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Abstract

Probabilistic networks can be constructed from a database of cases by selecting a
network that has highest quality with respect to this database according to a given
measure. A new measure is presented for this purpose based on a minimum de-
scription length (MDL) approach. This measure is compared with a commonly used
measure based on a Bayesian approach both from a theoretical and an experimen-
tal point of view. We show that the two measures have the same properties for
infinite large databases. For smaller databases, however, the MDL measure assigns
equal quality to networks that represent the same set of independencies while the
Bayesian measure does not. Preliminary test results suggest that an algorithm for
learning probabilistic networks using the minimum description length approach per-
forms comparably to a learning algorithm using the Bayesian approach. However,
the former is slightly faster.

1 Introduction

The framework of probabilistic networks, also known as causal networks and Bayesian
belief networks, offers a mathematically sound formalism for representing probabilistic in-
formation. Efficient algorithms have been designed for making inferences with information
represented in a probabilistic network [9, 12, 15]. In various domains the framework has
been applied successfully [1, 2, 7] indicating its practical use.

Constructing a probabilistic network for a given domain by hand is a time consuming
task: the domain knowledge of one or more experts must be modelled in the formalism
of probabilistic networks and once an initial network is constructed it needs to be tested
and examinated for improval. This process is repeated until no more improvements can
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be made. Automated learning of probabilistic networks from a database of cases can help
shorten this build and test cycle by suggesting an initial network.

Learning algorithms for probabilistic networks developed so far can be divided into
algorithms based on non-Bayesian approaches [4, 17, 22, 23, 24] and algorithms based on
a Bayesian approach [5, 10, 14, 21]. The non-Bayesian approaches employ statistical tests
on databases for deciding on the existence of arcs in the probabilistic network under con-
struction. The Bayesian approach assumes a prior probability distribution over all possible
networks and updates this distribution after observing the database; it then chooses the
network with highest updated probability. The Bayesian approach has several advantages
over the non-Bayesian approaches. No statistical tests for conditional independence are
used thus avoiding the need of huge databases. Also a natural stopping criterion for selec-
tion algorithms is provided instead of a more or less arbitrary threshold value. In addition,
a collection of most likely networks can be obtained and prior knowledge of the domain at
hand can be easily incorporated.

At the heart of the Bayesian approach lies a quality measure, essentially being the prob-
ability of the network after observing the database. In this paper, we will present a quality
measure based on the minimum description length (MDL) principle; the MDL principle
stems from coding theory where the aim is to find an as short as possible description of
a database with as few parameters as possible. The MDL measure can be regarded as an
approximation of the Bayesian measure, and thus has a Bayesian interpretation. However,
it offers several advantages over the Bayesian measure.

In Section 2, we introduce notational conventions, definitions, and assumptions used in
the remainder of the paper. In Section 3, we describe the Bayesian approach. In Section 4,
we introduce the minimum description length principle and discuss some of its properties;
a learning algorithm based on the principle is presented. In Section 5 some preliminary
results obtained from experiments are described. The paper is rounded off with conclusions
in Section 6.

2 Preliminaries

In this section, we present notational conventions and definitions used in the remainder of
this paper. In addition, we list the conditions that we assume to hold for the theory to be
presented.

Let U be a set of discrete variables {z1,...,2,}, n > 1. Each variable z; € U can take
a value from the set {z;1,...,Zir }, s > 1,7 =1,...,n. We will assume that every variable
is an element of U and every set of variables is a subset of U unless stated otherwise. In
the sequel, we will use capital letters to denote sets of variables and lower case letters to
denote single variables. To prevent an abundant usage of braces, we sometimes write z to
denote {z}, XY to denote X UY, and zy to denote {z,y}.
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A probabilistic network B over U is a pair B = (Bg, Bp) where the network structure
Bg is a directed acyclic graph (DAG) with a node for every variable in U; Bp is a set
of conditional probability tables associated with Bg. For every variable z; € U, the set
Bp contains a conditional probability table P(z;|7;) that enumerates the probabilities of
all values of z; given all combinations of values of the variables in its parent set m; in
the network structure Bg; in the sequel, such a combination of values will be called an
instantiation. The network B represents the joint probability distribution represented
P(U) defined by P(U) = [Ii=; P(z:|m;) [15].

Let P be a joint probability distribution over U. Let X, Y, and Z be sets of variables of
U. We say that X and Y are conditionally independent given Z in P, written I(X,Z,Y),
if P(XY|Z) = P(X|Z)P(Y|Z) for all value assignments of XY Z. A statement I(X, Z,Y)
is called an independency statement. An independency model M is a set of independency
statements.

Let Bg be a network structure. From a network structure independency statements can
be read using the so-called d-separation criterion. To this end, we introduce the notion of
blocked trail. A trail in Bg is a path in the underlying (undirected) graph; a head-to-head
node in a trail in By is a node z such that the sequence £ — z + y is part of the trail. We
say that a trail in Bg between two nodes x and y is blocked by a set of nodes Z if at least
one of the following two conditions holds:

e the trail contains a head-to-head node z such that z nor any descendant of z is in Z;

e the trail contains a node z in the trail such that z € Z and z is not a head-to-head node
in the trail.

Let Bg be a network structure. We say that X is d-separated from Y by Z if every trail
between any node z € X and any node y € Y is blocked by Z. With a network structure
Bs, we associate an independency model Mg by taking I(X,Z,Y) € Mg if and only if X
and Y are d-separated by Z in Bg.

Now, let M be the set of independency statements that hold in a joint probability
distribution P over U. A network structure Bg is an independency map or I-map of M if
X and Y are d-separated by Z in Bg implies I(X,Z,Y) € M; Bs is a minimal I-map of
M if Bg is an I-map of M and no proper subgraph of By is an I-map of M.

For a network structure Bg, two nodes = and y are adjacent, written z —y, if no set
S C U\zy d-separates z and y; otherwise the nodes are non-adjacent, written z—y. The
nodes z and y are conditionally adjacent given a node z, written £ —y|z, if no set S C U\zy
containing z d-separates x and y; otherwise z and y are conditionally non-adjacent given
z, written x—/y|z. A v-node in Bg is a triple of nodes z, y, z such that z — y and z = y
are arcs in Bg and z—-~z in Bs.

Let 0 : U — {1,...,n} be a total ordering on U. For two variables z and y, we write
z <g y if (z) < B(y); as long as ambiguity cannot occur, we write < instead of <,. We
say that a network structure Bg obeys an ordering 6 on U if for each arc z — vy in Bg, the



property = < y holds.

On a network structure Bgs we define the arc reversal operation. This operation applies
to two nodes x; and z such that there is no path from z; to z; nor from z; to z; with
the possible exception of the path x; — z5. The network structure By is transformed into
a new network structure Bg by taking Bg equal to By if z; € 7. However, if x; € 7y
then 7 = m; for all i # j and ¢ # k and 7; = 7; U, U 3 and m, = m; U Tk \z;. We write
Bgr = arcr(Bs,zj, xx) to denote that Bg is the network structure obtained by applying
an arc-reversal on z; and z; in Bg.

A case over U is a value assignment to all variables z; € U. A database D of cases
over U is a list of cases over. In this paper, we assume that the cases in the database are
independent of each other so that the order of the cases in the database is of no importance.
Further, we assume that there are no cases with missing values in the database.

We assume that no probability table is preferred for a given structure before the
database has been seen, that is, we assume the density function f(Bp|Bs) is uniform.

3 Learning Probabilistic Networks: A Bayesian Approach

Learning a probabilistic network from a database D of cases comprises two tasks: learning
the network structure Bg, and, after a proper network structure is identified, learning the
set of conditional probability tables Bp. In this paper, we focus on learning the network
structure Bg. Once Bg is known, Bp can be estimated directly from the database, [5].

3.1 The Bayesian Measure

The basic idea of the Bayesian approach is to maximize the probability of the network
structure given the data, that is, to maximize P(Bg|D) over all possible network structures
Bg given the cases of the database D. To this end, the probability given the database
is calculated for various network structures and the one with the highest probability is
selected. In order to compare the probabilities of two network structures Bs, and Bg, we
can calculate

P(Bs, ,D)
P(Bs,|D) 55~ _ P(Bs,,D)

P(B52|D) B ig%@ B P(BS2’D).

Note that as for all network structures P(D) is the same, it suffices to calculate P(Bg, D)
for all Bs. To this end, Cooper and Herskovits provide the following formula, [5].

Theorem 3.1 Let U be the set of variables {z1,...,x,}, n > 1, where each x; can take a
value from {z;, ...z}, 7 > 1,9=1,...,n. Let D be the database of cases over U and
let N be the number of cases in D. Let Bs denote a network structure over U, and for
each variable z;, let m; be the set of parents of x; in Bg. Furthermore, for each ;, let w;;
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Table 1: A database of cases over two binary variables.

denote the jth instantiation of m; relative to D, j =1,...,¢;, ¢; > 0. Now, let N;j;; be the
number of cases in D in which variable x; has the value x;, and m; is instantiated as w;;.
let Nij = 3L, Nijk. Then,

P(BS, BS InI H N + e — 1 H szk (1)

i=1j= 1 k=1

In the right hand side, the term P(Bs) denotes the prior probability of the network struc-
ture Bg. In this term, information prior to observation of the database can be incorporated.
For example, if an expert suggests the existence of a specific arc or the direction of an arc,
network structures that model this suggestion can be given a higher prior probability. If no
prior information is available, P(Bg) can be chosen to be uniformly distributed; note that
in that case the term can be neglected when two network structures are compared. The
other terms in the right hand side of Formula(1) represent how well the network structure
fits the database; however, these terms are not very intuitive. Formula (1) can be regarded
as a quality measure Q(Bg, D) of a network structure Bg given a database D, and we will
refer to it as the Bayesian measure.

It would be nice of network structures that represent the same set of independency
statements would have the same quality given a database if no prior information is available.
Unfortunately, this is not the case for the Bayesian measure. Consider the database in Table
1 and the structure S; which is a — b and structure S, which is b — a. Both structures
represent the same set of independencies (namely none). Yet,

— 1) —_
(2-1) (2-1)! 31112121 = p(Sl)_Q_%l

P(S;,D) = P(Sy) C=1! 4y 259!

@+2-1)! "(4+2-1)!(4+2-1)!

and

-1 ., @-1 (-1

P(Sz,D)=P(52)(8+2—1) G+2-1)!'3+2-1)

31112121 = P(S2)—1—'
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So, P(Bg,, D) = 2P(Bs,, D) if we assume both structures equiprobable (P(S;) = P(S2)).

3.2 Heuristic Search Procedure

Based on the Bayesian measure, Cooper and Herskovits have developed an algorithm
for learning network structures from data. We observe that the number of different
network structures over m nodes is given by the recursive formula G(0) = 1, G(n) =

» L (=1)H(™M)2{=DG(n — 1), [20]. For example, for n = 10 there are approximately
4.2 x 10'® different network structures. As this number is exponential in the number of
nodes, it is not feasible from a computational point of view to regard all network struc-
tures. To alleviate the computational burden involved, Cooper and Herskovits assume an
ordering on the nodes is given. This leaves only 0(2”2) structures to be considered. As,
this number is still exponential in the number of nodes, they have developed a greedy
heuristic algorithm called K2 (see below) for selecting a network structure that considers
at most O(n3) different structures. In K2, all nodes are considered independent of each
other. For each node, a parent set is calculated by starting with the empty parent set and
successively adding to the parent set the node that maximally improves P(Bg, D) until no
more node can be added such that P(Bg, D) increases.

Algorithm K2

Let the variables of U be ordered z4,...,z,
fori=1,...,n do Tnew < Tioa + 0
fori=2,...,ndo

repeat

Ti0ld < Tinew
Let BS be defined by T1,0ld + + + Tn,old
z + argmax,{P(Bs,, D)/P(Bs, D) | y € {z1,...,%i—1}\; o1a, Where
Bgy is Bg but with m; = i 0ld U {y}}
if P(Bs,,D)/P(Bs, D) > 1 then 7; ney + T 01a U {2}
until Tinew = Tiold OT I'fri,newl =1-—1
output Bg defined by 71 new - - - Tn new

A major drawback of K2 is that the ordering that is chosen on the nodes influences the
resulting network structure and the quality of this structure to a large extent. So, it is
essential to choose a ‘good’ ordering before K2 is started in order to guarantee a good
performance. Such an ordering may be provided by an expert, but automated learning is
often applied to avoid participation of expensive experts. An alternative is to start with
a random ordering, apply K2 with this ordering, and to optimize this ordering. In [3] an



algorithm has been presented for optimizing an ordering for this purpose of removing arcs
from a given network structure.

4 A Minimum Description Length Approach

Another way to judge the quality of a network structure is by the minimum description
length principle [18, 19] which stems from coding theory where the aim is to create a
network structure that describes the database as accurately as possible with as few symbols
as possible.

4.1 The MDL Measure

The MDL principle results in the following measure.

Definition 4.1 Let U, Bg, D, N, n, 7;, Niji, and N;; be as in Theorem 8.1. Let g; the
number of all possible instantiations of the parent set of x;. Then, the description length
L(Bgs, D) of the network structure Bg given the database D is defined by

L(Bs, D) = log P(Bs) — N - H(Bs, D) ~ 5K -log N, )
where K = Y0, g - (i — 1) and H(Bs, D) = ¥, T, i, — T log T

Note that here ¢; is defined as the number of all possible instantiations of «; while for the
Bayesian measure ¢; is the number of observed instantiations of 7; in the database. Like
the Bayesian measure, Formula (2) is a metric for network structures and databases and
it will be referred to as the MDL measure.

The first term of Formula (2), log P(Bg), models the prior distribution on network
structures just like for the Bayesian measure. Note that this term is no part of the original
MDL principle.

The second term of the formula, N - H(Bg, D), represents the conditional entropy of
the network structure Bs. Entropy is a non-negative measure of uncertainty which is
maximal when uncertainty is maximal and zero when there is complete knowledge; the
more information is given the lower the entropy. It will be evident that adding nodes to
a parent set will decrease the entropy term in the formula since a probability distribution
can be more accurately described.

In the third term, %K -log N, the factor K is the number of (independent) probabilities
that have to be estimated from the database D for obtaining the probability tables Bp
for the network structure Bg. With every probability that is estimated, a small error is
introduced. The term %K - log N now represents the error introduced by estimating all
required probabilities. This term automatically induces the principle of Occams razor: a
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0 K

log P(Bg,D) |

-1/2KlogN

—-NH(B S,D)—1/2 Klog N

Y.

Figure 1: Relation between the various terms of the MDL measure.

network structure with fewer arcs is preferred over a network structure with more arcs
unless the conditional entropy of the more complex model is much lower than that of the
simpler one.

Figure 1 gives for a given database an impression of the interaction between the en-
tropy term and the third term of formula (2); P(Bg) is assumed uniform for all networks
structures. The x-axis represents K which is more or less proportional to the number
of arcs in a network structure. The y-axis models the MDL measure and its separate
terms. Since we have assumed the prior distribution on network structures to be uniform,
log P(Bgs) is constant. With an increasing number of arcs, a network structure will more
accurately described the distribution from which the database is obtained; so, the entropy
term —N - H(Bg,S) increases. On the other hand, the cost term %K - log N decreases
when more arcs are added. In sum, the MDL measure will first increase when arcs are
added to the network structure and eventually decrease. The network structure with the
highest quality will have a balanced contribution of both these terms. Note that due to this
property, the MDL principle gives a natural stopping criterion for heuristics that search
for network structures.

Approaches based on information criteria as proposed in for example [11, 13], apply a
quality measure that is closely related to the MDL measure: the log IV term is replaced by
another function and the prior distribution on probabilistic network structures is assumed
uniform.



4.2 Comparing the Bayesian and MDL measures

In this section, we compare the MDL measure with the logarithm of the Bayesian measure.
The following theorem tells that the MDL measure is approximately equal to the logarithm
of the Bayesian measure. So, if the Bayesian measure prefers a network structure Bg over
Bg/, then the MDL measure will prefer Bs over Bg most of the time.

Theorem 4.1 Let U be a set of variables. Let Bg be a network structure and let D be a

database over U with N cases such that all instantiations of the parent sets of Bs occur in
the database. Let P(Bs, D) be the Bayesian measure of Bs given D and let L(Bg, D) be
the MDL measure of Bg given D. Then,

L(Bg, D) = log P(Bs, D) +C (3)
where C is a constant that does not depend on N.

Proof: Consider once more Formula (1) from Theorem 3.1. By taking the logarithm of
this formula, we find,
n qi T
log P(Bg, D) =log P(Bs)+Y_ Y {log(ri —1)! —log(Ny; + 1 — 1)+ ) _log Nijk!} . (4)
k=1

i=1 j=1

Now, consider the contribution of one variable z; and one instantiation of its parent set 7;
to the expression in the right hand side of this equality:

log(r; — 1)! — log(N;; +r; — 1)1 + Z log Nyji!.
k=1
This expression can be written as,
log(r; — 1)! —log(Ny; +1) ... (N;j + i — 1) —log Nyl + )~ log Niji!. (5)

k=1

We now apply Stirling’s formula z! ~ v/27z(£)® to the last two terms of expression (5),

giving,
N;; Nij i Niji Nijk
—IOgHQ’ﬂ'Nij( o ) +k§110g\/271’Nijk( e > . (6)

Note that since for larger z, v27z(£)" has a relative error of about i- ([6] p.112) we
introduce an O(1) error. Expression (6) equals,

1 1 ol 1
—-5 log 27— (N,J + 5) log Ni]'+Nij log €+Z {5 log 27 + (Nijk + 5) log Nijk — Nijk log 6} .
k=1



Now note that >>;°, N;jx = N;; by definition. By exploiting this observation and grouping
terms, the loge terms cancel out, and we find,
T 1

Z - 10g Nz]k log Nij -+ Z N,'jk log ik +
k= 1 k=1 N"J

log 2.

For N large enough the last term of this expression is negligible; we therefore omit this
term, once more introducing an O(1) error. Substitution of the result for the last two
terms of expression (5) gives,

1 i N;;
log(r; —1)!—log(Nyj+1) ... (Nijj+ri—1 +Z logN,J,c lOgNij""Z Niji log Njk (7)
k= 1 k=1 7

The log(r; — 1)! term is negligible for NV large enough and is deleted, again introducing an
O(1) error.

Now consider the second term of expression (7). This term — log(N;;+1) ... (Ny+r;—1)
can be approximated by —log N[j"'l. By this approximation, an error 3/ 1log Nitp
is introduced. Using log %J,j—p < logp < log(r; — 1), we find Z“_l log =3 Lﬂ < (n
1)log(r; — 1). As (r; — 1)log(r; — 1) is a constant with respect to N, the approx1mat10n of
—log(N;; +1)...(N;j+r; — 1) by —log N,-’j"_l introduces an O(1) error.

Expression (7), therefore, can be approximated by,

Ty 1 T Nz .
—log N{' + Z —log Nijx — log Nij + > Nijilog Njk
k=1 v

H ] i N;
= lo k—ljk ZNnklo 7k

g
Nzr; \/ NiJ k=1 Nw
T T i g
Ve, & Nz +3° Nijelog Nijx
k=1

l 1
CEE K

= log

Ny 1 i e Ny
os = () we - G M
k=1 "

r; — 1 A |
= - log N ud
3 og +k§12

Nijk
Nz] )

Q

r; — 1 Ti
- log N + Z Niji log
k=1
The last approximation is allowed since by the strong law of large numbers M approxi-
mates P(z; = zi, m; = w;;) and —1- approximates P(n; = w;;) which both are not functions
of N; by this approximation agaln an O(1) error is introduced.
Summation over j of the above expression gives,

%(Tz - ) & Nz z]k
5 logN+ N Z NU

j=1lk=1

10



Further, summation over ¢ gives,

n qi i Nz .
N3y 3 N

i=1j=1k=1

Nije & gi(ri— 1)
_ ) 8
log N, ; 5 log N (8)

Now recall from the conditions of our theorem that all possible instantiations of the parent
sets of Bg occur in the database and therefore, ¢; = Iz er; 7j- Expression (8) therefore
equals

—N-H(Bg,D) - %KlogN,

from which the desired result is obtained. It is easily verified that every approximation
made in the course of the derivation has introduced an error of O(1) with respect to N
only. d

Note that it will not always behave exactly the same because of the small error C in (3)
which make the Bayesian and MDL measure slightly different. Also for databases in which
not all possible instantiations of the parent sets in a network occur will result in a different
behavior.

Further, from the approximation of log N;jx and log N;; by log N, it is easily seen
that the MDL measure assigns a larger weight to the cost of estimating parameters (the
%K log N-term) than the Bayesian measure. As a result, using the MDL measure may
yield a network with fewer arcs than using the Bayesian measure.

4.3 Properties of the MDL measure

In this section, we will show that the MDL measure assigns equal quality to network
structures that have the same independency model. Before proving this in detail, we state
some related properties of the MDL measure.

Consider a network structure Bs. A single arc-reversal operation on a pair of nodes z
and y that are not adjacent does not influence the quality of the model. However if x and
y are adjacent, then the quality does not change if the parent set of x equals the parent
set of y excluding z itself.

Lemma 4.1 Let U be a set of variables. Let D be a database over U. Let Bs be a network
structure over U. Let the prior probability distribution over network structures be uniform.
Let z, and z, be two nodes in Bs such that z, € 7y or T, € T and 7, = m\z,. Let
Bgi = arcr(Bg, Za,Ty). Then,

L(Bs,D) = L(Bg!, D).
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X, Xb

Figure 2: Situation of z, € T and 7, = m\Z,.

Proof: In the case that z, ¢ 7, we have by definition of arc-reversal that Bg = Bg and
the lemma is trivially true. In the remainder of the proof we assume that z, € 7 and
Ta = Tp\Z, as depicted in Figure 2.

We have to show that log P(Bs) — N - H(Bgs,D) — 3K -logN = log P(Bs:) — N -
H(Bg,D) — 1K' -log N, where N is the number of cases in D and K and K’ are the
numbers of independent probabilities to be assessed for Bs and Bg: respectively. We will
prove the equality by showing that log P(Bs) = log P(Bs), N-H(Bs, D) = N-H(Bg, D),
and 1K -logN = 1K' -log N.

Since we assumed a uniform distribution over all network structures, log P(Bgs) equals
log P(Bs'). Now consider the entropy terms N - H(Bgs, D) and N - H(Bg, D) For Bg, let

Tiy Giy Nijk, and N;; be as defined in Theorem 3.1, and for By let 7, ¢i, Nj;;, and N;; be
likewise. Note that r; = r; for all ¢ = 1,...,n. By definition, we have,
LA A Niji
N. H Bs, ZZZN,]klog .
i=1j=1k=1 Nij

Since m; = 7, in case i is not a or b, we have by definition of arc-reversal that the entropy
term equals

@ T ! da 7a N, @ T N,
.S > > Nijlog N ~ 3 3 Najelog 22 = 33" Nyjlog ==, (9)

i=1,i#a,i#bj=1 k=1 i=1lk=1 Na] j=lk=1 NJ

Consider the last two terms of Expressmn (9). These terms equal,

da Ta qa Ta 949 T 949 T
ZZNaJklogNﬂJ EZNaJkIOgNaJk+EZNkaIOngJ ZENkal()ngJk (10)
j=1k=1 j=1k=1 j=1k=1 j=1k=1

Now consider the third term of expression (10). Using N;; = YL, Nyjk, we find that
Y0 Yk Nojelog Ny = Y% 1 Nyjlog Ny;. From m, = m, U 7,, we have that for every
N,; there is an index j' such that Ny = Ny;. So, Z;’-"zl Ny;log Np; can be written as
Sl Tkei Najr log Nyji. Substitution in (10) gives,

ga Ta o Ta 9a Ta b
>3 NejulogNoj = 3> Najk log Noji + 3 3 Nuji log Noji. — Z 3 Nijx log Ny
7=1lk=1 j=1lk=1 j=1k=1 j=1lk=1
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Note that the middle two terms cancel out, yielding

da Ta 9% Tb
Z ZNajk IOgNaj - Z Zijk IOngjk. (11)
j=lk=1 Jj=1lk=1

For the first term of expression (11) we once more have %2, 3772, N,jilog N,; equals
23:1 Nyjlog Nyj. Now observe that from m, = 7, we have that ¢, = ¢, and NbJ =
Noj. So, we can write the sum Y32, Nyjlog N,; as Zjé_.l bj 10g IVy;, which is equal to
Ty TRy Nigi log Ny;.

Now, we consider the second term 2 b Sy Nijklog Nyjk. Npjr is the number of cases
in which m, takes value wa and z; takes value xy,. Likewise, N, Tk is the number of cases
in which 7, takes value w,; and z, takes value xbk, Since Ny and N, involve the same
set of variables, for each Nb]k there are indexes ] and k' such that Nka is equal to NaJ,k,
So, % 3kt Nijk log Nyjx can be written as E “1 Zk * 1 Nojilog N, ;. thus obtaining that
(11) equals,

4 T
> Ny log Ny, — Z Z oik 108 Ny . (12)
j=1k=1 j=1k=1
We have,
9% Ta % T
O—ZZ aik 10g N, ZZ J,clogN’ ZZN;jklogNéj—ZZNéjklog bk
j=1k=1 j=1k=1 j=1lk=1 j=1k=1

in which the last equation follows from a same line of reasoning as above but now realizing
that 7/, = m, U 2. Adding this term to (12) gives,

% T % T
D2 Nyilog Ny =Y 3 N, JklongJk+ZZ ok l0g N, ZZ ajk 108 Noji

j=1k=1 j=1k=1 j=1k=1 j=1k=1
Using logxz — logy = log§ we get,

!

r’ Na
—ZZNkalg b]k ZZ ]klog Jk-

j=1lk=1 .7 j=1lk=1

Substituting this result in (9) gives,

[ qa Ta b
- Z Z Z ch log ”k Z Z ajk 10 Na]k Z Z Nlecl Nb]k
i=1,i#a,j#b j=1 k=1 j=lk=1 aJ j=1k=1 N

and by reordering terms, this is,
n_ g N
k
-3 N ik log ]\;ZJ ,

i=1j=1k=1
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which by definition is N - H(Bg, D).
To complete the prove, it remains to be shown that 1K -log N = 3K’ -log N. Note
that it is sufficient to show that K equals K'. By definition, we have,

K—-K = é{fh(ﬂ' —1) —qi(ri — D}

We recall that 7, = 7; for all ¢ = 1,...,n. In addition, we have for i € {1,...,n}\{a, b},
that ¢} = ¢;. From these observations, we have,

K—K' =g(ra—1) +a(r—1) = g5(ra = 1) — gy(rs — 1).

By definition, we have, ¢, = [lzer, 7= and @b = [lsen, To; @ similar observation holds for ¢/,
and g;. Substitution gives,

K—K =[] ratra=1)+ [ ra(rs = 1) - I 7o(ra = 1) = T ra(rs — 1).

TETq TEM z€m!, mEri
=(II - H Tm)(ra—l)*‘(l—[ Tz — H T2)(re — 1).
TERa zem! TET, zem,

Since 7! = m, U {b} and m, = m\{a} = 7., we find

K—K =] ra(1=7r)(ra = 1)+ I 7z(ra = 1)(ry — 1) = 0.
TET TEM,
So, K = K'. We have shown now that all three terms of the MDL measure remain the same
after applying a single arc-reversal operation under the conditions stated in the lemma,
from which the propery to be proved follows immedeately. d

From the previous lemma we have that in some cases arc reversal does not influence the
quality of the network structure given the data. The condition under which this property
holds implies that in these cases arc reversal does not change the independency model
represented by the structure. The following lemma now states that any two network
structures that represent the same independency model can be transformed into each other
by applying successively reversal operations under the conditions mentioned above.

Lemma 4.2 Let U be a set of variables. Let Bs and Bg be network structures over U
such that for their independency models Mg and Mg we have Ms = Mg. Then, a finite
sequence By,...,By, k > 1, of network structures over U exists such that Bs = Bj,
Bg = By, and for 1 < i < k, Bjy1 = arcr(B;, Tq,, Ty,) for nodes zq, and xp, in B; with
Lo, € Ty, OT Tq, € Ty, and T, = Ty, \Za,-
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Proof: For two network structures Bg and By, we have Ms = Mg if and only if z, —x} €
Bs & 1, —13 € By, and , y, z vorms a v-node in By if and only if z, y, z vorms a v-node
in BSI, [16].

Note that the condition z, —zp € Bs < &, —z € Bg implies that both Bs and By
have the same underlying undirected graph, however, the direction of the arcs may not be
the same in both graphs.

We proof the lemma with induction to the number of reversed arcs in Bg with respect
to Bg, that is, the number of pairs of nodes z;, z; such that z; — z; is an arc in Bg and
z; = ; is an arc in Bg.

If there are zero reversed arcs then Bg is equal to Bgr and the lemma is trivially true
for k = 1.

Assume that the lemma holds if there are d > 0 reversed arcs. Let Bg be a network
stucture that contains d+ 1 reversed arcs with respect to Bs. We show that an arc reversal
on B; = Bs can be performed such that the Bg: contains d reversed arcs with respect to
the obtained network stucture B,.

By inspection of the definition of arc reversal we find that performing and arc-reversal
on two nodes z, and z for which the conditions of the lemma apply (the conditions for
arc reversal hold, z, € m, or x, € ™ and 7, = m\Z,) Will not introduce new adjacencies
nor remove old ones. In addition no new v-nodes will appear. We conclude that the
independency model of B, is the same as the one of B, if we can find two such nodes z,
and xp.

Let 6 be an ordering obeyed by B;. Let z, and x be two nodes in B; on which an arc
reversal can be performed and let 7, — z, be an arc in Bg:. Furthermore, let x, be the
lowest ordered node according to 6 for which this condition hold.

Suppose that z, € T, and not 7, = m\z,. We distinguish two cases for 7, and m,:

o Tp\(ma Uz,) # 0. Let z be a node in m\ (7, U z,). Then in B;, we have 1,z on
the one hand and on the other hand. However, if z, — z; would be reversed in Bs
Ta, Ty, T cannot be vorming a v-node. So, 73\ (7, U £,) must be empty.

o (m,Uz,)\m # 0. Let z be a node in (maUz,)\ . Then in By, we have x, —z, T, — s
and z—z,. Furthermore, <z, T, z> holds in By, thus also in Bs and Bg:. In B,
we must have these properties also. However, if the arrow z, — x is just flipped in
direction, we would obtain x — z, < z and <&, T, > would not hold. For the
d-separation statement to hold in Bg, £ — z, will have to be flipped in direction in
Bg also. But, than a pair 2, =; would have to exist with xj <¢ z» which must be
false by our choise of z.

So, our assumption that z, € 7, and not 7, = 75 \Z, has to be false and thus z, & my or
Ta = Tp\Zs. Application of an arc reversal under these conditions does not introduce new
adjacencies nor new head-to-head nodes.
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So, in By, 1 < i < k, always two nodes z, and z; can be found such that an arc-
reversal can be performed that does not change the represented independendcy model.
Furthermore, in B, there are only d reversed arcs with respect to Bg' so by the indution

hypothesis there is a finite sequence By, ..., Bg such that B4, = arcr(Bi, Ta;, Tv;) under
the conditions stated in the Lemma. Therefore, there is a finite sequence Bs, ..., By such
that Bi11 = arcr(B;, Zq,, T;) under the conditions stated in the Lemma. O

The lemma says that when we have two network stucture s that represent the same inde-
pendency model then always a sequence of arcreversals exist that leaves the represented
independency model unaltered and that transform the first network stucture into the other.

Theorem 4.2 Let U be a set of variables. Let D be a database over U and Bs be a network
structure over U. Let the prior probability distribution on network structures be uniform.
Then, for every network structure Bg: that represents the same independency model as Bg
we have,

L(Bs, D) = L(Bs, D).

Proof: From Lemma 4.2, we have that a finite sequence of network structures Bi,..., B,
k > 1, exists such that Bs = By, Bs = By, and B;1 = arcr(Bi, Ta;, Tv;) With T4, & T, OF
Tq, € My, and g, = My, \Tg; in B;. From Lemma 4.1, we have that such arc-reversals do not
change the MDL measure for the resulting network structures. So, L(Bi;1,D) = L(B;, D)
for 1 = 1,...,k) hence L(Bs,D) =L(BSI,D). O

From this theorem we have that all network structures that represent the same set of
independencies have the same quality according to the MDL measure. Recall from Section
3.1 that a similar property does not hold in general for the Bayesian measure. Yet, the MDL
principle for probabilistic networks inherits all advantages of the Bayesian approach. For
example, no statistical tests for conditional independence are used thus avoiding the need
of huge databases. Also a natural stopping criterion for selection algorithms is provided
instead of a more or less arbitrary threshold value. In addition, a collection of most
likely networks can be obtained and prior knowledge of the domain at hand can be easily
incorporated.

4.4 Asymptotic Behavior of the MDL Measure

For the Bayesian measure it is known that it prefers minimal I-maps over other network
structures for large databases [10]. In this section, we investigate the behavior of the MDL
measure for large databases.
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Theorem 4.3 Let U be a set of variables and let 6 be a total ordering on U. Let Pp
be a distribution over U with a unique minimal I-map obeys 6. Let D be a database D
generated from Pp. Let Bg be a minimal I-map of Pp and let Bg be a network structure
such that both Bs and Bg that obey 8. Let the prior probability distribution over all network
structures be uniform. Then,

if and only if Bsr # Bs.

Proof: Let N, n, i, Ti, Tik, Wij, Nijk, and Nj; be as in Theorem 3.1 for network struc-
ture Bg and let 7}, i, =}y, wi;, Nj;, and Nj; be likewise for Bg. Let K and K' be
the numbers of probabilities to be assessed and ¢; and ¢; the number of instantiations
that the parents of z; can be assigned to for Bs and Bg, respectively. We consider

im0 (L(Bg:, D) — L(Bg, D)) which by definition is equal to
Jim (log P(Bs) ~ N - H(Bs, D) — %K’ ‘log N — log P(Bs) + N - H(Bs, D) + %K log N) .

Since we assumed a uniform distribution on network structures, the terms log P(Bg') and
log P(Bgs) cancel out. So, we consider the expression,

N—-ooo

lim (N H(Bs,D)+N - H(Bs. D) - %(K’ _K)-log N) | (13)

Now, consider the behavior in the limit of the entropy term —N - H(Bs', D) which by

definition is —N - ity Y5y 2k —ﬁ"];}i log %Ji By the strong law of large numbers, we
ij

have, 1imN_,°°—AL"A‘,1 = P(z; = Tg, ™ = wj;) and limN_,oo%g- = P(z; = zag|m = wij)-

Therefore,

n 4 T

NH(BS, D) = NZ Z Z —P(CL‘i = Tik, T3 — 'w,ij) 10g P(.T, = CL‘ik|7l'i = wij).
i=1j=1k=1
A similar property holds for the behavior of the entropy term N - H (Bg', D) in the limit of
Expression (13). To examine the behavior of —N - H(Bs,D)+ N - H (Bst, D) in the limit,
we distinguish between two cases: Bg is not an I-map of Pp, and Bg is an I-map of Pp

but not a minimal one. First, suppose that Bg: is not an I-map of Pp. Then, in the limit
—N . H(Bg,D)+ N - H(Bg, D) is equal to,

n g T
N - Z {Z Z P(z; = Tik, T; = wij)logp(wi = zi|m; = wéj)

i=1 | j=1k=1

qi T
- Z Z P(.’Ez =Tk, Ty = 'wij)logP(a:,- = .’L','klﬂ',‘ = wij)} .

j=1k=1
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Note that 7} = r; for ¢ = 1,...,n. Now observe that since Bg is not an I-map of Pp,
there is an index i such that m; € «i; if for all ¢ m; C 7} then Bg would represent less
independencies as Bs which is an I-map and thus Bg would be an I-map too. For this
index i, let 7 = m; U, let wy; be the jth instantiation of 7!, and let ¢ be the number
of all possible instantiations of 7. Let wy; = 7} denote the instantiation of the variables
in 7! such that they take the values when 7 = wjj;. For j =1,.. .,q!, we have that
P(z; = zyln! = wj}) = P = za|mi = w;;) for each wj; such that w;; = (wf; = m;),
because I(z;, T, 7). So, the above equation can be written as,

n q:;I T
N- {Z 3 P(z; = zip, ) = wi;) log P(zi = wak|m; = (wi; = 7))

=1 | j=1lk=1

qi’ i
- Z Z P(z; =z, 7} = w%)logp(mi = zy|m; = :'J)} :

j=1k=1
We now use Shannon’s inequality which states 3_; —a; loga; < 3 —a; logb; for all a;, b; > 0
such that 3, a; = ¥; b = 1. Using this inequality, the term within brackets must be greater
than or equal to 0 because there are instantiations of ;' such that P(z; = Zi |} = wi; — ™)
is not equal to P(z; = zu|m! = w}}). So, the entropy of Bg' will be higher than the entropy
of Bg. Since, O(N) dominates O(log N) when N — oo the K -log N and K ".log N terms
vanish in (13) and —N - H(Bg/, D) + N - H(Bs, D) = —oo.

If Bg is a non minimal I-map then the entropies will be the same. However, at least one
extra arc has to be added in By and therefore, K’ — K > 0. So, —3(K'— K)log N — —o0.
0O

From the fact that positive distributions have unique minimal I-maps for network structures
that obey a given ordering we have the property stated in the following corollary.

Corollary 4.1 Let U be a set of variables and let 6 be a total ordering on U. Let Pp be
a positive distribution over U. Let D be a database D generated from Pp. Let Bg be a
minimal I-map of Pp and let Bs: be a network structure such that both Bs and Bs' obey
0. Let the prior probability distribution over all network structures be uniform. Then,

Iél_I)nOO(L(BS’aD) - L(BSaD)) <0
if and only if Bs: # Bs.

So, the measure proposed will prefer the original network structure overwhelmingly over
other network structures when the number of observations grows to infinity in most cases.
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4.5 Heuristic Search Procedure

The MDL measure can be used in algorithms for learning networks structures from data.
It will be evident that for the MDL measure the same considerations hold as posed In
Section 3 for the Bayesian measure. Therefore, we again assume that an ordering on the
variables is given and develop a greedy heuristic algorithm. Our algorithm called K3 is a
modification of K2 where the Bayesian measure is replaced by the MDL measure; a uniform
prior distribution over network structures is assumed.

Algorithm K3

Let the variables of U be ordered zi,...,Zx
fori=1,...,n dO Tinew + Tioa < 0
fori=2,...,ndo

repeat

Tiold < Tinew
Let BS be defined by T1,0ld -+ - Tn,old
2 + argmax,{L(Bs,, D) — L(Bs, D) | y € {x1,. .., Ti1}\ T 0ld, Where
Bg, is Bg but with m; = mi01a U {y}}
if L(BSZ,D) — L(Bs, D) > 0 then Tinew € Ti,old U {Z}
until 7; new = Tiold OF |Tinew| =1 — 1
output Bs defined by 71 new - - - Tnnew

Note that the quality of a network structure Bs compared to a structure Bg, with one
more arc can be calculated efficiently, since the terms L(Bg,, D) and L(Bs, D) have many
terms in common.

5 Preliminary Test Results

To compare the performance of the heuristic algorithms K2 and K3, we performed some
experiments. In these experiments, we proceeded as follows. First, an acyclic network
structure Bg with ten binary variables was generated randomly. To this end the variables
Z1,...,%10 were ordered. Then variables z; and zj, ¢ # j, were chosen randomly, and
if i > j an arc &; — x; was added to the network under construction and z; — ;
otherwise. For the next arc to be added, we randomly selected one node z; among the
nodes that are already incident on an arc and one node z; among the nodes that are not
yet incident on an arc; an arc is placed from the lower ordered node to the higher ordered
one. The last step was repeated until nine arcs were generated and a connected graph was
yielded. Note that with this method, not every connected network structure has an equal
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K2 vs. Original K3 vs. Original K3 vs. K2

obs. | extra missing sum | extra missing sum | extra missing sum
100 | 2.2 3.3 5.5 0.8 4.7 5.5 0.0 2.8 2.8
200 1.6 2.3 4.9 | 0.1 2.6 2.7 1 0.0 1.8 1.8
300 14 1.8 3.2 0.3 3.5 38 | 0.0 2.8 2.8
400 | 1.4 1.9 3.3 0.2 2.7 2.9 0.0 2.0 2.0
500 | 1.8 1.5 3.3 0.1 2.1 2.3 0.0 2.3 2.3

Table 2: Test results.

probability of being generated: network structures with long chains and low node degree
are less often generated than network structures with a high degree for a couple of nodes
and low degree for others. For the generated network structure Bg, conditional probability
tables were generated randomly; for each 1 <7 < 10,1 < j < g, P(z; = Olm; = wyj)
was assigned a random number in the unit interval and P(z; = 1|m; = w;;) calculated by
1— P(.’II, = Olﬂ’, = ’w,'j).

With the resulting probabilistic network, a set of cases was generated using logic sam-
pling [8] to constitute a database D. Both K2 and K3 were applied to this database, with
the node ordering used for generating the network structure. This procedure was repeated
for various database sizes.

The performance of the algorithms was measured in terms of the number of extra arcs
and missing arcs in the network structures generated by the algorithms compared with
the original network structure. These numbers indicate how closely the structure of the
original network is recovered. In Table 2 the average results over ten databases generated
from ten different network structures are presented. The first column represents the size of
the databases used. The columns labeled ‘extra’ indicate the number of arcs that can be
found in the first network but not in the other; the columns labeled ‘missing’ indicate the
number of arcs found in the second network but not in the first one. The columns labeled
‘sum’ specify the total number of wrongly placed arcs; this number may be interpreted as
the total error made by the learning algorithms.

The first three columns of the table show the results for the performance of K2; the
next three columns show the results for K3 and in the last three columns a comparison of
K2 and K3 is given. We observe that the number of mismatched arcs tends to decrease as
the number of cases increases for both K2 and K3. This tendency is expected, since larger
database contain more information than smaller ones. A

The last three columns of the table indicate that K3 shows a tendency to stop adding
arcs earlier than K2 does; this is seen from the zeros in the second but last column. This
tendency confirms our earlier theoretical observations based on Theorem 4.1. Since K3
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adds less arcs than K2, K3 performs less computations than K2 and, therefore, K3 has
a slightly shorter run-time than K2. Yet, the table suggests that in sum K3 performs
comparable to K2. However, it yields structures with more missing arcs than K2 does. As
a consequence, it may be possible that K2 outputs an I-map while K3 does not. We would
like to emphasize that it highly depends on the purpose for which a learning algorithm 1s
used, which algorithm is to be preferred over the other one; for example, if the learning
algorithm is used to start a build-test cycle where an expert is confronted with a network
generated by K2 or K3, an abundance of erroneous arcs may be as disturbing as the
omission of arcs. It is not quite clear why the sum of mismatched arcs is less on average
for K3 compared to K2; further experiments on a wider range of network structures need
to be performed to confirm this behavior.

If the network structure in itself is of less interest than the distribution to be learned,
another measure analyzing the performance is needed. An example of such a measure is
the divergence ¥y P(U)log P(U)/ P(U) where P(U) is the distribution represented in the
original network and P(U ) is the distribution in the learned network. Further experiments
are necessary to make final conclusions on this issue.

6 Conclusions

Probabilistic networks can be constructed from a database of cases by selecting a network
that has highest quality with respect to a database according to a given measure. In this
paper, we have presented a new measure for the quality of a network structure given a
database based on the minimum description length (MDL) principle. We have shown that
this measure can be regarded an approximation of the logarithm of the Bayesian measure
presented by Cooper and Herskovits in many cases. As a consequence, the MDL measure
inherits all desirable properties of the Bayesian measure. In addition, it assigns the same
quality to all network structures that represent the same set of independencies. Based on
the MDL measure, we have presented a new heuristic algorithm, called K3, for learning
network structures. We have compared this algorithm with the K2 algorithm based on the
Bayesian measure. Preliminary test results suggest that these algorithms perform compa-
rable. The algorithm based on the MDL approach, however, tends to be slightly faster,
outputting network structures with fewer arcs than K2. To reach decisive conclusions,
however, further experiments are necessary for a wider range of network structures.

A major drawback of both K2 and K3 for learning network structures is that their per-
formance is highly dependent on the ordering on the variables taken as point of departure.
To circumvent this drawback, new heuristics need to be developed that do not need this
extra information. One approach may be to start with a random ordering, apply K2 or
K3, and optimize the ordering outputted network stucture by applying simple operations,
such as arc-reversals. The presented MDL measure may be more suitable to this approach
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since in many cases the quality measure of the network need not be recalculated after the

performance of an arc-reversal.
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