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Abstract

A polyhedron P is castable if its boundary can be partitioned by a plane into
two polyhedral terrains. Castable polyhedra can be manufactured easily using
two cast parts, where each cast part can be removed from the object without
breaking the cast part or the object. If we assume that the cast parts are each
removed by a single translation, it is shown that for a simple polyhedron with n
vertices, castability can be decided in O(n?logn) time and linear space using a
simple algorithm. A more complicated algorithm solves the problem in O(n3/2+<)
time and space, for any fixed ¢ > 0. In the case where the cast parts are to
be removed in opposite directions, a simple O(n?) time algorithm is presented.
Finally, if the object is a convex polyhedron and the cast parts are to be removed
in opposite directions, a simple O(n 1og2 n) algorithm is presented.

1 Introduction

A growing application area of computational geometry is in the area of automated
manufacturing, where an engineer can design an object with the aid of a computer,
and determine by which manufacturing process the object can be constructed. There
are several types of manufacturing processes studied in computational geometry, such
as gravity casting [4, 5, 13], NC machining [14], automated welding [18] and layer
deposition methods such as stereolithography [3].

In this paper, we study the geometric and computational aspects of casting. Casting
consists of filling the open region bounded by two or more cast parts with a material
such as a liquid metal, then removing the cast parts. The requirement to remove
the cast parts without breaking them imposes certain restrictions on the shape of the
objects that can be constructed. For sand casting (see e.g. [12, 26]), only two cast parts
are used. To construct the cast parts, a prototype of the object is first obtained (see
Figure 1). The prototype is then divided into two parts along a plane. The facet of each

*This research is supported by the NSERC and the ESPRIT Basic Research Action 7141 (project
ALCOM II: Algorithms and Complezity).
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Figure 1: Construction of an object by sand casting, using two halves of the object as
prototypes.

prototype part adjacent to the cutting plane is referred to as the base. The first cast
part is made by placing the base of the first prototype part on a flat surface, and then
adding sand around it. The part is then rotated such that the base is facing up, and
the other prototype part is placed such that the bases coincide. The second cast part is
built by adding sand around this prototype part while maintaining a channel into the
cavity. Once the sand hardens, the cast of the prototype object is complete and the
prototype parts can be removed. To build a metal rendition of the prototype object
with this cast, liquid metal is poured into the opening until it fills the cavity. After the
metal solidifies, the cast parts are removed from the object. The key to constructing a
cast with this process is the ability to remove the prototype object without breaking
the cast. This property is not restricted to casts built for manufacturing methods
related to sand casting but also applies to other metal casting methods [12, 26], as well
as injection molding and blow molding methods for plastics [22, 27]. The ability to
remove the prototype object from the cast without breaking the cast allows one to re-
use the same cast when mass-producing a particular object. Thus for several different
manufacturing methods involving casting, the geometry of the object determines its
feasibility of construction.

We note that more complicated objects can be made by using cores and inserts [12,
22, 26, 27]. However, their use slows down the manufacturing process and makes it
more costly. Thus to be cost efficient, cores and inserts should be avoided. We do not
study the extra possibilities of cores and inserts in this paper. We also omit treatment
of issues related to filling the cast, such as whether air bubbles are trapped by the
rising liquid. For a geometric treatment of some of these issues, see [4, 5].

An object is castable if it can be manufactured by casting. In other words, a cast
of the object can be constructed such that each cast part can be removed from the



object without breaking the object or any of the cast parts. Geometric and algorith-
mic issues of the castability of planar objects have been studied by Rosenbloom and
Rappaport [23]. This paper addresses casting of objects modelled by polyhedra. In
geometric terms, castability can be defined as follows (for a polyhedron P, 8P denotes
the boundary of P, and for a plane h, h* and A~ refer to the open half-spaces above
and below h):

Definition 1 A simple polyhedron P is castable if there exists a plane h such that
h* N OP is a weak terrain in some orientation, and h™ N AP is a weak terrain in some
orientation. The plane h is called the casting plane. (A weak terrain may contain edges
and facets parallel to the orientation in which it is a terrain.)

To manufacture a castable object (modelled as a polyhedron P), first determine a
casting plane h. The plane h divides P into two cast parts. Make each cast part from
the prototype halves h* N 9P and h~ N AP. Since P is castable, the prototype halves
can be removed from the cast parts, and later the manufactured object can be removed
from the cast parts. We consider three versions of the castability problem. They differ
in the way the cast parts may be removed from the polyhedron P. Figure 2 shows the
three versions for planar polygons.

Figure 2: Three versions of the castability problem.

1. The two cast parts must be removed from P by one translation each, in opposite
directions, and normal to the casting plane (orthogonal cast removal).

2. The two cast parts must be removed from P by one translation each, and in
opposite directions (opposite cast removal).

3. The two cast parts must be removed from P by one translation each, in arbitrary
directions (arbitrary cast removal).

Any convex polygon (in the plane) is castable in any of the three versions. In 3
dimensions, the equivalent property does not hold for convex polyhedra; in fact, some



convex polyhedra are not castable in any of the three versions. In manufacturing,
developing machines that perform orthogonal and opposite cast removal is much simpler
than machines that perform arbitrary cast removal. In fact, opposite cast removal
seems to be the most popular technique used [8, 22|. Furthermore, if orthogonal or
opposite cast removal is possible, it can be determined more efficiently. We summarize
the complexity of the different algorithms we developed for the casting problem. In
the top half of the table, the time bounds of simple, linear space algorithms are shown.
The bottom half of the table shows improvements made (in theory) by using O(n?%/2+¢)
storage (for any positive constant ¢).

orthogonal | opposite arbitrary
linear space c?nvex polyhedra | O(nlog®n) | O(n 1og22 n) O(nz logn)
simple polyhedra | O(n?) O(n*) | O(n*logn)

best results | convex polyhedra | O(nlog?n) | O(nlog’n) | O(n3/2*e)
(in theory) | simple polyhedra | O(n3/2+<) | O(n3/2*+<) | O(n¥/2+e)

We first derive some useful geometric properties of castable objects. These prop-
erties are the foundation upon which the algorithms are developed. The differences
between the three versions of cast removal for both convex and simple polyhedra are
considered (Section 2). The main approach taken by the algorithms is to compute a
set of candidate casting planes, and to test each one of them. Therefore, in Section 3,
we give bounds on the maximum number of distinct (candidate) casting planes. As a
by-product that is interesting in its own right, we prove that the number of planes that
intersect a convex polyhedron without intersecting any of its facets properly is O(n),
and that the total number of edges contained in these planes is O(nlogn). Algorithms
for cast removal in orthogonal and in opposite directions are presented in Section 4.
Section 5 presents the algorithms for cast removal in arbitrary directions.

2 Preliminaries

All polygons and polyhedra in this paper are simple (see [21] for a definition). For a
polyhedron P, denote by V, E and F the set of its vertices, edges and facets. Edges
that bound two parallel facets are not allowed; they can be removed without changing
the shape of the polyhedron. Edges and facets are open, the closure of an edge e or
facet f is denoted by cl(e) or cl(f). The open interior of a polyhedron P is denoted
by int(P), the open exterior by ezt(P), and the boundary of P by P. Although
technically the object to be constructed is the interior of P, and the boundary of P
is part of the cast, with a slight abuse of notation, we nevertheless state that P is
castable or not castable.

A polyhedral surface S is called a weak terrain with respect to a direction d if any
line with orientation d intersects S in a point or a line segment. A polyhedron P is
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called a weak terrain with respect to a facet Q and a direction d if OP — Q is a weak
terrain with respect to d. In the rest of this paper we use terrain to mean weak terrain

For a non-vertical plane h, we denote by At and A~ the open half-spaces above and
below h. If h is vertical but does not contain a line parallel to the y-axis, then A* and
h~ denote the open half-spaces bounded by h that contain the points (0, 00,0) and
(0, —00, 0), respectively. If h is vertical and contains a line parallel to the y-axis then
ht* and h~ denote the open half-spaces bounded by h that contain the points (00,0, 0)
and (—o0,0,0), respectively. We use h{ and hy to denote At and h~ translated so
that the bounding plane intersects the origin. Given dlrectlon d and facet f, we say
that f is compatible with d if the inner product between d and the outward normal of
facet f is non-negative (i.e. d makes an angle of at most 7 /2 radians with the outward

normal of f). We say that f is incompatible with d if it is not compatible.

Observation 1 Let P be a polyhedron and let h be a plane that intersects P. The
surface OP N cl(h*) is a terrain for direction d if and only if every facet of P that
intersects ht is compatible with d.

Therefore, castability with respect to a plane h is only determined by the facets of
P that intersect h* and the ones that intersect h~. If h is a casting plane for P,
then h can be perturbed if this does not involve new facets intersecting h. In case of
orthogonal cast removal, the only perturbation allowed is translation.

Observation 2 For castability with orthogonal cast removal, we may assume that the
casting plane contains at least one vertex of P. For opposite and arbitrary cast removal,
we may assume that the casting plane contains at least three vertices of P.

For two polyhedra P and @ whose interiors lie on different sides of a plane h, and
which are both bounded by the same facet f that lies inside h, we define the union of
P and @ as the polyhedron with all vertices of P and @, with all facets of P and Q
except f, and with all edges of P and @ except the ones contained in A that bound
two parallel facets.

2.1 The sphere of directions

We represent the space of all directions in 3-space by the points on the surface of a
sphere. Let S be the unit sphere centered at the origin 0. Any point p on S represents
the direction _15 Let north and south denote the points on S that represent the Z and
—Z directions. Let £ denote the equator (the set of points p € S, such that _ﬁ Z=0).
For any point p € S, let H(p) denote the open hemisphere representing all directions
that make an angle less than 7/2 radians with op, and cl(H(p)) is the closure of this
hemisphere.

Let P be a convex polyhedron, let h be a casting plane and let d; and dj be the two
cast removal directions, represented by points d; and d, on the sphere of directions.
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We re-orient P and h such that north is normal to h, thus d; and d, cannot both
lie in the upper hemisphere or the lower hemisphere. Without loss of generality, let
dy € cl(H(north)) and d, € cl(H(south)).

Observation 3 If a facet f of P intersects h*, and f has its outward normal repre-
sented by a point q on S, then q € cl(H(dy)). Similarly, if f intersects h~, then q €
cl(H(dz)). Therefore, if f intersects the casting plane h, then q € cl(H(dy))Ncl(H(dp))
(recall that f is open).

Figure 3: The sphere of directions. The shaded hemispheres are H(d;) and H(d,), and
the darker shaded region is their intersection.

Define C(d;) and C(dz) to be the great circles that bound H(d;) and H(d,). If d;
and d, are opposite, then C(d;) = C(d,), otherwise, C(d;) N C(d,) consists of a pair
of antipodal points on S different from north, and south.

For any point p € S — {north, south}, define A(p) to be the nearest point on the

equator (i.e., the intersection point of the equator £ with the great circle through north
and p nearest to p). By definition, we have

op - 0A(p) > 0. (1)

Furthermore, p and A(p) lie to the same side of any great circle through north and
south.

Assume that dj and d, are non-opposite in the following (see Figure 3). Define Ci,
to be the great circle containing north, south and the points of C(d;) N C(dp). Note
that cl(H(d1)) N cl(H(d,)) does not intersect one of the (open) hemispheres defined by
C1a. Let Hyp be this open hemisphere. By the above observation, any facet that has

its outward normal in H;, cannot be intersected by the casting plane. We use this fact
in the following lemma.



Lemma 1 If a simple polyhedron P is castable in non-opposite directions with casting
plane h, then h contains an edge of P.

Proof: Let Q = PN h. If Q consists of more than one connected component, or if
@ has holes, then h cannot be a casting plane for P. Therefore, @ is a simple polygon.
Let e,,. .., en be the clockwise sequence of edges bounding @ and let ¢y, ..., g,, be the

points on h NS that represent the outward normals of ey, ..., e,,. Since h is chosen to
be horizontal, ¢1,...,¢m € £. Every open half-circle in £ contains at least one point of
¢, --,qm, because @ is a simple polygon.

Given that P is castable with respect to non-opposite directions d_i and (fz, assume
that every e; is the intersection of a facet f; of P with the casting plane (i.e. no edge
of @ is an edge of P). Let Cy; and Hj; be as defined above, and let e; be an edge of
Q such that g; € £ N Hy, (see Figure 3). Let p; be the point on S that represents the
outward normal of f;. Then ¢; = A(p;), and by (1), we know p; lies in H;,. However,
H, does not contain any point in cl(H(d;)) N cl(H(d,)), so by Observation 3 the facet
f; cannot intersect the casting plane, which is a contradiction. Thus h contains an
edge of P. .

Lemma 2 If a simple polyhedron P is castable with casting plane h and in non-opposite
directions, then h contains an edge of the convex hull of P.

Proof: Let P be castable with respect to non-opposite directions (fl and cf«z If the
cast of PN cl(h*) can be removed in a direction dy, then the convex hull of PN cl(h+)
can also be removed in the direction JI The same statement holds for direction ci; and
the cast of P N cl(h™).

Let @ = PN h. The convex hull of @ is the closure of a facet bounding both
CH(P N h*) and CH(P N h~) (note that the convex hull is defined as a closed set).
As in the proof of the previous lemma, there exists an edge e; of the convex hull of @
where the outward normal of the edge on plane h lies in Hyy. We need to prove that
e; is also an edge of CH(P). Let f; be the facet of CH(P N h*) incident to e; and
not in h. Define f, analogously for CH(P N h~). Let g;, p; and p; be the points on
h NS and S that represent the outward normals of ej, f1 and f,, respectively. Since
fi and f, are incident to e;, we have A(p1) = A(p2) = g¢j, 50 p1, p2 and g; lie on a
half-circle between north and south and in Hy,. Since p; € H(d;) and p, € H(d,) are
both contained in Hi,, the half-circle through north, south, p; and p, must contain a
point 7 that is not in cl(H(d;)) nor in cl(H(dy)). The plane A’ with normal o7 and
containing e; has CH(P N h*) completely to the one side, with the exception of cl(e;).
Similarly, CH(PNh~) lies completely to the one side of k' with the exception of cl(e;).
Since these convex hulls lie to the same side, it follows that P lies completely to the
one side of A’ with the exception of the endpoints of e;, and possibly e; itself (if e; is
an edge of P). Therefore, e; is an edge of CH(P). ]



Notice that the above two lemmas imply that if a polyhedron is castable, but not
with opposite cast removal, then the casting plane contains both an edge of P and an
edge of the convex hull of P (this might be the same edge). This will aid considerably
to determine castability with arbitrary cast removal.

2.2 Relation to linear programming

Let P be a polyhedron and let h be a plane. The plane h partitions the set V of vertices
of P into three subsets Vi, V;t and V;~ of vertices in, above and below h, respectively.
Similarly, h partitions the set E of edges of P in four subsets Ey, E;, Ef and Ej of
edges contained in h, intersecting h, above h and below h, respectively. The set F of
facets is partitioned in the same way. For any facet f € F, denote by ¥(f) the closed
half-space bounded by a plane supporting f, and such that for any point in f, ¥(f)
does not intersect the interior of P in an e-neighborhood of the point. Denote by ¥y ( f)
the same half-space, but translated such that the bounding plane contains the origin.
We define

£t (h) = c(hd) N ) Po(f) and £ (h)=c(hg)N N To(f)

feF,UFy feFUFX

The intersection of a set of half-spaces is called non-trivial if it contains more than
a single point. Denote by refi(b) the reflection of an object b through the origin (i.e.
every point in b is negated). We make the following observations.

Observation 4 The plane h is a casting plane for polyhedron P for arbitrary cast
removal if and only if £¥(h) and £~ (h) are both non-trivial.

Observation 5 The plane h is a casting plane for polyhedron P for opposite cast
removal if and only if £¥(h) N refi(§~(h)) is non-trivial.

Observation 6 Let h be a plane and let £ be a line perpendicular to h and through the

origin. The plane h is a casting plane for polyhedron P for orthogonal cast removal if
and only if £NET(R) N refl(¢=(h)) is non-trivial.

With the above observations, we can test efficiently whether a given plane A is a
casting plane for P. Since the casting problem for a plane A and a polyhedron P can
be transformed in linear time to a linear programming problem in 3 dimensions, the
test requires only linear time [19, 20, 25].

Lemma 3 Given a polyhedron P and a plane h, one can test in linear time whether
h is a casting plane for P in any of the three versions for removing the cast.

Similarly, given a polyhedron and two cast removal directions (but not a casting
plane), one can test using linear programming whether the polyhedron is castable with
respect to those cast removal directions.



Lemma 4 Given a polyhedron P and two cast removal directions, one can test in
linear time whether there exists a casting plane h that allows removing the cast parts
in the given directions.

Proof: Let the two cast removal directions be d_; for OP N At and J; for 0PN h™.
For every facet f of P, one can determine whether f should lie above the casting plane
h (is compatible only with dl) below h (is compatible only with d2) may intersect h
(is compatible with both d; and dz) or is incompatible with the cast removal directions.
If there is a facet of P that is incompatible, then there does not exist any casting plane
for directions d1 and d2

The classification of the facets as “above”, “below”, and “intersect” imposes a
classification of the edges. Any edge is classified either as “above/above” (a/a),
“above/below” (a/b), “above/intersect” (a/i), “below/below” (b/b), “below/intersect”
(b/i) or “intersect/intersect” (i/i), corresponding to the classification of the two facets
incident to that edge.

Similarly, the classification of an edge determines where both endpoints of the edge
must lie. For example, if an edge is classified as (a/a) then both endpoints must lie in
h* Uh. We summarize the implications that the classification of the edges has on their
endpoints in the table below.

edge class. | endpoints
(a/a) h*Uh

(a/i) htUh
(b/b) h~Uh
(b/) h-Uh
(a/b) h

(i/1) anywhere

The classification of the endpoints of edges, in turn, determines where the vertices
of P must lie. Since every vertex is adjacent to at least 3 edges, no vertex can be
adjacent to only (i/i) edges. Hence, one can decide for every vertex whether it must be
contained in A, lie in A* Uh, or lie in A~ Uh. We dualize the vertices to planes, consider
the half-spaces to the appropriate side of these planes, based on the classification, and
obtain a linear programming problem to decide whether a plane h exists that has the
appropriate location with respect to the vertices of P. "

2.3 Antipodality properties

For opposite cast removal, we prove that if a casting plane intersects a facet, then it
intersects the boundary of that facet in antipodal pairs (note that this also holds for

orthogonal cast removal). This is an important property that is used to bound the
number of distinct casting planes.



Lemma 5 If the casting plane h intersects a facet f of a convex polyhedron P, and
also two vertices u and v in the closure of f, then for opposite cast removal, vertices u
and v must be antipodal in cl(f).

Proof: Let u, v be two vertices in ¢I(f)Nh, and assume that they are not antipodal.
Let h; be the plane that contains f. Since w and v are not antipodal, there are two
edges e, and e, in cl(f) incident to u and v, respectively, which lie on the same side
of h and diverge in the plane h; (when directed away from h). Suppose without loss
of generality that e,,e, € h™.

We again represent the space of all possible directions in 3-space as a sphere of
directions with the casting plane as horizontal and north € h*. Since f lies partially
above and partially below h, we know by Observation 3 that d must correspond to a
point pg on C(ps) N A, where d is the removal direction for the cast part above h.

Because P is convex and d is parallel to the facet f, the condition that h is casting
plane for P has implications for a 2-dimensional casting problem, namely, f must be
castable with h N hy as the casting line. Since v and v are not antipodal and e, and
e, diverge in hy, it follows that f is not castable in Ay with respect to the casting line
h N hy, which implies that P is not castable with respect to h, a contradiction. =

Corollary 1 Let h be a casting plane for a polyhedron P which intersects a facet f
properly, and assume opposite cast removal. If h intersects a vertex v and properly
intersects an edge e in the closure of f, then v is antipodal to both endpoints of e. If h
properly intersects two edges in the closure of f, then they are parallel.

2.4 Convexity properties

In this subsection we derive some additional geometric properties of convex polyhedra
that form the basis of faster algorithms. We also establish an important property that
relates the castability of a simple polyhedron to that of its convex hull.

If P is a convex polyhedron, then the linear programming problems defined by
P and a candidate casting plane h need not consider all facets of F', but only those
intersecting h and those adjacent to h. We make this more precise. For the subset E}, of
the edges of P contained in &, let F'+(E),) denote the subset of F'+ of facets that contain

at least one edge of F}, in their closure. Define F~(E}) analogously. Furthermore, we
define

¢*(h) = cl(hd) N N To(f) and ¢ (h)=cl(hg)N N To(f)
FEFSUF+(Ey) fEFXUF—(Ey)

Lemma 6 If P is convez, £ (h) = ¢*(h) and £~ (h) = ¢~ (h).
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Proof: We only prove that £+ (h) = ¢*(h); the other proof is similar. Furthermore,
Et(h) C ¢t (h) is trivial, so we prove ¢*(h) C £+ (h).

If ¢*(h) only contains the origin then so does £*(h). Otherwise, let 7 be a half-
line originating at the origin and inside ¢*(h). If r & £*(h), then there is a facet
f € Fjf \ F*(E) for which 7 ¢ Wy(f). Let ¥(f) denote the (closed) half-space
supporting f distinct from W¥(f). Since P is convex,

fc cl(h+)n{ N TI!‘(f)} .

FEFXUF+(Ey)

Since r € ¢t (h), it follows that the projection of any point in f parallel to r onto h
will lie in A N P. But since 7 € ¥y(f), the line segment connecting a point in f with
this projection will be (partially) outside P, namely, in the neighborhood of f. This
contradicts the convexity of P. u

With Lemma 6, we conclude the following:

Lemma 7 The plane h is a casting plane for a convex polyhedron P for opposite cast
removal if and only if ¢*(h) N refl(d~(h)) is non-trivial.

Lemma 8 Let h be a plane and let £ be a line perpendicular to h through the origin.
The plane h is a casting plane for a convex polyhedron P for orthogonal cast removal

if and only if £0 ¢ (h) N refi(¢~(h)) is non-trivial.

The following theorem forms the crucial link between simple polyhedra and convex
polyhedra in terms of castability.

Theorem 1 If a simple polyhedron P is castable, then the convex hull of P is also
castable using the same casting plane and cast removal directions.

To prove the theorem, we first establish a few important lemmas.

Lemma 9 A converx polyhedron P is a terrain with respect to a facet Q and a dzrectzon
d if and only if the vertices of P project into cl(Q) when projected in direction —d onto
the supporting plane of Q.

Proof:

(=) If P is a terrain with respect to a direction d and a facet @, then every point of
P projects into cl(Q) in direction —d.

(<) Suppose every vertex of P projects into ¢/(Q) in direction —d. Since P is convex,
the line segment from every vertex v to @ in direction —d must be inside P. It follows
that a ray with dlrectlon d from every vertex is outside P. By Observation 1, P is a
terrain with respect to d and Q. n

11



Lemma 10 If a polyhedron P is a terrain with respect to a direction d and facet Q
then CH(P) is a terrain with respect to d and CH(Q).

Proof: Every vertex of P is on one side of the plane induced by @Q); it follows that
the convex hull of  must be a facet of CH(P). Since every vertex of CH(P) is a vertex
of P, every vertex of CH(P) must project into CH(Q) in direction d. By Lemma 9, P
is a terrain with respect d and CH(Q). .

Lemma 11 Let h be plane, let C; and Cy be convex polygons in h such that Cy C C,,
and let S be a set of points entirely contained in one _gf the half-spaces bounded by h.
If CH(C1US) is a terrain with respect to a direction d and facet Cy, then CH(CyU S)

s a terrain with respect to d and C,.

Proof:  Suppose that CH(C, U S) is a terrain with respect to d and C;. By Lemma
9, S projects inside C; in direction —d. Since C1 C Cy, S also projects inside O3 in
direction —d. By Lemma 9, CH (C3 U S) is a terrain with respect to direction d and
facet C,. [

Proof: (of Theorem 1)

Let P be a simple polyhedron, and let 2 be a , casting plane for P with casting
directions dy for the cast part of P N cl(h*) and dp for the cast part of P N cl(h™).
The polyhedron CH (PN h*)U CH(P N k™) is also castable for casting plane h and
directions d; and dj by Lemma 10. Denote P+ = CH(PNh*) and P~ = CH(PNh™).

We need to show that Py = CH(P) is castable with casting plane h and casting
directions d; and dy. Let Pjf = CH(Py N h*) and Pg = CH(Py N k™). Since P+ is
contained in Pg and P~ is contained in Pj, the theorem follows from Lemma 11. =

3 The number of distinct casting planes

Given a polyhedron P with vertex set V, two planes h; and h, are (combinatorially)
distinct if the partitioning of the facets into F*, F~, F© and F* they define is different.
By Observation 2, a trivial upper bound on the number of distinct casting planes for
a polyhedron with n vertices is O(n?).

This section gives a linear upper bound on the maximum number of distinct casting
planes for convex polyhedra in case of orthogonal and opposite cast removal as well as
a quadratic upper bound for arbitrary cast removal. The proofs are constructive, i.e.,
sets of candidate casting planes of linear or quadratic size are defined which contain
all distinct casting planes. In the following sections we will use these sets of candidate
casting planes to determine castability efficiently.

12



3.1 Orthogonal and opposite cast removal

Observe that for orthogonal cast removal, a casting plane h can intersect a polyhedron
P as follows (these properties follow from the previous section):

1. A facet f that intersects h properly is perpendicular to h.

2. An edge that intersects h properly is perpendicular to h (because otherwise one
of the incident facets cannot be perpendicular).

3. Two vertices in the closure of a facet f and in h are antipodal in cl(f). Any
vertex and edge in the closure of f and intersecting h are antipodal in cl(f).
(See Lemma 5).

For opposite cast removal, we have the following properties of intersections of a
casting plane h and a polyhedron P:

1. The facets of F* that intersect h properly have their outward normals such that
when translated to the origin, they span a plane or part of it (since N{Wo(f)| f €
F*} must contain a line through o).

2. All edges that intersect h properly are parallel (otherwise the incident facets span
more than a plane).

3. Any two vertices in the closure of a facet f and in A are antipodal in ¢l(f). Any
vertex and edge in the closure of f and intersecting h are antipodal in cl(f). (See
Lemma 5.)

Let P be a convex polyhedron with n vertices. Since a linear upper bound on the
number of distinct casting planes in case of opposite cast removal implies the same
result for orthogonal cast removal, we only prove the opposite case.

Lemma 12 Given a conver polyhedron P, the number of distinct casting planes that
intersect some edge of P properly is at most linear in the number of vertices of P for
opposite cast removal.

Proof: Let E’' be a maximal subset of parallel edges of P, and of which at least one
edge is properly intersected by some casting plane. By convexity of P, such a casting
plane must intersect the closure of all edges of E’, because no such closure of an edge can
be strictly above or below the casting plane. The cast removal directions are parallel
to the edges of E’, and by the classification defined in the proof of Lemma 4, for every
vertex v of P it is specified that either v € hU AT or v € hUh™ or v € h, for any
casting plane h. Let V*, V~ and V© be these three subsets of vertices, respectively. If
V< contains three or more vertices, then at most one distinct casting plane is possible
for this direction. Otherwise, we consider the following three cases. Note that since P
is convex, by Lemma 6 we only need to consider the facets that intersect h and those
adjacent to an edge of P in h.

13



Case 1: V< is empty. In this case, the facets that intersect h are all the facets adjacent
to the edges of E'. Let G be the endpoints of E’ contained in V* and let G~ be
the endpoints of E' contained in V~. For a plane to intersect the closure of all
edges of E', it must separate G* from G~. Since we are considering opposite cast
removal, a casting plane must contain at least three vertices. The vertices that
the casting plane may contain must come from the set G = Gt UG, since V< is
empty. Therefore, to bound the number of distinct casting planes that intersect
an edge of E’ properly, we must count the number of planes that separate G*
from G~ and contain at least three vertices from the set G.

To do this, we dualize the set of vertices G* to a set of planes Dt and the set of
vertices G~ to a set of planes D*. Let I be the convex polytope that lies below
all planes in D and above all planes in D~. The vertices of I are precisely the
duals of the planes. Therefore, there are O(|E;|) distinct planes.

Case 2: VC contains one vertex. Argument similar to case 1. Simply include the
vertex in V< in the sets G* and G~.

Case 3: V< contains two vertices. Same argument as case 2.

Thus, we see that the number of distinct casting planes that intersect an edge of E’
properly is bounded by O(|E’|). Since every edge of P contributes to only one subset
E’ of parallel edges, the lemma, follows by Euler’s formula. n

The following lemma is the basis of an inductive argument to prove a linear bound
on the number of distinct casting planes that intersect no edge properly.

Lemma 13 Given a convex polyhedron P, there exists a vertexr v with constant degree
such that v participates in a constant number of antipodal pairs on the incident facets.

Proof: Let V, E, F be the ‘number of vertices, edges and facets of P. The summed
degree of all vertices D = 2E < 6V — 12. Every vertex has at least degree 3, thus
there must be at least V//2 + 1 vertices of degree at most 8. The total number of
antipodal pairs, summed over all facets, is at most 3F /2 < 3V — 6, which implies that
the total vertex contribution in antipodal pairs, A, satisfies A < 6V —12 [21]. Observe
that every vertex of P participates in at least 3 antipodal pairs; at least one in each
incident facet. Ifall V /241 vertices of degree at most 8 are in at least 9 antipodal pairs
on the incident facets, then A > 9(V/2+1) + 3(V/2 — 1) = 6V + 6, a contradiction.
Hence, there exists a vertex which is in at most 8 antipodal pairs and with degree at
most 8. ]

Let h be a candidate casting plane of P, and let @ = hn P. If Q contains three
consecutive vertices u, v, w that are also vertices of P, then each of v and w is either an
endpoint of an edge incident to v, or a vertex antipodal to v on the closure of a facet f
incident to v. We say that the plane through u,v,w is generated by v. It follows that
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the set of candidate casting planes generated by v has size (d‘;“ , where d is the degree

of v and a is the number of vertices antipodal to v in the closures of the facets incident
to v. Every casting plane h that does not intersect any edge properly contains at least
three vertices that are consecutive in h N P, and therefore, every such casting plane is
generated by some vertex of P.

Theorem 2 Given a conver polyhedron P with n vertices, the mazimum number of
distinct casting planes for P is O(n), assuming opposite removal of the cast parts.

Proof: First, assume that the casting plane h intersects some edge e of P properly.
By Lemma 12, there are O(n) distinct casting planes of this type.

Next, we show that the number of casting planes that do not intersect any edge
properly is linear. For such a casting plane h, all vertices of the intersection polygon
Q@ = h N P are also vertices of P.

The proof is by induction. Let v be a vertex of P of degree at most 8 and which
participates in at most 8 antipodal pairs (see Lemma 13). The number of casting
planes containing v which do not intersect any edges properly is bounded from above
by the number of planes generated by v, and hence, is constant. We remove v from P
and continue the count on the convex hull of the remaining vertices. We have counted
all distinct casting planes that contain v. Since any casting plane of P that does not
contain v and does not intersect any edge incident to v properly is also a casting plane
of CH (vertices of P — v), the lemma follows by induction. L]

There is another interesting combinatorial bound on the complexity of the intersec-
tion of all distinct casting planes with a convex polyhedron. Referring to the proof of
Lemma 12, we notice that two distinct casting planes h; and h, that intersect an edge
of E’ properly are similar, because they define the same cast removal directions, and
they intersect the same closure of edges and facets. In other words, if h; and h; each
intersect edges properly that are parallel, there cannot be two vertices u,v strictly
to the one side of h; and strictly to different sides of h,. We use the term weakly
equivalent for two such planes. Two planes are strongly distinct if they are not weakly
equivalent. There are O(n) strongly distinct casting planes for any convex polyhedron
P with n vertices. We analyze the combinatorial complexity of » N P, summed over
all strongly distinct casting planes h. This quantity is well-defined for opposite cast
removal, since two weakly equivalent casting planes have an equal-size intersection with
P (although they may intersect different facets, edges and vertices). We prove a bound
of O(nlogn) on the summed complexity. Note that when the sum is over all distinct
casting planes (not strongly distinct), the summed complexity can be ©(n?) if P has
a set of Q(n) parallel edges. The bound makes use of a hierarchical decomposition of
P that closely resembles the hierarchy of Dobkin and Kirkpatrick [10]. It is the basis
of the O(nlog®n) time algorithms for casting of convex polyhedra with opposite cast
removal.
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Lemma 14 Given a convex polyhedron P with n vertices, there exists a subset V' of
the vertices V of size Q(n), such that each v € V' has degree at most 8 and is antipodal
to at most 12 vertices in facets incident to v.

Proof: Similar to Lemma 13, one can prove that there are at least f// 5 vertices of
degree at most 8 and in at most 12 antipodal pairs. (Otherwise, A > 13(1 — 1)V +

3(2 + 1)V = 6V, a contradiction.) -

The following hierarchical decomposition of P generates a set of planes that contains
all the candidate casting planes that do not intersect an edge properly. The correctness
follows from the proof of Theorem 2.

Algorithm 1: Compute all generated planes
1. Set 7 =1.
2. Compute the antipodal pairs of the facets of P.

3. Select a subset V; of V as in Lemma 14. For every vertex v € V;, generate all
planes through u,v,w. For every vertex v € V;, the number of generated planes
is at most (12;' 8) = 190, thus O(n) for the whole subset.

4. Recompute the convex hull of the vertices of P minus the vertices of V;.

5. Repeat at step 2 with ¢ = ¢ + 1 unless P has no vertices left.

The number of generated planes is linear since each vertex generates a constant
number. Antipodal pairs computations take O(n) time and convex hull computations
take O(nlogn) time, see e.g. [11, 21]. The total time taken by Algorithm 1 is given by
the recurrence T'(n) < T((1 — a)n) + O(nlogn) where o > 1/5 is the constant in the
Q(n) of Lemma 14. This recurrence solves to T'(n) = O(nlogn).

Theorem 3 Given a convex polyhedron P with n vertices, the total complexity of hNP,
summed over all strongly distinct casting planes h for P, is O(nlogn) for opposite cast
removal.

Proof: In the following proof, we make a distinction between planes that are gener-
ated, and other planes that can be casting planes. Planes of the second type intersect
some edge properly.

Consider a hierarchical decomposition of the vertices of P into sets Vi,...,V,, as
described above. Observe that m € O(logn).

Let h be any plane, and let vy,...,v; be the sequence of vertices in A N P. We
first show that every consecutive subsequence v;, ..., v;yom—1 of vertices that also are
vertices of P (no proper intersections of edges of P with h) contains a vertex that
generates h. To this end, observe that v; generates h if and only if v; is in a vertex
set V, with lower or equivalent index as its neighbors, thus if v;_; € V; and v;4;1 € V,,
then 7 > s and ¢ > s. Since there are only m vertex sets, any consecutive sequence of
2m vertices contains at least one that that generates the plane h.
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Consider the vertices v; that are proper intersections of h and an edge of P. Any
edge e gives rise to at most one strongly distinct casting plane, and therefore, the total
number of these vertices in h N P, summed over all strongly distinct casting planes, is
linear.

Summarizing, the sequences of Ah N P summed over all strongly distinct casting
planes contain O(n) vertices that generate a casting plane, O(n) vertices that are proper
intersections of edges with a casting plane, and at most 2m — 1 vertices in between. It
follows that the total complexity of the intersections is O(nm) = O(nlogn). .

Corollary 2 Given a convexr polyhedron P with n vertices, the number of planes that
intersect the interior of P but do not intersect any facets of P is O(n), and the number
of edges of P contained in these planes, summed over all planes, is O(nlogn).

3.2 Arbitrary cast removal

We have shown that the number of casting planes that also allow opposite cast removal
is linear. For the other casting planes, we know from Lemma 1 that they contain an
edge of P. Since we may also assume that they contain a third vertex, we immediately
conclude:

Theorem 4 Given a convez polyhedron P with n vertices, the number of distinct cast-
ing planes for P is O(n?), assuming arbitrary removal of the cast parts.

4 Algorithms for orthogonal and opposite
cast removal

In this section and the next, algorithms are presented for the computation of casting
planes, and hence, determining whether a given polyhedron is castable. This section
focuses on orthogonal and opposite cast removal.

4.1 A simple algorithm for simple polyhedra

We compute O(n) candidate casting planes as follows. By Theorem 1, we need only
consider the casting planes of the convex hull of P. We first compute the candidate
casting planes that intersect some edge properly, and then the ones that are generated.
We only consider opposite cast removal; the case of orthogonal cast removal only
requires some straightforward changes.

Let E,..., Ei be a partitioning of E into maximal sets of parallel edges. For each
E;, let V;* denote the upper endpoints of E;, V;~ the lower endpoints of E;, and V-
the set of vertices that must be contained in the casting plane for the cast removal
direction parallel to the edges of E;. We compute all planes that contain the vertices
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of V,C, separate V,* from V;”, and contain at least three vertices of V;C U V;* UV~
by intersecting the corresponding set of half-spaces in dual space, as in Lemma 12.
Each vertex of the resulting polyhedron in dual space corresponds to a plane with the
desired properties. This gives O(|E;|) candidate casting planes. The intersection of
|E;| half-spaces in 3-dimensional space can be computed in O(|E;|log |E;|) time, see
e.g. [11, 21]. Summed over all subsets E,..., Ex, we obtain O(n) candidate casting
planes in O(nlogn) time.

Second, we compute the other candidate casting planes in O(nlogn) time by Al-
gorithm 1. We conclude:

Lemma 15 Given a polyhedron P with n vertices, one can compute in O(nlogn) time
a setT' of O(n) planes such that any casting plane h that contains at least three vertices
of P 1is contained in I, assuming opposite cast remouval.

Theorem 5 Given a polyhedron P with n vertices, one can decide in O(n?) time and
linear space whether P is castable when the cast parts must be removed in orthogonal
or opposite directions.

Proof: If P is a convex polyhedron, the theorem follows immediately from Lem-
mas 3, 4 and 15. If P is a simple polyhedron, we additionally apply Theorem 1. N

4.2 'Walking around convex polyhedra

For convex polyhedra, the above result can be improved as follows. By Lemma 7
determining whether a plane h is a casting plane for P can be done by only considering
the facets intersected by h and the facets incident to the edges that are contained in
h (this only holds for convex polyhedra). A linear program on this set of facets tells
us whether A is a casting plane. We also know, by Theorem 3, that the total number
of facets that we check, for all O(n) candidate casting planes, is only O(nlogn). This
will lead to an O(nlog®n) time algorithm for a convex polyhedron P with n vertices.
The algorithm is split up in two parts, each of which walks around the polyhedron
to find the relevant facets. The first algorithm tests each class of weakly equivalent
planes that intersect some edge properly. The second tests all remaining planes that
are generated, in the terminology of Theorem 3.

Each edge defines a class of weakly equivalent casting planes. The traversal of hN P
is performed for a generic (i.e. partially specified) plane h in this class. If any plane in
the weak equivalence class is a valid casting plane, the linear program constructed by
the traversal will find it. By Corollary 1 we know that any valid casting plane must
intersect a facet in antipodal faces. In the next algorithm we take advantage of the fact
that the casting direction is know given that a specified edge is properly intersected.
We preprocess the polyhedron for Algorithm 2 as follows:
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1. With Algorithm 1, compute a hierarchical decomposition of P into O(logn) ver-
tex sets Vi,...,V,,, as in Theorem 3. Store with each vertex v all O(1) planes
generated by v.

2. For every facet f, store the outward normals of the facets that are incident to
an edge in the closure of f in a list in cyclic order around the facet. We perform
binary search in the list only if the candidate cast removal direction dis parallel
to f. In such a case, the cyclic list can be split at two places. One sublist contains

the facets compatible with d and the other sublist contains the facets compatible
with —d.

3. For every vertex, store the outward normals of its incident facets in a list in cyclic
order around the vertex. Again, using binary search, the list can be split at two
places.

These preprocessing steps can be done in O(nlogn) time.
Algorithm 2: Test weak equivalence classes of planes that intersect an edge properly.
for every edge e; € E

if e; is untreated then

(x Trace h N P for a generic casting plane h that intersects all edges parallel
to ey, resulting in a generic sequence é;, 9y, €y, U, . . . describing the edges and
vertices that define A N P. Here ¢; is a facet of P or an edge of P contained
in h, and ¥; is a vertex of P or an edge of P intersecting h. *)

Let d be a direction parallel to e, and let f; be a facet incident to e;.
E1+ fi, 1+ e, 11
repeat

(x check ; and discover €;1 *)

if 7; is an edge then

If 9; is not parallel to ey, fail, otherwise, mark ¥; as treated and let
€;+1 be the facet adjacent to ¥; distinct from the facet é;.

else 7; is a vertex

Check (in constant time) if ; is coplanar with every other vertex
discovered; if not then fail.

If (¥;—2,T;i—1, ¥;) is a generated triple of vertices, mark it as treated.

Find by binary search the facet or edge €;,; distinct from é; that
splits the facets incident to the vertex 9; into those compatible with
d and those incompatible with d.
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end if
(x check ;41 discover ¥y )
if ;41 is a facet then
If &;,1 is not parallel to e, fail.

Otherwise, find by binary search the edge or vertex ¥4, of facet €;11
distinct from ¥; that splits the edges of cl(€;11) into those where

neighboring facet is compatible with d and those where it is incom-
patible.

else ¢; is an edge contained in h
D41 « the endpoint of é; different from ;.
1 1+1
until ¥; = e; or h has failed
if the walk returns to e; then

Determine by linear programming whether a plane exists that intersects
the closure of the edges discovered on the walk, and also the discovered
vertices (dualize the endpoints of the edges and the vertices as in the
proof of Lemma 12 to obtain the constraints).

If the LP is feasible, polyhedron P is castable with cast removal directions
d and —d, and the plane corresponding to the feasible solution of the LP.

end if
end if
next Edge

We now need to test those candidate casting planes that intersect no edge properly.
The key observation for the next algorithm is that any casting plane that intersects

no edge properly must be generated. For Algorithm 3, we carry out the additional
preprocessing steps:

1. For every vertex v of P, store the edges adjacent to v in clockwise order, so that
it is possible to determine for any query plane h containing v, the facets or edges
incident to v that h intersects by binary search.

2. For every facet f of P, store the vertices in the closure of f in clockwise order,
so that it is possible to determine for any query plane h which edges or vertices
in the boundary of f intersect h by binary search.

Each of these preprocessing steps can be carried out in O(nlogn) time, so the total
preprocessing time is O(nlogn).
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For a given candidate casting plane h, we use v; to denote the i-th vertex of @ =
h N P discovered, and Fj, to to denote the set of facets that intersect h properly or are
incident on an edge of P contained in h. It should be noted that triples marked as
treated in Algorithm 2 remain marked at the beginning of Algorithm 3.

Algorithm 3: Test all candidate planes that do not intersect an edge properly.

for every generated triple (u,v1, v2)

if (u,v1,vs) has not been treated then

Let h be the plane through u,v;,v;. Mark (u,v1,vs) as treated. ¢ «+ 2,
Fy, 0.

while we have not walked all the way around to v; or failed

Determine by binary search the edge or facet €;4, that h intersects clock-
wise from v;.

if €, is an edge e = (v;,v) then

Vi1 <V

Add both facets adjacent to e to Fy.
else é;; is a facet

Add f = €41 to Fy.

Determine by binary search what other vertex or edge ¥ in the
boundary of f intersects h.

If ¥ is an edge, fail, since h was tested with Algorithm 2, otherwise,
Vigp U

end if
if (vi—1, v, Viy1) is generated then

If (v;_1, vi, vi+1) has already been treated, fail, otherwise, mark (Viz1, Vi, Vig1)
as treated.

end if

1—1+1

next Step

If the triple didn’t fail, construct ¢*(h) and ¢~ (h) from F,. Test by linear
programming if 7 (h) N refl(¢~(h)) is non-trivial. If so, accept h as a casting
plane, with the casting directions given by the solution to the LP and the
opposite thereof.

end if
next Triple
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Theorem 6 Given a convex polyhedron P with n vertices, one can decide in O(n log® n)
time and linear space whether P is castable when the cast parts must be removed in
orthogonal or opposite directions.

Proof: The above algorithms attain the claimed time bound. This can be seen as
follows. The total preprocessing time is O(nlogn). Let us count the total number of
steps walking around the polyhedron in Algorithm 2. We charge each go through the
loop either to the last encountered edge parallel to e; that was properly intersected,
or to the last encountered generated triple (whichever came last). By the proof of
Theorem 3, we know that there are O(n) generated triples and that every 2m =
O(log n) consecutive vertices contain at least one generated triple. Furthermore, every
edge is encountered during at most one walk. It follows that O(nlogn) steps are
taken during all walks. Since each walking step takes O(logn) time, Algorithm 2 takes
O(nlog® n) time to generate linear programs.

For Algorithm 3, the time bound follows in a similar way; each step that discovers
a vertex is charged to the most recently encountered generated triple. It follows that
the second algorithm also takes O(nlogn) steps and O(n log? n) time to generate linear
programs.

By Theorem 3, the total complexity of all linear programs generated by both al-
gorithms is O(nlogn), hence the total time to test all candidate planes is O(nlogn).
]

4.3 A data structuring approach

The second, O(n log® n) time solution described above only applies to convex polyhedra.
By using data structures, we will improve upon the quadratic time results of Theorem 5
for simple polyhedra as well. Unfortunately, the storage requirements increase with
the data structuring method. The idea is to test every candidate casting plane by
querying with it in a data structure (instead of applying linear programming). The
query determines whether h really is a valid casting plane for the polyhedron P. The
preprocessing of the data structure should be less than quadratic and the query time
should be less than linear in order to beat the quadratic time bound. The previous
subsection showed how to find the O(n) candidate casting planes in O(nlogn) time,
so we only describe the data structure and the query algorithm. It turns out that the
data structure is exactly the same for the three versions of removing the cast; only the
query algorithms are different.

Let P be a polyhedron. For any vertex v € V, define F(v) as the set of facets
incident to v, and for any subset V' C V, define F'(V') as the set of facets incident to
at least one vertex of V'. We make the following observation:

Observation 7 For any plane h, we have F;t U F* = F(V,).
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We store P in a 2-level data structure T. The primary tree is a 3-dimensional
partition tree that stores the set V of vertices of P, see MatouSek {16, 17] and Agarwal
and Sharir [2] for example. They show that for any constant € > 0, a structure of size
and preprocessing time O(n3/%*¢) exists, such that for any query plane h, the subset
Vi C V of vertices above h can be retrieved in O(n'/2*¢) canonical nodes in O(n!/2*¢)
time. For any node & of T, corresponding to a canonical subset Vs, the secondary
structure at & stores Vs as follows. Recall from Subsection 2.2 that for a facet f, ¥(f)
is the closed half-space which supports f and locally does not contain P, and ¥o(f) is
U(f) translated such that the bounding plane contains the origin. Let F'(V5) be the set
of facets incident to at least one vertex of V;. Let Bjs be the cone Wo(F'(V;)) with apex
at the origin. The secondary structure is simply an array or balanced binary tree that
stores the facets of B; in cyclic order around the apex. The secondary structure allows
for queries with a half-line starting at the origin, to determine whether the half-line is
contained in Bs. This query is in fact a 2-dimensional query to determine whether a
point lies in a convex polygon.

Suppose that we wish to determine whether A is a valid casting plane for orthogonal
cast removal. Then we search with » in T and determine the canonical nodes of T with
respect to h, in particular, the set A* = {&,,...,d:} of nodes of which the associated
sets Vs,,..., Vs, are a partition of V;f. Let ¢ be the upward half-line normal to h
starting at the origin. For each of the nodes d;, we query with ¢ in the secondary
structure to determine by binary search whether £} € Bj,. If the answer is positive for
all nodes &4, ...,0;, then PNcl(h™) is a terrain with respect to the direction normal to
h (and parallel to £;). The query is repeated for A~ to determine whether P N cl(h™)
is a terrain with respect to the direction normal to h. If this is also the case, then h
is a casting plane of P for orthogonal cast removal. Since there are O(n'/?*¢) cones
(canonical nodes), the query time is O(n'/?*¢logn).

Next we consider cast removal in opposite directions. The query is a variation to the
previous solution. We determine both sets A* and A~ of canonical nodes for the queries
with A+ and h~, respectively. Let AT = {61,...,6;} and A~ = {8},...,8.}. We wish
to determine whether the common intersection of the ¢ cones Bs,, ..., Bs,, intersected
with the reflection in the origin of the common intersection of the s cones B, . . ., Bs,
is non-trivial, see Observation 5. One can decide whether the common intersection is
non-trivial using the algorithm of Reichling [24]. He shows how to find an extremal
point in the common intersection of k convex n-gons in O(klog?n) time. In our case,
we ‘reflect’ all operations on the second set of cones. (Alternatively, we could store both
the normal and the reflected cones explicitly at every node and choose the appropriate
set, but this is not necessary.) The query time is O((s + t)log®n) = O(n!/?*<log? n)
time.

Thirdly, we consider the query in the same structure to solve arbitrary cast removal.
We remark that for arbitrary cast removal, we can determine using O(nlogn) queries
whether a casting plane exists, even though we do not have a subquadratic bound on
the number of casting planes in this case. This will be shown in the next section.
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Let h be the plane of which we wish to determine whether it is a casting plane. We
determine the set A* as before; let By, ..., Bs, be the cones that are stored at the
set At canonical nodes. Now we have to determine whether the common intersection
of these cones is non-trivial. Any half-line starting at the origin and in the common
intersection of the cones represents a direction with respect to which P N ¢l(ht) is a
terrain. A half-line in the common intersection of the ¢ cones can be determined in
O(tlog’n) = O(n'/***log®n) time using Reichling’s algorithm. If no such half-line
exists, then PN cl(h*) is not a terrain with respect to any direction. If PN cl(h*) is a
terrain for some direction, we repeat the query to test whether PN cl(h™) is a terrain.

Theorem 7 For any constant € > 0 and any simple polyhedron P with n vertices, a
data structure of size and preprocessing time O(n3/2+¢) exists, such that for any query
plane h, one can determine in O(nl/ 2+€) time whether h is a casting plane for P in
any of the versions for removing the cast.

Remark: In fact, we have also shown that for any query half-space h™, we can
determine within the same bounds whether P N h* is a terrain in some direction.
Furthermore, by choosing a different partition tree for the primary tree, we can trade
query time for storage space, see e.g. Chazelle, Sharir and Welzl [6], Matousek [17] and
Agarwal and Sharir [2]. For any n < N < 78, a data structure of size and preprocess-
ing time O(N'*¢) exists with query time O(n'*¢/N'/3). The theorem above states the
version we need for the casting problem.

Corollary 3 For any constant € > 0 and any simple polyhedron P with n vertices, one
can determine in O(n®?+€) time and space whether P is castable when the cast parts
must be removed orthogonal to the casting plane, or in opposite directions.

Proof:  Generate the O(n) candidate casting planes. Construct the data structure
of Theorem 7, and query with the candidate casting planes. The result follows. ]

Remark: De Berg [9] noted that the result for orthogonal cast removal can be
improved to O(n4/ 3+¢) time and space. Conceptually, the improved data structure re-
verses the tests done in the main and the secondary structure to determine castability,
when compared to the previously described solution. Use a two-level data structure of
which the main tree is a 2-dimensional partition tree on the planes bounding ¥o(f).
Since these planes all pass through the origin, a 2-dimensional partition tree is indeed
sufficient. It allows one to select all planes below and all planes above a given query
ray (normal to the query plane) starting at the origin in O(n!/3+¢) canonical subsets
[2, 6, 17]. For any canonical subset of a node 6, the vertices in the closures of the
facets f for which the half-space ¥y(f) appears in that canonical subset are further
preprocessed into a secondary data structure with ¢ for half-space emptyness queries,
see for example Clarkson and Shor [7]. The whole data structure requires O(n*/3+¢)
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space and preprocessing time. This improvement only applies to orthogonal cast re-
moval, because the cast removal direction must be known in advance.

5 Algorithms for arbitrary cast removal

In this section we study the most general casting problem of this paper: determine
whether a simple polyhedron P is castable when the cast parts may be removed in
arbitrary directions. Using results of the previous sections, we can obtain an O(n%4*<)
time algorithm: we devise a data structure as in the previous section to test all candi-
date O(n?) casting planes. We will do better in this section. Using Lemmas 1 and 2 and
one more observation on arbitrary cast removal, we first obtain a simple O(n?logn)
time and linear space algorithm, and then a more complicated O(n%?*€) time and
space algorithm.

Let P be a polyhedron. We first test whether P admits opposite cast removal using
the simple O(n?) time algorithm of Theorem 5. If so, we are done. Otherwise, if P is
convex, then, by Lemma 1, we only have to consider casting planes that contain some
edge of P. If P is non-convex, then, by Lemma 2, we only have to consider casting
planes that contain an edge of the convex hull of P.

Observation 8 Let P be a polyhedron and h be a plane that contains an edge e of
the convex hull of P. Assume without loss of generality that e is horizontal and that a
vertical plane exists which supports e and has P — cl(e) completely to the one side.

e If PN cl(h™) is a terrain and P N cl(h™) is not a terrain, then no plane p
containing e for which PN h™ C pu~ is a casting plane.

o If PN cl(ht) is not a terrain and P N cl(h™) is a terrain, then no plane p
containing e for which PN h* C p* is a casting plane.

e If Pncl(h*) and PN cl(h™) are both not a terrain, then no plane containing e
s a casting plane.

The above observation sets up a binary search for a casting plane that contains
some edge e of the convex hull of P. First, compute the convex hull of P. For any edge
e of the convex hull, rotate P such that e is as in the observation. Consider the n — 2
vertices that are not endpoints of e, and sort them by the order in which a vertical plane
supporting e encounters them if the plane starts rotating about e. (The plane h can
rotate in two directions about e. It is not important which direction is chosen, as long
as this choice is made consistently.) Assume without loss of generality that the order is
V1,...,Un—2. We test whether the plane h supporting e and also containing v,/2_1 1s a
casting plane by determining whether PN¢l(ht) is a terrain and PNcl(h™) is a terrain.
By the above observation, we can stop considering e if both are not terrains. If both
are terrains, we can also stop and h is a casting plane. Otherwise, if only P N cl(ht)
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is a terrain, we continue the binary search on v,/s,...,vn—2, and if only P N cl (h™) is
a terrain, we continue the binary search on vy, ..., vn/s-3. After at most [log,(n — 2)]
steps, we have determined whether there exists a casting plane that contains e. This
leads to:

Theorem 8 Given a simple polyhedron P with n vertices, one can determine in O(n?logn)
time and linear space whether a casting plane for P exists, when the cast parts can be
removed in arbitrary directions.

Proof: To decide whether opposite cast removal is possible we first apply Theorem 5
and use O(n?) time. The computation of the convex hull of P requires O(nlogn) time.
There are O(n) edges about which a plane is rotated. The sorting of the vertices
v1,...,Un—y takes O(nlogn) time, and each step of the binary search takes linear time
by Lemma 3. Hence, the above procedure takes O(n’logn) time. n

As in Subsection 4.3, we can preprocess P into a data structure such that any casting
plane can be tested in O(n'/2*¢) time. Since O(nlogn) casting planes are tested by
the above procedure, the test part can be improved to O(n3/ 2+¢) time. However, how
can we obtain the order of vq,...,v,—-p without sorting? Again, the solution lies in
data structuring. Notice first that the order of v1,...,vn—2 is not needed explicitly.
In the first step, the vertex that is the median v,/;—; must be determined, and in the
following steps a median in one of the two halves.

The data structure that is needed preprocesses P for the following query problem:
Given a query edge e such that there exists a plane h containing e that has the interior
of P completely to the one side, and an integer k, find the k-th vertex of P that
is encountered by h when it rotates about e (see Figure 4). Dualization yields a
more familiar query problem: preprocess a set of n planes (dual to the vertices of P),
such that for any given query ray, the k-th intersection point with the planes can be
determined. The query ray is contained in the line dual to the line supporting e, and
the starting point of the ray is any point dual to a plane containing e that has the
interior of P completely to the one side.

Let D(V) = {D(v) |v € V} be the set of planes dual to the set V' of vertices of P,
preprocess them into a data structure for line segment intersection counting, as given
by Agarwal and Matousek [1]. They show that for any € > 0, a structure of size and
preprocessing time O(n3/2*¢) exists, such that segment intersection counting queries
can be answered in O(n'/?*) time. Furthermore, they show how the same structure
can be used to find the k-th intersection point of a query ray with D(V) in O(n!/2+<)
time. Let the query ray be parameterized by q + A - J, A > 0, where ¢ is a point and
d is a vector in 3-dimensional space. In our application, if the k-th intersection point
does not exist, and the last intersection point is the j-th, then the query should be
continued in ‘wrap-around’ mode: find the (k — j)-th plane for the query ray along the
same line and in the same direction, but with ¢ translated in direction ~d to infinity,
see Figure 4. When this happens, the plane rotating about e in primal space rotates
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Figure 4: Left, rotating a plane about an edge through P. Right, the dual problem
(in 2 dimensions), where the third plane intersecting the ray ¢ + A - d is found after
wrap-around.

past a vertical orientation. These adaptations to the query algorithm can easily be
made within the same asymptotic time bounds. Hence, we conclude:

Theorem 9 For any simple polyhedron P with n vertices and any constant € > 0, one
can determine in O(n®?%¢) time and space whether P is castable, when the cast parts
can be removed tn arbitrary directions.

6 Conclusions and open problems

This paper studied the geometric version of the problem of determining whether a
simple polyhedron can be manufactured using casting. It was assumed that there are
two cast parts, and each has to be removed with a single translation. We presented
simple algorithms that use O(n?) or O(n?logn) time and linear space which are based
on linear programming. Furthermore, we showed that theoretically, better results can
be obtained using partition trees and their variants. This leads to an O(n3/2*¢) time
and space algorithm. Using the partition trees of Matousek [17], the bound is in fact
O(n3/? polylog(n)). Finally, as a by-product, we obtained a combinatorial bound on
the number of planes intersecting a polyhedron in edges only, and on the summed
number of edges in these planes.

Manufacturing applications have not been studied much in computational geometry.
There are quite a large number of open problems to be solved in this area. We first
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list some open problems related to this paper, and then list a few others in cast design
that deserve attention.

1.

What is the maximum number of distinct casting planes in case of arbitrary cast
removal? This paper shows O(n?), whereas the only lower bound we have is
linear.

For a convex polyhedron P, what is the maximum summed complexity of the
intersection of all distinct casting planes with P? This paper shows O(nlogn) in
case of opposite cast removal, but the trivial lower bound is linear.

Give simple algorithms for casting that improve our simple O(n log? n), O(n?) and
O(n?logn) time algorithms. Find algorithms that improve upon our O(n3/%*e)
time algorithms.

Suppose that the casts may be removed with any motion. Give algorithms to
determine whether a polyhedron is castable in this case.

Suppose that we wish to determine castability of an object with non-linear bound-
aries. Give (simple) algorithms that solve this problem.

Suppose that more cast parts are allowed. Determine for a polyhedron how many
cast parts are necessary.

For some casting processes, is not necessary that the cast parts must be separated
by a plane. In these cases, every convex polyhedron is castable. However, no
algorithms are known for cast removal of simple polyhedra.
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