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One way to define total termination is the following: a TRS is totally terminating if and
only if there is a total well-founded order > on ground terms closed under ground contexts
such that lo > ro for each rewrite rule  — r and each ground substitution o. In practical
applications it is very natural to require this totality: for example in Knuth-Bendix completion
such a well-founded term ordering is required, and a highly desirable property is that all new
critical pairs can be ordered by the ordering. Totality on non-ground terms can not be
achieved since commutativity conflicts with well-foundedness; totality on ground terms is the
strongest feasible requirement. The totality property is essential for unfailing completion
strategies. In the case of ground AC-equational theories finitely presented, the existence of a
reduction ordering AC-compatible and total on 7(F)/ =ac ensures that such theories always
admit a canonical rewrite system. For more information on AC-compatible total orders see
for example [13, 15]. Additionally most of the usual techniques for proving termination of
TRS’s like polynomial interpretations [11, 1], elementary interpretations [12], Knuth-Bendiz
order (KBO), prove in fact total termination.

In section 2 we give some basic definitions and properties over term rewriting in general
and total termination in particular. The rest of the paper can be divided into two inde-
pendent parts: section 3 on precedence based orders, and sections 4 and 5 on syntactical
characterization of total termination.

In section 3 we present a slightly generalized version of the recursive path order (RPO). For
this order we give a new proof of well-foundedness which is independent of Kruskal’s theorem.
We also show that the class of TRS’s whose termination can be proved by RPO falls within
the class of totally terminating TRS’s. The same holds for other precedence based orders like
the Knuth-Bendix ordering.

In section 4 we describe two characterizations of total termination that are effective in the
sense that they provide powerful techniques to prove that TRS’s are not totally terminating.
However, they are not complete characterizations: we construct systems that are not totally
terminating, but can not be dealt with the techniques presented. Such systems are rather
tricky, and it is unlikely that they will appear in any application. In section 5 we describe a
complete characterization of total termination: a system is totally terminating if and only if
its rewrite relation is contained in a strict partial order having some syntactical properties.
These properties cover the characterizations of section 4. However, this new characterization
is not effective any more.

2 Basic definitions and properties

Below we give some basic notions over TRS’s. For more information the reader is referred to
(3]

Let F be a signature, i. e. F is a (non-empty) set of function symbols each with a fixed
arity > 0, denoted by arity(). Let X denote a set of variables, such that F N X = @. The set
of terms over F and X is denoted by 7(F, X) and the set of ground terms over F by T (F).

A term rewriting system (TRS) is a tuple (F, X, R), where R is a subset of 7(F,X) x
T(F,X). The elements of R are called the rules of the TRS and are usually denoted by ! — 7.
They obey the restriction that ! must be a non-variable and every variable in r must also
occur in /. In the following, unless otherwise specified, we identify the TRS with R, being F
the set of function symbols occurring in R.

Given a function symbol f with arity n > 0, its embedding rules are n rules of the form



f(z1,..., ) = x;, with 1 < ¢ < n, where z,,...,z, are pairwise different variables. We
denote by Embr all embedding rules for all function symbols occurring in R.

A TRS R induces a rewrite relation over T(F,X), denoted by —p, as follows: s =5 ¢
iff s = C[lo] and t = C|ro], for some context C, substitution o and rule I — r € R. The
transitive closure of = is denoted by —} and its reflexive-transitive closure by —%. A TRS
is called terminating (strongly normalizing or noetherian) if there exists no infinite sequence
of the form ty =g t; =5 ....

We define a well-founded monotone F-algebra (A,>) to be an F-algebra A for which
the underlying set is provided with a well-founded order > and each algebra operation is
monotone! in all of its coordinates, more precisely: for each operation symbol f € F and
all ay,...,8n,b1,...,b, € A for which a; > b, for some 3, and a; = b; for all j # i, we have
fA(alv-'- aan) > fA(bla"' ,b'n)

Given a well-founded monotone F-algebra (4, >), let A* = {0 : ¥ — A}; the interpreta-
tion function [ ], : T(F,X) x A*¥ — A is defined inductively by

[.’L‘,U]A = o(z),
[, sta)oly = falltiiolys-- s [tnsoll)
forz € X,0 € A¥,f € F,t,...,t, € T(F,X). The algebra (4,>) induces an order >4 over
T(F,X) as follows: s >4t <> Vo € A¥ : [s,0] > [t,0]. Intuitively ¢ >4 ¢ means that for
each interpretation of the variables in A the interpreted value of ¢ is greater than that of ¢'.
The order >, is closed under substitutions and contexts.

A well-founded monotone F-algebra (A,>) and a TRS R are said to be compatible if
I >4 7, for all rules I — r in R. From [17] we recall:

Theorem 2.1 A TRS is terminating if and only if admits a compatible non-empty well-
founded monotone algebra.

Definition 2.2 A TRS s called totally terminating if it admits a compatible non-empty
well-founded monotone algebra in which the corresponding well-founded order is total.

Theorem 2.3 R is totally terminating if and only if R U Embx is totally terminating.

A useful characterization of total termination without referring to monotone algebras is
the following.

Theorem 2.4 Let F' be F extended with a new constant if F does not contain any. Then
R 1is totally terminating if and only if there is a strict partial order > on T(F'), such that

o > is total and well-founded;

® > is closed under ground contexts, i. e. if C[] is a ground context with ezactly one hole,
and t and s are ground terms with s > t then C[s] > C[t];

e lo > ro for every rulel = r in R and every ground substitution o.

'By monotone we mean strictly increasing.



roofFirst, consider the if part. Since > is total and well-founded on 7(F'), we can make
(T(F"),>) a well-founded total monotone algebra over F by interpreting each function symbol
in F by itself. From the properties of > follows that R is compatible with this interpretation,
yielding the total termination of R.

For the only-if part, first note that total termination of (F, X, R) implies total termination
of (', X, R) (see lemma 4.2}, so we consider total monotone algebras over F'.

The essential step in this part is the existence of any total order on the set of ground
terms, well-founded and closed under contexts. To construct such an order, consider the set
of function symbols F'. By Zermelo’s Theorem (see [10]) there is a total, well-founded order
on F'. Let > be such an order, called a precedence. Consider the order >, associated with
this precedence and taking lexicographic sequences from left to right. In section 3 we prove
that this order has all the required properties.

Since R is totally terminating, we know that R is compatible with a (non-empty) monotone
F'-algebra (A, >), with > total and well-founded. Again let [t] be the interpretation in A of
a ground term ¢.

In T(F') we define the order 1 by

st <> ([s] > [Z]) or ([s] =[] and s >, 2)

Irreflexivity and transitivity of 1 follows from irreflexivity and transitivity of both > and
>1p0- Given any two ground terms s,¢ then either [s] > [t] or [t] > [s] or [t] = [s], since
> is total. In the first two cases we conclude s 73 ¢ or t 1 s respectively. In the last case,
since >, is total we know that either s >;,, t or t >}, s or s = t, hence the order J is total.
Well-foundedness of 1 follows directly from well-foundedness of both > and >,,,. The same
holds for closedness under ground contexts.

If 0 : X = T(F') is any ground substitution and ! — r is a rule in R, then [lo] > [ro],
since (A, >) is compatible with R, and therefore lo 1 ro, concluding the proof.

3 Precedence based orderings

In [8], Hofbauer proved that for a finite TRS proved terminating by recursive path order
with only multiset status, a proof of total termination can be given in the natural numbers
with primitively recursive operations. In this section we show that orders like RPO or KBO,
even in their most general form, actually prove total termination, i. e. if a TRS R is proven
terminating by RPO (or KBO), then R is totally terminating. The reverse is not true; the
system

flg(@) = g(5(f(2)))

is totally terminating (see [5]), but it cannot be proven terminating by RPO or KBO.

We introduce some needed definitions; mainly conventions and notations of [2, 16] will be
followed.

Given a poset (S, >) we consider two useful extensions of >, namely lezicographic extension
(denoted by >;..) defined as usual over sequences of elements of S, and multiset eztension
(denoted by >mw) and defined over M(S), the finite multisets over S (see [4, 16]).

Quasi-orders over a set S are transitive and reflexive relations over S. They will be
denoted in general by >. Any quasi-order defines an equivalence relation, namely > N <, and
a partial order, namely > \ < (or vice-versa). We usually denote the equivalence relation by



~. Conversely, given a partial order > and an equivalence ~, their union does not always
define a quasi-order (the transitive closure of their union does). However if > and ~ satisfy

(~N>=0)and (~ 0o » o ~) C » (1)

where o represents composition, then > U ~ is a quasi-order, of which > is the strict part
and ~ the equivalence part.

From now on if we characterize a quasi-order via > U ~, we assume that the conditions
of (1) are satisfied. Also we take as partial order defined by a quasi-order > the relation
==\=

Given a quasi-order > over S, the quotient S/~ consists of the equivalence classes of ~;
such classes are denoted by ( ). We can extend > to S/~ in a natural way, namely (s) 1 (t)
iff s > t. Since > and ~ satisfy condition (1), the relation 1 does not depend on the class
representative and thus is well-defined. Furthermore J is a partial order over S/~. When
this extension is well-defined we abusively write > instead of 1.

Given two quasi-orders > and >’ over the same set, we say that >’ extends = iff » C >’
and ~ C ~/.

For any quasi-order >, >, and >,,, denote its lexicographic and multiset extensions,
respectively. These quasi-orders are defined as in the partial order case, with equality being
replaced by the more general equivalence ~.

Lexicographic and multiset extensions preserve well-foundedness, more precisely:

Lemma 3.1 > is well-founded over a set A iff > .. is well-founded over M(A).

Lemma 3.2 > is well-founded over a set A iff =.. is well-founded over A", the set of
sequences over A of size at most n, for a fited n > 1.

To each function f € F we associate a status 7(f). Status indicates how the arguments
of the function symbol are to be taken. We consider two possible cases:

e 7(f) = mul; indicates that, for the purpose of ordering, the arguments of f are to be
taken as a multiset.

o 7(f) = lex,, where 7 is a permutation of the set {1,...,arity(f)}; indicates that, for
the purpose of ordering, the arguments are to be taken as a lexicographic sequence
whose order is given by 7.

Given the set of function symbols F, let > denote a quasi-order over F usually called a
quasi-precedence. We reserve the term precedence to partial orders over F.

From now on we assume that a quasi-precedence over F is given as well as a status function
7, under the following restriction: lexicographic and multiset status cannot be mixed, i. e.

if f ~ g and 7(f) = mul then 7(g) = mul (2)

Write >7,, for recursive path order with status as it appears in [16]. This definition is not

suitable to our purposes. We need to define a total well-founded monotone algebra (4, >)
and a good candidate is (T (F), >7,,). If we define the congruence ~ over T(F, X) as follows:

Y~ rpo

s~tif s=tors=f(s1,...,8m), t=9g(t1,...,tn), f ~ g, m =n and either

o 7(f) = 7(9) = mul and there is a permutation m of {1,...m} such that s; = ., for
any 1 <i<m;



o 7(f) = lex,, and 7(g) = lex,, and s, ;) ~ ty ;) forall 1 <i < m.

Then if for ground terms s,t, s ~ t and s # t, both s ¥7, t and t %7, 5. So (T(F),>7,)
is not total and it seems reasonable to take A = T7(F)/~. But unfortunately the natural
extension of >  to the congruence classes of 7(F,X)/~ is not well-defined even for total
precedences (condition (1) does not hold). This can be repaired by extending the definition
of >7,, to >,,,, namely replace equality by ~.

Definition 3.3 (RPO with status) Given two terms s,t we say that s ~.p, t if s ~ t, and
$ >rpo t tff s = f(81,...,8m) and either

1. t=g(t,...,t,) and

(a) f>gands >t foralll <i<n, or
(b) f~gand (s1,...,8m) >rpoyr (t1,-+-,tn) @nd § >rpo by, for all1 < i < m; or

2. Ki<m: 8 Sppot OF 85 ~ppo L.

It can be seen by straightforward induction proofs that >,,, and ~,,, have the following
properties:

® >, is a strict partial order and ~,,, is an equivalence, both defined over 7(F, X).
Furthermore >,,, and ~,,, satisfy condition (1).

® >, and ~,,, are closed under contexts and substitutions and >,,, has the subterm
property, i. e. C[t] >, t, for any term ¢ and non-trivial context C[ |.

® >.p, is monotone with respect to quasi-precedences, i. e. if >, >’ are quasi-precedences
over F such that D' extends >, then >,,, associated with >’ extends >,,, associated
with . Consequently >,,, extends >, , for any fixed quasi-precedence and status.

rpo?

e If > is total over F then >,,, is total over T(F)/~p,.

e If all function symbols have lex status then >,,, coincides with Kamin and Lévy’s ([9])
lezicographic path order (that we denote by >,,,). If i> is total and ~ is syntactical
equality then, as a consequence of the previous remark, we have that >, is total over

T(F).

In order for >,,, to be useful for proving termination of term rewriting systems, the
order has to be well-founded. Unfortunately, well-foundedness of > alone is not sufficient
to guarantee well-foundedness of >,,, as the following example shows. Let F consist of two
constants a > b and function symbols f;, ¢ > 1, such that f; has arity i, 7(f;) = lex;; and
fi ~ f;, for any ¢,j. Then we have the following infinite descending chain

fl(a) >rpo f2(ba a) >rpo fa(b, b, a) >rpo f4(b, b7 b, a) Zrpo t "

The problem stems from the fact that lexicographic sequences of unbounded size are not well-
founded.? Kamin and Lévy ([9]) proved that >,, is well-founded provided that equivalent
function symbols have the same arity. In the following we prove that this restriction can be

2Note that even if B> would be total or F finite, with a function symbol f allowing different arities, the
same problem would arise.



weakened. It is enough to require that for every equivalence class of function symbols with
lexicographic status, there is a natural number bounding the arities of the function symbols
in the class. That is

VieF: 7(f)=lex, = (3n>0: Vg e (f): arity(g) <n) (3)

Before proving well-foundedness of >,,,, we need some additional definitions and results
from [7].

Definition 3.4 A quasi-order > over a set S is a well quasi-order, abbreviated to wqo, iff
every quasi-order extending it (including > itself) is well-founded.

There are several equivalent characterizations of wgo’s. We also use the following (see [7]):
”Every infinite sequence (s;):;>o of elements of S contains some infinite subsequence (S¢(3))iz0
such that syi41) > Se(:), for all i > 0”.

A traditional way of proving well-foundedness of >,,, is via Kruskal’s theorem. Given our
extended definition of >,,,, we cannot apply Kruskal’s theorem in a straightforward way. This
is so because >,,, no longer contains the embedding relation. Let us elaborate some more
here. Given a quasi-order > over F, the embedding relation >.m; over T(F, X) is defined as
follows ([7]). Either:

L4 f(tla'“atn) Zembgiﬁ‘fzg; or
hd f("'at"") Zembt; or

o f(s1,...,8m) > g(t1,...,ts) iff f > g, n < m and there are integers j;,...,jn such that
1<ji<...<jn<mand s, 2emsti, foralll <i < n.

Kruskal’s theorem states that if & is a wgo on F then >...; is also a wgo on T(F, X). Con-
sequently any relation containing the embedding relation is well-founded. Previous versions
of >,,, fall within this category. For definition 3.3 this does no longer hold: in the example
above we have fy(b,a) >.ms fi(a), however fo(b,a) #,p0 fi(a).

A way of dealing with orders for which Kruskal’s theorem is not applicable is given in [6].
Well-foundedness of >,,, can be derived from results presented there. Nevertheless here we
present a proof of well-foundedness of >,,, inspired by the proof of Kruskal’s theorem itself as
presented in [7, 14] and closely following [6]. We should emphasize that the proof given does
not rely on Kruskal’s theorem and is therefore simpler if you consider the degree of difficulty
involved in Kruskal’s theorem itself.

Theorem 3.5 Let > be a quasi-precedence over F and T a status function such that condi-
tions (2) and (8) are satisfied. Then >,,, is well-founded over T(F,X) iff & is well-founded
over F.

roofFor the if part, let > be a well-founded quasi-precedence over F and 7 a status function
such that conditions (2) and (3) are satisfied. We first extend > to a total well-founded
quasi-order >’ such that ~' = ~. This is done in the "usual” way: using Zorn’s Lemma we
extend the well-founded partial order >3 over F/~ to a total well-founded partial order >’
over F/~. Then >' and ~ are compatible and >’ (with ~' = ~), is total and well-founded

3Ttself a natural extension of &> to F/~ that we abusively denote equally.



over F, where as expected ' is defined as Vf,g € F: f b’ g <= (f) >' (9). The reason
why we require that ~' = ~ is to avoid problems with the status of equivalent symbols, i. e.
to guarantee that conditions (2) and (3) still hold for the extended quasi-precedence.

Since B>’ is total and well-founded, every extension of it is well-founded, hence >’ is a wqo
over F. Suppose now that >,,, taken over this total well-founded quasi-precedence, is not
well-founded. Take then an infinite descending chain

to >rpo t1 >rpo t2 Srpo
minimal in the following sense:
e |to] < |s0], for all infinite chains so >rpo 51 >rpo * "
o |tiy1| < |siy1], for all infinite chains sg >rpo 851 >ppo - *y such that ¢; = s; for0 < j < i+l

where |t| represents the number of function symbols occurring in ¢.
We remark that no proper subterm of a term ¢;, ¢ > 0, in the above chain, can initiate an
infinite descending chain; for, suppose u; is such a subterm, then the chain

tO >'rpo e >'rpo ti—l >rpo 'U,; >rpo (51 >'rpo e

will be an infinite descending chain contradicting the minimality of (£;):>o (since |u}| < |ti]).

Let root(t) be the head function symbol of the term ¢t. We see that there is no infinite
subsequence (ts(i))izo Of (£:)i>o such that root(ty)) ~ root(ts;)), for all 7,5 > 0. Suppose
it is not so and let (¢4(;))i»0 be such a subsequence. Due to condition (2), all root symbols
in this sequence have the same status (either mul or lez). By definition of >,,,, and since
to(i) >rpo te(i+1), for all 4 > 0, we must have

args(t¢(0)) > rpos,r args(t¢(1)) >rpos,r "7

where args(t) are the proper subterms of t. From lemma 3.1 or 3.2, we conclude that >,

is not well-founded over UArgs(td,(i)) (where Args(t) is the set of proper subterms of t),
>0

contradicting the minimality of (t:)i>o0-

Consider the sequence (root(t;));>0. This sequence is infinite and since I’ is a wgo over
F, an infinite subsequence (r00t(t4(;)))iso Of (root(t;))izo exists such that root(ts(i+1)) &'
r00t(t4(s)), for all 4 > 0. But since every ~-equivalence class appears only finitely many
times in the sequence (root(t;)):>0, We can say without loss of generality that the subsequence
(100t (ts(i)))izo fulfils Toot(tgis1)) D' T00t(t4(s)), for all i > 0% But tga) >rpo teirn) (for all
i > 0), then, by definition of >,,,, both ¢4 and ty41) are not constants and we must have
Up(s) >rpo La(i+1) OF Ug(i) ~rpo Lo(i+1), fOr SOME Uy(;) € Args(tsiy). In both cases a contradiction
with the minimality of (¢;);>o arises.

Well-foundedness of >,,, over the original quasi-precedence > follows from the fact that
>,p0 IS monotone with respect to precedences (since >’ is an extension of ).

For the only-if part, suppose that >, is well-founded over 7(F,X) and that & is not
well-founded on F. Let fo > fi > «-- be an infinite descending sequence in F. This sequence
does not contain an infinite subsequence consisting only of constants, since if (fy(;))i>0 would
be such a sequence, we would have fs0) >rpo fo(1) >rpo -+ +, cOntradicting the well-foundedness

4Strictly speaking there is a subsequence of (root(t4(;)))i>0 With this property.



of >,,,. Let then (f4(;))i>0 be an infinite subsequence of (f;)i»o such that arity(fyu)) > 1, for
all 1 > 0. Let z be any variable. By definition of >,,,, we conclude that

fo)(Zy -1 T) Srpo fo)(@y- ooy T) Srpo -

contradicting the well-foundedness of >,,.

Another approach to prove well-foundedness of our version of >,,, is the following. Every
function symbol with status lez has its arity augmented to the maximal arity associated
with its equivalence class. The new arguments are filled with a dummy constant. By this
construction all function symbols in the same equivalence class are forced to have the same
arity, hence the old version of >,,, is applicable, provided we change the status function
consistently. Well-foundedness of our version of >,,, then follows from well-foundedness of
previous >,,, versions. However the classical proof of this well-foundedness makes use of
Kruskal’s theorem.

The following TRS’s

f,z) — g(0,z,2)

9(z,1,y) — f(z,0)
and

a = g(c)

g(a) - b

flg(z),0) — fla,2)

are totally terminating. Just take quasi-precedences > and status function 7 satisfying 10,
f ~g, 7(f) = 7(g) = lex14, for the first TRS, and a> g, abc, a ~ b and 7(f) = mul, for the
second TRS. Earlier versions or >,,, fail to prove termination of these TRS’s: for the first
TRS we cannot choose f I> g nor g > f nor uncomparability of f and g, and if f ~ g, the
status of these symbols cannot be the multiset status.

Theorem 3.6 Given a TRS R, suppose > is a well-founded quasi-precedence over F and T
is a status function such that conditions (2) and (3) are satisfied. If I >,,, v for every rule
l - 7 € R then R is totally terminating.

Proof We give a sketch of the proof. In order to establish total termination of R we need
to define a total well-founded monotone algebra. For that we choose T(F)/~,,,, where
~rpo 18 the congruence associated with >,,,. If 7 does not contain any constant, we
introduce one to force 7(F) to be non-empty. With respect to the quasi-precedence >,
the relative order of this new element is irrelevant and does not influence the behaviour of
>,p0. We extend > to a total well-founded quasi-precedence B>t such that the equivalence
part remains the same (done using Zorn’s lemma as described in the proof of theorem
3.5) and consider >,,, over this extended quasi-precedence. By theorem 3.5, we know
that >,,, is well-founded, and as remarked before >,,, extended to T(F)/~p, is total
and well-founded. In A = (T(F)/~rpos >rpo) We interpret the function symbols of F
by fa({s1)y-- s (Sarity(s))) = (F(S15- - - Sarity(s)))- Since ~,,, is a congruence f, is well-
defined. The interpretation function [ ] : T(F, X) x A¥ — A is given as usual.

Since A is total and well-founded, the only condition we need to check to establish total
termination is compatibility with the rules of R. It can be seen, by induction on ¢, that

Vte FV1T € AY: [t,7] = (to)



where ¢ is any ground substitution satisfying o(x) € 7(z), for all z € X. Note that
the class (tg) does not depend on the choice of . Let I — r be a rule in R and let
7 : X = A be an assignment. Let ¢ be a ground substitution satisfying o(z) € 7(z) for
all z € X. Since >,,, is monotone with respect to quasi-precedences and by hypothesis
| >,po T, With >,,, taken over >, we also have | >,,, r, where now the >,,, is based
on the total quasi-precedence >*. Consequently (I, 0) >,,, (r,0), thus [, 7] >.p [r, 7],
and we conclude that R is totally terminating , with 7(F)/~., as total well-founded
monotone algebra. O

The Knuth-Bendix order uses the concept of weight function.
Let ¢: FUX — IN be a function such that

=¢o>0 iffeX
P(f)is ¢ = o if arity(f) =0
>0 if arity(f) =1

We extended ¢ to terms as follows: ¢(f(s1,...,5m)) = o(f) + iQS(si).
=1

Let #.(t) denote the number of occurrences of variable x in term t. The Knuth-Bendix
order with status is defined as follows ([16]).

Definition 3.7 (KBO with status) We say that s > t iff Y € X : #,(s) > #.(t) and
1. ¢(s) > 4(t) or
2. ¢(s) =o(t), s= f(s1,...y8m), t=9g(t1,...,t,) and
(a) f>gor
(b) f~g and s1,...,8m >kbos,r t1y++yln
Knuth-Bendix order has properties similar to >,,, (see [16]), namely it is a partial order
closed under substitutions and contexts and monotone with respect to quasi-precedences.

The order >, can be used to define a congruence ~y,;, over T (F,X) as follows: § ~pp, ¢
if s=tors=f(s1,...,8m), t =g(t1,...,ts), f ~ g, m=n, ¢(s) = ¢(t) and either

o 7(f) = mult and s; ~po tx(s), for any 1 < 1 < m, where 7 is a permutation of {1,...m};
o 7(f) =lex,,, 7(g9) = lex,, and sx (i) ~kbo tr,(i) forall1 <i <m.

It can be seen that ~y;, is indeed a congruence i. e. a reflexive, symmetric and transitive
relation, closed under contexts. Further ~, is also closed under substitutions and it is not
difficult to see that >, and ~y, are compatible, so we can extend >4, to T (F, X)/~kbo
in the usual way. As with >,,,, given a total quasi-precedence over F, >, is total over
T(F)/~po. As for well-foundedness we have

Theorem 3.8 Let > be a well-founded quasi-precedence over F and T a status function such
that condition (2) is satisfied. Then >y, 1s well-founded over T(F,X).

This theorem can be proven in a way similar to theorem 3.5. Notice that condition (3) is

not necessary since the use of the weight function ensures that the lexicographic extension is
well-founded.

10



Theorem 3.9 Given a TRS R, suppose > is a well-founded quasi-precedence over F and 7
is a status function such that condition (2) is satisfied. Let ¢ be a weight function. Ifl >y 7
for every rule l — v € R then R is totally terminating.

Proof (Sketch) We proceed in a manner similar as for >,,,. Namely we extend the well-
founded quasi-precedence > to a total one whose underlying equivalence is the same,
and take >, over this total well-founded quasi-precedence. As total well-founded
monotone algebra we choose T(F)/~s,° and interpret the function symbols of F in
the same way. It is not difficult to see that all requirements of total termination are
met. [

4 Proving non-total termination

From theorem 2.3 we know that a TRS R is totally terminating if and only if RU Emby is
totally terminating. So if R U Embs is non-terminating then R is not totally terminating.
A next step is context removal: if C[t] =} C[u] then R is totally terminating if and only if
RU {t — u} is totally terminating.

A first rough attempt to characterize total termination resulted in the following definition.

Definition 4.1 Given a TRS R we define the relation > C T(F) x T(F) as follows: s> iff
s#t and (RUEmMbs U {t — s}) is not terminating.

It is not difficult to see that > has the following properties:
e if C[s]> C[t], for any ground context C[], then s> ¢.

hd _Y}*iUSmb;--g >

e D is in general not transitive.

Given a binary relation 0 over a set A, not necessarily transitive, we say that 6 is well-
founded if there is no infinite chain (a;)ien such that a;fa;.,, for all i € IN.

The connection between this relation and total termination is given below. First we need
an auxiliary result.

Lemma 4.2 (F, X, R) is totally terminating if and only if (F U {L}, X, R) is totally termi-
nating, where L is a constant not occurring in R.

Proof For the if part, since (FU{Ll}, X, R) is totally terminating there is a total monotone
algebra compatible with (F U {1}, X, R). The same algebra is obviously compatible
with R.

For the only-if part, we take a total monotone algebra compatible with R and define
the interpretation of L to be an arbitrary element of the algebra. The interpretations
of the other symbols do not change. It follows that this algebra is compatible with
(F U {Ll}, X, R), proving its total termination. J

Theorem 4.3 If a TRS R is totally terminating then > is well-founded.

5If F is empty, we add a dummy constant to it and assign weight ¢o to that constant.
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Proof Suppose R is a totally terminating TRS. By theorem 2.3, RU Embr is also totally
terminating. Without loss of generality, we can assume that T(F) # 0, since by lemma
4.2 and theorem 2.3, adding a constant to F does not change the total termination of
both R and RU Emby. By theorem 2.4, there is a strict partial order > over T (F),
total and well-founded, and such that:

e lo > 7o, for any rule [ = r € RUEmby, and any ground substitution o.

e > is closed under ground contexts.

We will prove that > C >.Then well-foundedness of the later relation will yield well-
foundedness of the former relation. Suppose then that s> ¢, with s,t € T(F) and s # ¢.
Since > is total on T(F), we have either s > tort > s . If t > s, we will see that
RUEmbsU {t — s} is terminating (in fact that it is totally terminating), contradicting
s>t We remark that > has the property to > so, for any (ground) substitution o,
since being s and ¢ ground terms implies that to = ¢ and so = s. Consequently we can
apply theorem 2.4 on the opposite direction to conclude that RU Embr U {t — s} is
totally terminating. O

The relation > can be used to prove that a system is not totally terminating, as the next
example shows. Consider the TRS

flg(z)) — f(f(z))
9(f(x)) — g(9(2))

The first rule combined with f(c) — g(c), where ¢ is an arbitrary constant, gives a non-
terminating system, hence g(c) > f(c). Similarly the second rule combined with glc) = f(¢)
results in a non-terminating system, hence f(c) > g(c). Consequently > is not well-founded
and the system cannot be totally terminating.

The converse of theorem 4.3 does not hold, even if only constant and unary function
symbols are allowed. Let R be:

fla@) — f@)
g(g(®)) — g(co)
fleo = f(g(a))

Suppose R is totally terminating and let (A,>) be a total well-founded monotone algebra
compatible with R. The first rule tells us that [a] > [6]. Then monotonicity of the algebra
operations and compatibility with the rules give us [g(b)] > [¢] > [g(a)] > [g(b)], which is a
contradiction.

We now give a sketch of the proof of well-foundedness of b. Define the following weight
function p : T(F) = IN by

e p(a) = p(b) =1; p(c) =2
o p(p(t)) =1+ p(t), for any t € T(F), p € {f, g}-

It is easy to see that for any ground substitution o and any rule { — r, we have
e p(lo) = p(ro),ifl > r € R.

e p(lo) > p(ro), if | = r € Emby.

12



Furthermore p is closed under ground contexts.
The following fact is also not difficult to prove:

s>t = p(s) > p(t)

As a consequence > \ =, is well-founded, where =, is the equivalence relation generated by p,
i. e. for any t,s € T(F), t =, s <= p(t) = p(s).

It is well known that given a ground TRS, if the system is not terminating then it contains
a rule ! — r such that r admits an infinite reduction. Using this fact we can derive that (a, b)
is the only pair in > of size one and that (g(b),c),(c,g(a)) are the only pairs in b of size two
involving ¢. Also g(a) § g(b).

We see now that g(u) Af(v), for any ground terms u,v such that p(u) = p(v). Suppose
that is not so, i. e. there are terms u,v € T(F) with p(u) = p(v) and g(u) > f(v). This
means that the TRS RUEMbrU {f(v) = g(u)} is not terminating. Since for any rule in this
TRS and any ground substitution o we have p(lg) > p(ro), p is closed under contexts and IN
is well-founded, we can conclude that if this TRS admits an infinite reduction then so does
R, = RU{f(v) = g(u)}, and since R, is a ground system, at least one rhs of a rewriting rule
admits an infinite reduction. With a bit of case analysis it is possible to see that no reduction
rule has a rhs leading to an infinite reduction, giving a contradiction.

Suppose then that > N =, is not well-founded and take an infinite chain ¢, > %, >..., such
that the size of the chain, given by n = p(t;) = p(¢;), for any ¢, j, is minimal. Since (a, b) is the
only pair in b of size one, it must be n > 2. If n = 2 and ¢ occurs in the chain, its occurrence
has to follow the pattern g(b) > c> g(a) or ¢> g(a). But from what we have seen g(a) 4 t, for
any t € {c,g(b), f(a), f(b)}, which are all the possible terms of size two. Therefore the chain
stops at g(a) and cannot be infinite. Consequently any infinite chain of size n > 2 cannot
contain ¢. So the head symbol of #, has to be either f or g. If the head symbol never changes
then the chain is of the form

p(ty)>p(ty)>...opt)o...

where p € {f,g}. By eliminating the head symbol, we get an infinite chain (¢;);ew with
a strictly smaller size, contradicting the minimality of (¢;);e;v. So the head symbol has to
change infinitely many often and that contradicts the fact that g(u) § f(v), for any terms
u,v € T(F) with the same weight. As a result > N =, is well-founded and so is b.

Furthermore > is not complete even for string rewriting systems. If we modify slightly
the TRS above we can get a string rewriting system R not totally terminating and such that
R U Emby terminates and is > is well-founded. In fact the following system

f(h(z)) = f(k(z))
9(g(k())) — g(i(x))
f@) - flg(h(x)))

is a string rewriting system in those conditions. For proving termination of R U Embr we
choose as monotone algebra A = IN x ({0,1} x IN) with the order > defined by

(a,(z,n)) = (b,(y,m)) < (a>bor(a=band z =y and n > m))

13



where > is the usual order in the natural numbers, and the interpretations

ka((a,(z,n))) = (a+1,(1,n)) for z € {0,1}
ha((a,(z,n))) = (a+1,(0,n)) for z € {0,1}
ial(a,(z,n))) = (a+2,(0,n)) for z € {0,1}

_ (a+1,(0,3n+1)) ifz=0
falla, (@,n))) = (a+1,(0,n)) otherwise
(a+1,(1,n)) ifz=0

94((a: (z,n))) (a+1,(1,2n+ 1)) otherwise
It is not difficult to see that these functions are strictly monotone and that foreverya: X - A
and every rule [ =& 7 € RUEmbg, [l,a] > [r,a}. The system cannot be totally terminating
since for any possible total interpretation we would have is(a) > ga(ha(a)) > ga(ka(a)) >
ia(a), for any algebra element a. For the well-foundedness of > we proceed as in the previous
example (with substantially more case analysis).

The next step was based on the following observation: if Co[t] =} C;[u] and Ci[t] =% Co[u]
then adding ¢ — u to R still does not affect total termination. These ideas were combined in
the following definition.

Definition 4.4 Given a TRS R we define the relation > C T(F) x T(F) as follows: s > t if
o saftors—af, t
o s=Cla)l andt =C[b] anda > b

e for some n > 0, there are contexts Cy |,...,Cn[ ] such that Co[ | = C,[ ] and C;[s] >
Ci1[t], for each 0 < i < n,

e eT(F): s>uandu>t

The relation > is a bit more elaborate than > but a similar result as theorem 4.3 holds for
»>. Again we need some auxiliary results.

Lemma 4.5 Suppose R is totally terminating and let (A, >) be a total well-founded monotone
algebra compatible with R. If s,t € T(F,X) and [s,0] > [t,0], for some 0 € A%, then
[C[s], o] > [C[t], o], for any contezt C| |.

Proof We proceed by induction. The assertion holds for the trivial context O by hypothesis.
Suppose it also holds for a context C’[ ]. Then

[f(...,C"s),...),6] = (by definition of [ ])
fa(...,[C']s],0),...) > (by IH and monotonicity of f4)
falo.,[C'[t],0),...) > (by definition of [ ])
[7(...,Cl¢, .. ), 0]

|
Lemma 4.6 Let (A, >) be any total well-founded monotone algebra compatible with R. Then
C[s] >a C[t] = s >4 t, for any terms s,t and context C| ], where >, is the order over terms

induced by (A, >). Furthermore if (A,>) is also compatible with Embz, then C[s] >4 s, for
any non-trivial context C[ ] and term s.
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Proof Let then C[s] >4 C[t]. We have to see Vo € A* : [s,0] > [t,0]. Suppose
3r € A* : [s,7] # [t,7]. Due to the totality of >, this means that [s,r] < [¢,7]. By
lemma 4.5 we have [C[s], 7] < [C[t], 7], contradicting C[s] >4 C[t]. So s >4 t.

Suppose now that A is compatible with Embr. Let C[s] = f(t1,...,8,...,t,), With
s occurring in position 4, 1 < ¢ < n. Since f(...,z;,...) = z; is a rule in Emby,
compatibility ensures that f(...,z;,...) >4 z;. We define a substitution 7 : X —

T(F,X) by
t; if x = z;, for some j # 1
Tx)=q s fr=u
x otherwise
Since >4 is closed under substitutions, we have C{s| = f(zy,...,2,)7 >4 7(z;) = s.

Suppose C'[s] >4 s for some context C'[ ]. Since >4 is closed under contexts, we get
fy ., Cs)y oo ytn) >a f{t1,. 048,00 ,t0). But f(t1,...,8,...,t,) >4 8, so transi-
tivity of > 4 yields the result. O

Theorem 4.7 If R is totally terminating then > is well-founded.

Proof Due to lemma 4.2 we can assume without loss of generality that F contains at least
one constant, so 7(F) is not empty. Since R is totally terminating, from theorem 2.3
we know that R U Emby is also totally terminating. By theorem 2.4 we know there is
a total well-founded order > over T(F) such that:

e lo > ro, for any rule | = r € RU Emby and any ground substitution o.

e > is closed under ground contexts.

We will see, by induction on the definition of >, that s > ¢t = s > t. Well-foundedness
of > will then yield the result. Suppose that s > ¢, for some terms s, .

o If s =% tor s =f,,, t, since > is compatible with RUEmbzr we have =% ¢, € >
and therefore s > t.

o If s = Cla], t = C[b] with @ > b and a > b (by induction hypothesis) then s > ¢,
since > is closed under ground contexts.

e If s > t because for some n > 0, there are contexts Cy[ ],...,Cy,[ ] such that
Co[ ] = C,[] and for each 0 < i < n, C;[s] > Ci;1[t], then by induction hypothesis
we have Cy[s] > Ci[t],Ci[s] > C:[t], etc. . Since > is total either s > t or ¢t > s.
Suppose that ¢t > s. Using the induction hypothesis, the fact that > is closed under
ground contexts and its transitivity, we get

Cols] > Cilt] > Ci[s] > Caft] > ... > Cylt] > Cu[s] = Cy[s]

contradicting well-foundedness of >; therefore s > ¢.

e Finally if Ju € T(F): s > uw and u > ¢, then also by induction hypothesis s > u
and u > t and transitivity of > gives the result.
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The previous result can be used to show that a TRS is not totally terminating and in
particular that it cannot be proven terminating by any >,,, (or >ks,). For example let R be:

p(f(f(2))) = (£ (g(=))) p(g(9(x))) = a(9(7(x)))
¢(f(f(2))) = p(f(9(2))) q(g9(g(2))) = p(9(f()))

This system (actually R U Emby) is terminating (in each step the number of redexes de-
creases) but not totally terminating. Let ¢ be a constant, then from the leftmost rules we
get p(£(f(c))) > q(f(g(c))) and ¢(f(f(c))) > p(f(g(c))) and consequently f(c) > g(c) (with
Cy = p(f(0)) = C;, and C; = ¢(f(0))). Similarly using the rightmost rules we get g(c) > f(c);
therefore > is not well-founded and so R cannot be totally terminating.

One can wonder whether the reverse of theorem 4.7 holds. This is not the case. For
example one can prove that the system?®

£(0,a) = f(1,b) h(1,a) — h(0,b)
9(0,b) = ¢(1,a) k(1,b) — k(0,a)

is not totally terminating while > is well-founded. To see this note that > coincides with
—Ruemby and RUEmby is terminating since in each R-rewriting step the number of redexes
decreases and R is length-preserving (for every rule the length of the lhs equals the length
of the rhs). It is easy to see that the interpretations of a and b (or 0 and 1) have to be
incomparable and so the system is not totally terminating.

It is also interesting to remark that we can prove that the TRS’s presented in connection
with the relation > can be proven not totally terminating using >. For example for the TRS

f(h(z)) = f(k(z))
9(g9(k(=))) — g(i(z))
fz) - flg(h(2)))

given an arbitrary constant ¢, from the definition and properties of > we can derive g(k(c)) >
i(c) > g(h(c)) = k(c) » h(c). From the first rule we get h(c) > k(c), so > is not well-founded.
It is not clear whether the reverse of theorem 4.7 holds for string rewriting systems.

5 A complete characterization

The results presented so far apply to TRS’s over finite or infinite signatures. In this section
we assume that F is finite.

As we saw the characterization of section 4 is not complete. One can wonder whether
completeness can be obtained by adding purely syntactical rules to definition 4.4. We did not
succeed, but closely related we arrived at the following result. As in theorem 2.4 we assume
that 7(F) is non-empty (again lemma 4.2 justifies that assumption).

Theorem 5.1 A TRS R is totally terminating if and only if there ezists a strict partial order
> on T(F) satisfying

1' _)Eué‘mb}- g >>'

2. > 1is closed under ground contexts.

5Due to U. Waldmann.
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3. if for some n > 1, contests Dy[ |,...,D.[ | and terms sg,...,8n-1,t0,---,tn € T(F)
ezist such that Dy[ ] = D[], to = tn and for each 0 < ¢ < n, D;i[s;] 3> Diy1[tiy1], then
$; > t;, for some 1 € {0,...,n — 1}.

Proof For the only if part since R is totally terminating so is R U Embs (theorem 2.3).
By theorem 2.4, there is a total well-founded order > over 7 (F), closed under ground
contexts and verifying lo > ro, for any rule [ = r € RUEmby and ground substitution
o. Consequently > satisfies conditions (1) and (2). We check that > also satisfies (3).

Suppose that for some n > 1, there are terms so, . . . , Sn—1, %0, . -, tn € 7 (F) and contexts
Col],...,Cn[] such that Cy[] = C,[], to = t, and foreach 0 < i <m, Ci[s:] > Cialtiza)
We have to see that there is an index i € {0,...,n — 1}, such that s; > t;. Suppose no
such index exists, then Vj € {0,...n — 1} we have t; > s;, since > is total. From the
hypothesis and the fact that > is closed under ground contexts, we get

Colso] > Ci[ts] > Ci[s1] > Calta] > ... > Culta] = Colto] > Colso]

which is a contradiction. Since > fulfils all the conditions of the theorem, the result
holds.

For the if part, suppose there is an order > fulfilling conditions (1) — (3). Let Zr denote
the set of all partial orders over T(F) satisfying those conditions, and which is non
empty by hypothesis. We order Zg by C, the strict set inclusion and will see that in
this poset every chain has an upper bound. Then by Zorn’s lemma, Zx has a maximal
element.

Let then 6, C 6, C...C 60, C ..., be achain in Z and let © = |_|0,-. We shall prove

€N
that © € Zg. Irreflexivity and transitivity of © are not difficult to check. It is also easy
to check that © fulfils conditions (1) and (2).

For condition (3), suppose that for some n > 1, there exist contexts Co[ |,...,Chnl[ ]
and terms Sg,...,Sn—1,t0;+++,tn € T(F) such that Cy[ | = Co[ ], to = t, and for
each 0 < i < n, Ci[s;] © Ciy1[tiz1]. We have to see that s5,0t;, for some index ¢ €
{0,...,n — 1}. For each pair (Ci[s;], Ci+1[ti+1]) € © there is an index k; € IN such that
(Ci[s,-],CiH[t,-H]) € eki‘ Take k = max{ko, ey kn—l}, then (Ci[Si]’Ci-f-l [ti+1]) € Bk, for
all 0 < i < n. Since 6, satisfies condition (3), we conclude that 3 € {0,...,n —1} such
that s,;0,t; and therefore s;0t;.

We have seen that every chain in Zg is majorated in Zg. Since Zp is not empty, we
can apply Zorn’s lemma to conclude that Zg has a maximal element that we denote by
©,,. The last main step of our proof is to show that ©,, is a total order over 7 (F).
We proceed by contradiction. Suppose there are two ground terms p # g such that
(p,q),(q,p) & ©. Consider the relation

T = (0,, U{(C[p],C[q]) : C[] is any ground context })*

By definition Y is transitive. For irreflexivity, suppose that there is a ground term a
such that aYa. Then one of the following three cases must hold:

1. a©,,a
2. Clp] = a = Clq]
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3. for some n > 0, contexts Cy[ ], ..., C,|] exist such that a©,,Cq[p], C;[q]©mCit1[p],
for 0 <i < n, and C,[q|Ona

In the first two cases we immediately get a contradiction since ©,, is irreflexive and
p # q. The last case is an instance of condition (3) with Dy = O, sg = a = tg = tnt1,
s; =qand t; = p, for all 1 < < n. Since ©,, satisfies the aforementioned condition, we
have that either a©®,,a or ¢©,,p, contradicting either irreflexivity of ©,, or the choice of
p and q.

We check that T is closed under ground contexts. Suppose that sT¢ for some ground
terms s,t, and let C[ ] be any ground context. As for irreflexivity we have to distinguish
three cases, namely

1. s6,,t
2. s = DI[p| and ¢t = D|g}, for some ground context D] |
3. for some n > 0, contexts Cyf ],...,C,[] exist such that $0,,Co[p], Ci[q]©nCis1[p),

for 0 < i < n, and C,[q|Ont

In the first case we can conclude that C[s]©,,C[t]. In the second case we have C[s] =
C[D|p]] and C[t] = C[D|g]]- In both cases we conclude that C[s]YC[t]. For the last
case, since ©,, is closed under ground contexts, we derive

C[s] O ClColpl], CCilal] ©m ClCisalpl], for 0 < i < n, and C[Cylg]] Om Clt]

Again we have an instance of condition (3), with Dy = 0O, s = C|[s], to = C[t] = t,t1,
and s; = gand t; = p, for all 1 < 7 < n. Since O,, satisfies the condition, either
C[s]©,C|t] or ¢Omp. In the first case we get the desired result and in the second we
have a contradiction.

We finally check that Y satisfies condition (3). Suppose then that for some n > 1
there are contexts Fy[ |,...,F,[] and terms wo,...,%n_1,%,...,V, such that Fy = F,,
to = t, and Fi[u;] Y Fiyq[vig1], for 0 < i < n. We want to conclude that u;Yv;, for some
0 <4< n. Fix any 0 < i < n. Then since F;[u;] T Fiy;[vi41], there is k; > 0 and there
are ground contexts Ci[ ],...,Cy,[ | such that

* Fjlu] 6, Ci[p]

* C][q] @m Cj+1[p], for 1 S] < k,‘

* Cilg] Om Fipalvis]
Again we have an instance of condition (3) with

en=k+1

e Dy=D,=0

o 5o = Filu], to =t, = Fipqviqa], and s; =qand t; = p, for 1 < j < k;
So we conclude that F;[u;|©,,F;;;[viy1] or ¢©,,p. Since the last case gives a contradic-

tion, the first must hold. Given the arbitrariety of ¢ and since ©,, satisfies condition
(3), we conclude that 30 < j < n: u;0,,v;, implying u;Yv;, as we wanted.

We have seen that T € Zi and since T is strictly bigger that ©,,, this contradicts the
maximality of ©,,. Therefore ©,, is total on 7(F). Since ©,, contains the embedding
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relation (= rugms, C Om) and F is finite, by Kruskal’s theorem ©,, is well-founded so
we can apply theorem 2.4 to conclude that R is totally terminating. O

Although this result yields completeness, it is not easy to apply for proving that a particular
TRS is not totally terminating, in contrast to the result of section 4.

The type of orders described in theorem 5.1 are not necessarily total, but combining this
result with theorem 2.4, we see that existence of a total well-founded order compatible with a
TRS R is equivalent to the existence of a compatible order of the type described in theorem
5.1, so we can say that this results provides another characterization of totality.

6 Conclusions

In this paper the notion of total termination is treated syntactically in two ways. On the
one hand we analyzed how total termination covers precedence based orderings like recursive
path order. Surprisingly this led to a slight generalization of versions of recursive path order
as they appeared in the literature and to a new proof of well-foundedness. Only after this
generalization could we prove total termination.

On the other hand we tried to find a syntactical characterization of total termination of the
following shape: if a TRS is totally terminating then some syntactically defined relation is well-
founded. This led to a method of proving non-total termination: if the constructed relation
admits an infinite descending chain then the TRS is not totally terminating. The converse
is not true: we constructed TRS’s for which the constructed relations are well-founded while
the TRS’s are not totally terminating. Finally we found an ”if and only if’-characterization
of total termination covering the previous constructions. However, this characterization is
not of practical use to determine whether a given TRS is totally terminating or not.
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