computation.

After a new piece of evidence has been processed in the belief network, the clustering of the
set of nodes of the digraph is computed all over again. From Lemma 4.5, however, we have
that the optimal partition does not change drastically for a new piece of evidence. We expect
that a more dynamic approach to computing the new clustering is possible by maintaining the
current clustering and only re-computing clusters for the part of the network influenced by the
new evidence.

5.2 Selecting a Cluster

Consider the clustering of the set of nodes of the digraph G given the evidence obtained so far.
The basic idea of the select-cluster procedure is to select the cluster that at this stage of the



reasoning process is most likely to yield a partial diagnosis of the problem under consideration.
This procedure takes as a constraint that the selected cluster is not contradicted by the evidence.
For each cluster S; of the current clustering, the probability Pr(V y, ¢s, hj | c), where c is the
conjunction of all evidence obtained so far, expresses the likelihood that at least one of the hy-
pothesis nodes from the cluster has adopted the value true in the problem at hand: the higher this
probability, the more likely this cluster will provide a partial diagnosis. In addition, we observe that
the cluster is not contradicted by the evidence if Pr(V g, ¢g, h; le) > Pr(Vy,es, h;). The select-
cluster procedure therefore selects the cluster S; with the highest probability Pr(\/ HjeS: hj | c) for
which Pr(V . cs, hj | ¢) = Pr(V g, es, hj). Note that this procedure encompasses a global crite-
rion for stopping further gathering of information: if, after several clusters have been investigated,
all remaining clusters are contradicted by the evidence, then evidence gathering is stopped.
Several probabilities are involved in selecting a cluster to focus attention on. For each cluster S;,
the probabilities Pr(V g, e, h;) and Pr(\ Hes: i | €) have to be computed, or the probabilities
Pr(Ap,es, —h;) and Pr(Ap. s, ~hj | ¢), alternatively. The prior probability Pr(Ap,es. —h;) is
computed from the joint prof)ability distribution defined by the belief network by marginalization
[Suermondt and Cooper, 1991]. The conditional probability Pr(Ay,cs, ~h; | ¢) is computed

basically by employing the recursive approach used in loop cutset conditioning [Pearl, 1988]. The
fact that the clustering of the set of nodes may change when new evidence becomes available
interferes with this recursive approach.

Consider the optimal partition defining the current clustering. From Lemma 4.5 we have that
for a new piece of evidence either one block of the current partition falls apart into two or more
smaller blocks, or two or more blocks of the current partition are combined into a new one. First,
consider the case where the block B of the current optimal partition falls apart into separate
blocks Bj,...,B,, ¢ > 1. Let ¢ once more denote the conjunction of all evidence obtained so
far and let e denote the new piece of evidence occasioning the change in the current partition.
The probabilities Pr(A H;€B: -h;|cAe),i=1,...,q, required for selecting a cluster in the next
step of the reasoning process are computed from the probability Pr(A ;e "R | ¢) by further
conditioning on e and subsequent marginalization. Now consider the case where several blocks
Bi,...,Bg, ¢ > 1, of the current optimal partition combine into one block B. The required
probability Pr(A H;eB R | ¢ A e) is computed using the aforementioned recursive approach
and exploiting the property that in the current partition Bi,..., B, are independent given the
evidence obtained so far, that is, Pr(Ag,cp—hi | ©) = [licy,.. Pr(Ag,ep, ~hs | c). We will
further elaborate on these observations in Section 5.4.

To conclude, we note that the computation of the prior probabilities is expensive; the worst-
case computational complexity is dependent on the number of hypothesis nodes comprised in the
network [Suermondt and Cooper, 1991]. These probabilities, however, need only be computed once
before diagnostic reasoning is started. All further computations have a worst-case complexity that
is exponential in the number of hypothesis nodes comprised in the separate clusters.

5.3 Selecting an Evidence Node

After the cluster that is most likely to yield a partial diagnosis has been selected, the evidence
node to best acquire information on is determined. To this end, the select-node procedure applies
the method for evidence gathering presently in use for belief networks: for each evidence node that
is not yet instantiated, the expected utility with respect to the set of hypothesis nodes comprised
in the selected cluster is computed, and the evidence node with the maximum expected utility
is selected. Only evidence nodes from the selected cluster are considered as these are the only
evidence nodes relevant to the current focus of attention.

For selecting evidence nodes, several utility functions may be employed. An example is the
linear value function which is built on the notion of confirmation [van der Gaag and Wessels,
1993]. Let B be the block of hypothesis nodes in the selected cluster and let cp be a conjunction
of values for the nodes in B; let ¢ be the conjunction of all evidence obtained so far and let E;
be an evidence node from the selected cluster. Then, u(cp,e;) = |Pr(cs | ¢ Ae;) — Pr(cp | c)]



( select-cluster [ select-node ]

step 1

Pr(-wvs) Pr(vs A ve Avg) Pr(vs Ave Avg | Ej) Pr(E;)

Pr(-wv3) Pr(vs A vg A ~wg) Pr(vs Ave A —vg | Ej)

Pr(—vs A =g A —wg) Pr(vs A —vg A vg) Pr(vs A —vg Avg | Ej)
Pr(vs A —wg A —wg) Pr(vs A —ve A —vg | Ej)
Pr(—wvs A ve A vg) Pr(-ws Ave Avg | Ej
Pr(—vs A vg A ~wg) Pr(-vs Ave A g | Ej)
Pr(—vs A —vg A vg) Pr(-wvs A ~ve Avg | Ej)
Pr(-wvs A —~vg A ~vg)  Pr(—ws A —vg A —wg | Ej)

block {Vs, Vs, Vp} is selected. evidence node V is selected, V4 = true is observed.

step 2

Pr(—wvsz | va) Pr(=wvg) Pr(va | va) Pr(va | va A Ej) Pr(E;j | vq)

Pr(—w;; | ‘U4) Pr(—m3) P'r‘(—!vz | ‘04) Pr(—-'vz | v4 A EJ‘)

Pr(—vs A g | v4) Pr(—vs A —vg)

Pr(-wvg | v4) Pr(—wg)

block {V2} is selected. evidence node V11 is selected, Vi1 = true is observed

step 3 ' '

Pr(—va A —v3 | v Avii) Pr(—va A —w3)

P'r(ﬂ'v5 A e | vg A ’011) PT(—Vus A —-'ve)

Pr(—wg | v4 Av11) Pr(—vg)

block {V2, Va} is selected.

Table 1: The Probabilities.

indicates the change in confirmation of cp if evidence e; is observed for E;. The expected utility
of acquiring information on E; is computed as the sum of the utilities of all conjunctions of values
for the hypothesis nodes in B and all values for E; weighted with their probabilities.

Note that selecting an evidence node is performed with respect to only a (small) subset of
nodes of the digraph. The computational complexity is exponential in the number of hypothesis
nodes comprised in the separate clusters.

5.4 An Example

In this section, we illustrate the multiple-disorder-diagnosis procedure and focus on the computation
of the probabilities involved. Let the digraph G depicted in Figure 1 be the graphical part of a
belief network. The nodes drawn in shading are hypothesis nodes; the nodes V3, V12 and Vi3 are
intermediate nodes; the remaining nodes are evidence nodes. For ease of exposition, we assume
that all evidence nodes model deep evidence. Table 1 summarizes the probabilities that are
required by the select-cluster and select-node procedures.

Initially, three clusters are computed for G as was illustrated in Section 4.3. These clusters
comprise the blocks {V2}, {V3}, and {V5,V5,V5} of hypothesis nodes. For these blocks, the select-
cluster procedure computes the probabilities shown in the first row of Table 1 by marginalization
from the distribution defined by the network. Now suppose that of these the probability Pr(-wvs A
—vg A —wg) is smallest. Then, the cluster containing the block {V5,Vs,V5} is selected to focus
attention on.

The select-node procedure determines the evidence node to best acquire information on by
computing the expected utilities of each of the evidence nodes E; comprised in the selected cluster,
that is, of the nodes Vi, V4, Vi4 and Vy5. To this end, several prior and posterior probabilities are
required as shown in Table 1. The prior probabilities are computed once more by marginalization.
The posterior probabilities are computed by employing the recursive approach proposed before.
For example, we have that

Pr(vs Avg Avg | v1) = a - Pr(vy | vs Ave Avg) - Pr(vs Ave Avg)

where « is a normalization constant. Pr{v; | vs A vg A vg) is computed directly from the belief
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_ network; Pr(vs A vg Avg) has been computed before and need not be re-computed. Now, suppose
that evidence node V} is selected to acquire information on and that the value v4 is processed in
the network. As a result, the block {V5,V5,V5} falls apart into the blocks {V5,Vs} and {V4}.

In the next step, the select-cluster procedure requires the probabilities shown in the second row
of the table. We observe that Pr(-wv; | v4) need not be computed: from the independencies of
the digraph of the belief network we have that Pr(—ws | v4) = Pr(—wz). A similar observation
holds for Pr(-ws | vs). The probabilities not yet known are computed by marginalization from
the probabilities found in the previous step of the algorithm. Suppose that the cluster containing
the block {V32} is selected to focus attention on.

For determining the node to best acquire information on, the select-node procedure examines
the evidence nodes V7, V41, and V14. Suppose that node V; is selected and that the evidence vy,
is entered. As a result, the clusters containing the blocks {V2} and {V3} are combined.

In the third step, the select-cluster procedure once more requires several probabilities as shown
in the table. We examine the computation of Pr(—w; A -3 | v4 Av11). We have

Pr(—wvg A -3 | va Avi1) = a - Pr(vir | ~va A —vs Avg) - Pr(-ve A —vs | vs)

where o once more is a normalization constant. The probability Pr(v11 | ~veA-vsAvs) is computed
directly from the belief network; note that the evidence v4 has no influence on the probability of
v11. The probability Pr(-vy A ~ws3 | v4) can be computed by exploiting the independencies of the
digraph of the network:

P’l‘(“'l)z A g I ’1)4) = PT("UQ I '04) . P’l‘(“’v3 | 'U4) = P’I"(‘I’Uz) . P’l‘("’vg)

Note that for this computation there is no need to resort to belief network inference as the proba-
bilities Pr(—ws) and Pr(—w3) have been computed before. Now suppose that the cluster containing
the block {V, V3} is selected and that the probability of one of the conjunctions of values of V» and
V3 is considered to be confirmed to sufficient extent. Now, if the posterior probabilities computed
for the other blocks surpass their prior probabilities, evidence gathering is stopped. The confirmed
conjunction of values of V; and Vs is returned as the diagnosis.

To conclude our example, we observe that the number of probabilities computed in our ap-
proach is far less than the number of probabilities a straightforward approach to selective gathering
of evidence in view of multiple-disorder diagnosis would require: in such an approach probabilities
for all possible conjunctions of values for all hypothesis nodes would have to be computed.

6 Conclusion

In this paper we have presented a method for diagnostic reasoning about multiple, simultaneous
and interacting, disorders with a belief network. QOur algorithm builds on a decomposition of
the set of nodes of the digraph of a belief network into clusters, each comprising a set of related
hypothesis nodes and their dependent evidence and intermediate nodes given the evidence obtained
so far. This clustering allows for intelligent control over reasoning by focusing attention on subsets
of hypothesis nodes. By focusing on a single cluster that is likely to provide a (partial) diagnosis,
computations can be performed local to this cluster, thus alleviating the overall computational
burden.

Future research will address optimizing the clustering algorithm: a more dynamic approach
in which clusters are re-computed only for the part of the network influenced by new evidence is
likely to further save on computational effort. In addition, we project performing experiments on
different classes of randomly generated belief networks to gain insight into the sizes of the clusters
arising during reasoning. To yield accurate insight into the overall behaviour of our method, it
will have to be evaluated in real-life applications as well.
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