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Abstract

Bayesian belief network learning algorithms involve three basic components: a quality
measure of a network structure given a database, a search heuristic aiming at finding the
best network structures, and a method for estimating probabilities from the database.
This paper addresses quality measures.

The behavior of the Bayesian measure of Cooper and Herskovits and a minimum
description length (MDL) measure are compared with respect to their properties for both
limiting size and finite size databases. It is shown that both measure behave the same for
infinite size databases and that both measures prefer minimum I-maps overwhelmingly
over non minimum I-maps.

For finite size databases, it is shown that the MDL measure will not select network
structures with parent sets of size log N where N is the size of the database. However,
the Bayesian measure may select parent sets as large as N/2.

1 Introduction

The framework of Bayesian belief networks offers a mathematically sound formalism for repre-
senting uncertainty in knowledge-based systems. Efficient algorithms are associated with the
formalism for making inferences with knowledge represented in a belief network, [7, 10, 11].
In addition, the framework has proved its practical worth over the last few years, [1, 2, 13].
However, constructing belief networks with the help of human experts is a time-consuming
and expensive task. Since more and more large databases of cases become available, auto-
mated learning algorithms can help shorten the build and test cycle of a belief network by
suggesting an initial set-up. Therefore, learning belief networks from data is an important
research issue. In fact, a lot of research effort has been spent on the design of methods
for learning Bayesian belief networks from different perspectives such as computer science,
statistics, and philosophy.

An algorithm for learning Bayesian belief networks involves three components: a quality
measure for comparing network structures, a search heuristic for finding the best network
structure given the database of cases, and an estimation method for learning the probabilities
for the network from the database.

This paper addresses quality measures only. One of the most promising to date is a
measure based on a Bayesian method proposed by Cooper and Herskovits, [5]. However,
measures based on the minimum description length (MDL) principle are rapidly gaining



popularity, 3, 9, 14, 15]. We investigate the behavior of the measures proposed by Cooper
and Herskovits and a measure based in the MDL principle both for databases of infinite size
and for databases of finite size.

In the next section, we give a short introduction to terms and notations used in the
remainder of this paper. Section 3 is devoted to the properties of quality measures that
we just mentioned. We conclude with some final considerations and directions for further
research.

2 Preliminaries

In this section, we define some terms concerning Bayesian belief networks and some notational
conventions that will be used throughout this paper.

Let U be a set of n discrete variables denoted z;, i = 1,...,my n > 1, that is U =
{z1,...,2,}. Each variable #; may take a value in the range {Z;1,...,%i}, 7 > 2,4 =
1,...,n. We will use capital letters to denote sets of variables and lower case letters to denote
single variables. To prevent an abundant usage of braces, we sometimes write 2 to denote
{z}, XY to denote X UY, and zy to denote {z,y}. In the sequel, we will assume that every
variable is an element of U and every set of variables is a subset of I/ unless stated otherwise.

A Bayesian belief network B over a set of variables U is a pair B = (Bs, Bp). The network
structure Bys is a directed acyclic graph (DAG) with a node for every variable in U. Bp is
a set of conditional probability tables; for every variable z; € U, Bp contains a conditional
probability table with probabilities P(z;|r;) for all values of z; given all combinations of
values for the variables in ;’s parent set r; in the network structure Bg; in the sequel, such
a combination of values will be called an instantiation. The Jjoint probability distribution
represented by this network is [], ., P(z|r,), [11].

In a network structure Bg, a trailis a path in the underlying undirected graph of By, that
is, the direction of the arcs is immaterial. A head-to-head node in a trail in Bg is a node 2
such that a sequence # — z « y is part of the trail. A trail in Bg between two nodes z and
y is blocked by a set of nodes Z if at least one of the following two conditions holds:

e the trail contains a head-to-head node z such that z nor any descendant of z is in Z;

o the trail contains a node z such that ¢ € Z and z is not a head-to-head node in the trail.
In a network structure By, we say that the set of nodes X is d-separated from Y given Z if
every trail between any node ¢ € X and any node y € Y is blocked by Z.

For a joint probability distribution P over U, we call the sets of variables X and Y
conditionally independent given a set Z, written I(X, Z, Y), if P(XY|Z) = P(X|Z)P(Y|Z)
for all instantiations of XY Z. A statement I (X,Z,Y) is called an independency statement.
Let P be a joint probability distribution over a set of variables . Then, an independency
model M of a distribution P is the set of all independency statements that hold in P.

For an arbitrary probability distribution, the first four of the axioms below apply [6]; for
positive distributions, the fifth axiom applies as well.

symmetry I(X,Z2,Y) & I(Y,Z,X)
decomposition I(X,Z,WY) = I(X,2,Y)
weak union I(X,Z,WY) = I(X,ZW,Y)
contraction IX,ZW,Y)NI(X,Z,W) = I(X,Z, wWY)
intersection I(X,ZW,Y) AN I(X,ZY,W) = I(X,Z,WY)
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These axioms can be used to derive new independency statements from a given set of inde-
pendency statements.

A network structure B is an independency map or I-map of a distribution P if X and ¥
being d-separated by Z in By implies that I(X, Z, Y) holds in P. Bg is a minimal I-map of
P if Bs is an I-map of P and no proper subgraph of Bg is an I-map of P. By is a perfect
map or P-map of P if it is an I-map of P and I(X, Z,Y) holding in P implies that X and Y
are d-separated by Z in Bg.

Let <y be a total ordering on U. Let M be the independency model of a joint probability
distribution P over U. A causal input list L., over M is a set of independency statements
such that for each z; € U, the set L, contains one and only one independency statement of
the form,

I(z;,m, U\ ;)

where U; = {yly € U, y <y x;} such that I(z;,m;,U;\;) holds in M and for any proper
subset S of m;, I(x;,5,U;\S) does not hold in M. A causal input list can be constructed from
M in O(|UJ*) consultations of M. Corresponding to a causal input list L., over M, Bg_
is a network stucture such that each node z; has parent set 7;, i = 1,.. .,n. This network
stucture Bs,_ is a minimal I-map of P, [12].

We say that a network structure By obeys a total ordering <y on U if for each arc z; — T;
in Bs we have that z; <y z;. So, <y is a topological ordering of Bj.

A case over U is a value assignment to all variables z; € U. A database D of cases over U
is a list of cases over U.

3 Quality Measures

The task of learning a Bayesian belief networks B is twofold: learning the network structure
Bs and learning the set of probability tables Bp. The latter task will be addressed in another
paper. Here, we investigate learning network structures.

In learning a network stucture, network stuctures have to be compared to decide the ‘best’
structures given the database. To this end, we use a quality measure indicating the fitness
of the network structure to the database: the better the network describes the database,
the higher the quality. The basic idea is that a network structure that has a higher quality
according to the measure employed is preferred over a network structure with lower quality.
In the sequel, we will see that a heuristic search procedure aims at finding a network structure
that has the highest quality.

The Bayesian approach is a well-founded and practical method for selecting statistical
models for a given list of cases. In the context of Bayesian belief network learning, the
statistical model is a network structure. The basic idea of this approach is to start with a
prior distribution on all network stuctures. For each structure, the probability of the database
given the structure is computed, and, using Bayes’ theorem, the posterior probability of the
structure given the database is calculated. The network structure with the highest posterior
probability is selected. The posterior probability can be regarded as a measure of the quality
of the network structure.

Cooper and Herskovits [5] have proposed a quality measure based on the Bayesian ap-
proach. They assume that the cases in the database are supposed to occur independently.



Furthermore, they assume that in the database there are no cases where values are missing.
Also, they assume that no probability table Bp is preferred for a given network structure
before the database has been inspected.

Let U again be the set of n discrete variables as defined in Section 2. Let D be a database
of N cases over U. Now, let Bs be a network structure over the variables in U. For each
z;, let m; be the parent set of z; in Bg. Let w;; denote the jth instantiation of «; relative to
D,j=1,...,q, ¢ > 1; note that ¢; < ije,” rj. Furthermore, let N;;; be the number of
cases in D in which the variable z; has the value z;; and ; is instantiated as w;j, and let
Nij = 3411 Niji. Let P(Bs) be the probability of By prior to observation of the database.
Then, the probability of Bs and the database D is,

P(Bs,D) = P(Bs) ]i[f:_[ (_N,(,%%Y 1':1 Nijx!. (1)

A proof can be found in [5]. The term P(Bjs) models prior information, for example existence
and direction of arcs. The other terms in (1) do not have a direct intuitive interpretation. In
practical implementations, generally the logarithm of Equation (1) is used because even for
small databases with N cases numbers like N! tend to give computational problems (notice
that 100! ~ 10'%°). The logarithm of (1) will be referred to as the Bayesian measure for the
quality of a network structure. In this paper, all logarithms are to the base two.

In [3], it has been showed that if all possible instantiations of the parent sets in Bg occur
at least once in the database, the Bayesian measure can be approximated by the measure

L(Bs, D) = log P(Bs) - N - H(Bs, D) — %K log N 2)

=12 k=1
K=3%"_,(n-1) I1;,er, 7i- Compared to the Bayesian measure, this measure has a more
intuitive interpretation. The term log P(Bs) models prior information, just as in the Bayesian
measure. The term —N - H(Bs, D) is —N times the entropy of a network structure Bg given
a database D. Generally, this term increases as arcs are added to a network structure. In
the last term, K equals the number of independent probabilities that are needed to define all
probability tables in Bp for the Bayesian belief network B = (Bs, Bp). The term —-3K-log N
thus models the cost of estimating these K probabilities. Contrary to the entropy term, this
term decreases when arcs are added to a network structure. If no prior information is available,
that is, if P(Bg) is equal for all network structures Bs, then this measure assigns high quality
to network structures that fit the database with as few arcs as possible. Therefore, Equation
(2) will be referred to as the minimum description length (MDL) measure for the quality of
a network structure.

with O(1) error with respect to N, where H(Bs,D) = 7, it —-%’L"log J—Vﬁlf and

3.1 Infinite Database Properties of Quality Measures

This section will be devoted to the investigation of the asymptotic behavior of the Bayesian
and MDL measures, that is, the behavior for infinite size databases. The results are of a
theoretical character. Nonetheless, the results indicate how the measures may be expected to
behave for large databases. In the next subsection, we investigate the behavior for finite size
databases.



Theorem 3.1 Let U be a set of variables and let <y a total ordering on U. Let the prior
distribution over all network stuctures be uniform. Let Pp be a joint probability distribution
over U such that Pp has a unique minimal I-map that obeys <y. Furthermore, let D be a
database with N cases generated from Pp where N approzimates infinity. Let Bs and Bg: be
network structures obeying <y where B is the minimal I-map of Pp. Let Q(Bs, D) be either
the Bayesian or the MDL measure. Then,

J\]Tj—Irnoo (Q(BS’a D) - Q(BSa D)) = —00,
if and only if Bs: is not a minimal I-map of Pp.

Proof: For the Bayesian measure, the property stated above follows from Theorem 6.3 in (8]
For the MDL measure the theorem was proved in [4]. a

The theorem states that for databases large enough, a network stucture that is a minimal
I-map obeying a particular ordering <y is overwhelmingly preferred over any other network
stucture obeying the same ordering. Note that as positive probability distributions Pp have a
unique minimal I-map for a given ordering <y the theorem applies to any positive distribution.
Also note that if a distribution has a P-map, then for every ordering its minimal I-map is
unique since the intersection rule for conditional independence applies. Therefore, the theorem
applies as well for distributions for which a P-map exists. If a P-map exists for the given
ordering <y, then this P-map will be overwhelmingly preferred over any other structure
obeying <y since P-maps are unique for a given ordering. In general a minimal I-map need
not necessarily have a higher quality than other structures.

When learning a network structure it is desirable that no ordering on the variables is
required by the learning algorithm because finding a ‘good’ ordering may be difficult. There-
fore, it is interesting to investigate the properties of the quality measures in case no ordering
on the variables is provided. When no ordering needs to be obeyed, minimal I-maps of posi-
tive distributions need not be unique. Minimal I-maps need not even be equivalent, that is,
represent the same set of independency statements. Consider for example Figure 1. Suppose
that the structure on the left is a P-map of some distribution P. Both structures on the right
are minimal I-maps of the distribution obtained from P by marginalising over b. However,
the upper structure represents I(a,, e) whereas the lower structure does not. Note that for
the upper structure e <y d in any ordering <y obeyed by this structure while for the lower
structure it would be d <y e Uniqueness of optimal structures is a desirable property since
it helps deriving theoretical results. Furthermore, when one is not interested in the repre-
sented distribution but in the causal structure underlying the domain, it is necessary that the
network stucture is unique since the causal structure is unique.

The number of probabilities that need to be estimated for minimal I-maps need not be
the same for every such I-map. Since in every estimate of a probability a small error is
introduced, it is desirable that as few as possible probabilities need be assessed. This gives
reason to distinguish between minimum and non-minimum structures.

Definition 8.1 Let P be a joint probability distribution on U. A minimum I-map Bs of P
is a minimal I-map of P such that for any minimal I-map Bs of P in the belief networks
B = (Bs, Bp) and B’ = (Bs:, Bp/) the set Bp specifies at most as many probabilities as Bp:.
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Figure 1: Example of different minimal I-maps.

Consider once more Figure 1. Let all variables except ¢ be binary and let ¢ be ternary. Then
for the upper structure, eighteen probabilities need be specified to arrive at a belief network:
one for a, two for ¢, twelve for d, and three for e. However, for the lower structure, only
seventeen probabilities need be specified: one for a, two for ¢, two for d, and twelve for e. If
all variables including ¢ would be binary, for both structures twelve probabilities would need
to be specified.

Unfortunately, minimum I-maps are not unique, so we cannot deduce causal relations
based on a minimum I-map. We have the following theorem for minimum I-maps.

Theorem 3.2 Let U be a set of variables and let the prior distribution over all network
structures over U be positive. Let Pp be a positive distribution over U. Let D be a database
with N cases generated by Pp where N approzimates infinity. Let Bs be a minimum I-map
of Pp. Then, for any network stucture Bg: that is not a minimum I-map of Pp we have that,

1\],-1_1)%0 Q(BSa D) - Q(BS’a D) = =00,
where Q is either the Bayesian or the MDL measure.

Proof: In [3], we have shown that for N approximating infinity the MDL measure is an
approximation of the Bayesian measure with O(1) error if all instantiations of parent sets are
observed in the database. The condition that Pp is a positive distribution assures that all
these instantiations are in the database. It therefore suffices to prove the theorem for the
MDL measure.

For Bg, let K, 7, z;, m;, %, wi; be as before. Let ¢ be the number of all
possible instantiations of m;. Likewise, let K’, rj, etc. be defined for Bs. We
consider the expression limy_ o (L(Bs:, D) — L(Bs, D)), which by definition is equal to
limy_,e0 (log P(Bs:) — N - H(Bs:, D) — 3K’ -log N —log P(Bs) + N - H(Bs,D)+ 1K -log N)

which can be written as,

lim (log P(Bgs:)
First, consider the entropy term N - H(Bs:, D). Note that by the strong law of large numbers,
we have limy_ye 2% = Pp(z; = @}y, 7} = w};) and limy_e0 ﬁNz- = Pp(z; = Tiglm] = wly).
Therefore for very large N, N - H(Bg:, D) can be written as,

_ N -H(Bsi, D)+ N - H(Bs, D) - %(K’—K)dogN). (3)

no gi

N'EZZ"PD(‘“ = Ty, T = Wj;) -log Pp(&; = @i|m; = ng .

i=1 j=1k=1



Let <y be an ordering for Bss and let U; = {yly <y z;} for i = 1,...,n, let w}; be the jth
instantiation of U;. Then we can write the above formula as,

n qi L
N> - (Z Pp(z; = iy, Ui = wj; /\CU,-\r.-)) log Pp(z; = iy |m; = wj;),

i=1 j:l k=1 U,'\1r.-

where EU_,\,” represents the sum over all instantiations of the nodes from U;\m; and U; =
wi; A cy\x; denotes that of the variables in U; the variables in 7; take values according to w;;
and the variables in U;\m; take values in the summation. By carefully grouping terms, this
can be shown to equal,

N - Z-— (ﬁ PD(CI},IUz)) log (ﬁ PD(CI?,IW:)) )

U i=1

where 3", denotes the summation over all instantiations of the variables in U and z;, m;, and
U; take values conform the instantiation of U. Now, let Pp(U) = [Ti-, Pp(z:|7}), that is, let

 (U) be the distribution defined the belief network wit network stucture Bs:.. Then, we can
write the above formula as

N> —Pp(U)-log P,(U).

For the entropy term N - H(Bg, D), we find that this term equals

N -3 —Pp(U)-log Pp(U).

So, the Formula (3) can be written as,

Jim. (log f;%)l +N- ZU: (Pp(U)log Py (U) — Pp(U)log Pp(U)) — %(K’ — K)-log N) .
(4)

We now distinguish between two cases:
o Bg: is not an I-map of Pp;
o Bg: is an I-map but not a minimum I-map of Pp.

We consider these cases separately. First, suppose that Bg: is not an I-map of Pp. Now
observe that since Bg is not an I-map of Pp, there is an instantiation of U such that P,(U) #
Pp(U); assume that no such instantiation could be found, then the belief networks with
network stuctures By and Bs would define the same probability distribution and thus satisfy
the same set of independency statements.

By Shannon’s inequality which states 3, a;logh; < ¥, a;loga;, for all a;,b; > 0, 3, a; =
S;b; = 1 (with equality only if a; = b; for all i), we have that in (4) the summation
S (Pp(U)log Py(U) — Pp(U)log Pp(U)) is smaller than 0. The result is multiplied by N
yielding an O(N) term that goes to minus infinity. Since the prior distribution on network
structures is positive, the probabilities P(Bs) and P(Bs:) are positive; so, log(P(Bs/)/ P(Bs))
is a constant that is negligible when N — oo. Since an O(N) term dominates an O(log V)
term for N — oo we have that the (K’ — K) -log N term does not influence the result. So,
Formula (4) is —oo0.

Now suppose that B is an [-map of Pp, yet not a minimum I-map. Let <y be an ordering
obeyed by Bs.. Without loss of generality, we take that z; <y z; if i < j. Then, because By
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is an I-map of Pp, we have that Pp(z;|r}) = Pp(x:|U;) where U; is the set of all variables
lower ordered according to <y than ;. So, Pp(U) = [1i=, Po(ziln}) = [Ti=; Po(@:|Us), which
by the chain rule, equals Pp(U). We conclude that the entropy terms in Formula (4) cancel
out. However, since By is not a minimum I-map of Pp, we know that compared to Bs at
least one extra probability need to be estimated for Bg,. Therefore, K’ — K > 0. So, the
term —1(K’ — K)-log N will go to minus infinity for N — oo. The term log(P(BS)/P(BSI))
can once more be neglected. So, Formula (4) is —oo as was to be shown.

Note that if Bg is a minimum I-map of Pp in Theorem 3.2 then H(Bs:, D) = H(Bs, D) and
K = K'. So L(Bs/, D) — L(Bs, D) depends solely on the term log P(Bs:)/P(Bs') which for
positive priors is a constant.

The above theorem suggests that for databases large enough, network structures that are
minimum I-maps are preferred over network structures that are non-minimum I-maps. Note
that contrary to Theorem 3.1, Theorem 3.2 is not restricted to network stuctures obeying a
certain topological ordering but for all possible network stuctures.

From the theorem, it is easily seen that if a P-map exists for a given distribution then a
P-map is preferred over any non P-map for large databases. This property follows from the
observation that all P-maps require the same number of probabilities and every I-map that
is not a P-map requires more probabilities. Note that a joint probability distribution need
not have a unique P-map. Consider for example the simple network ¢ — b. If this network
structure is a P-map of some distribution P, then a « b is also a P-map of P. However, for
every P-map the same number of probabilities needs to be specified, [4].

Corollary 3.1 Let U be a set of variables and let the prior distribution over all network
structures over U be positive. Let Pp be a positive distribution over U such that a P-map
ezists for Pp. Let D be a database with N cases generated by Pp where N approzimates
infinity. Let Bs be a P-map of Pp. Then, for any non P-map Bs we have that,

Jim Q(Bs, D) — Q(Bs:;, D) = —

where Q is either the Bayesian or the MDL measure.

3.2 Finite Database Properties of Quality Measures

In the previous section, the Bayesian measure and the MDL measure has been compared as
to their behavior for databases of infinite size. Since infinite size databases never occur, we
are interested in non-asymptotic properties of these measures. The following theorem gives
some insight on the behavior of the MDL measure.

Theorem 3.3 Let U be a set of variables and let the prior distribution over all network
structures over U be uniform. Let D be a database with N cases over U, N > 10. Let Bs be
a network structure over U, with at least one parent set containing log N variables or more.
Then, a network structure Bg: exists such that L(Bg:, D) > L(Bs, D).

Proof: Consider the network stucture Bg. Let z; be a variable in U that has more than
log N variables in its parent set 7; in Bg. Now, let the network stucture By be obtained
from Bg by deleting all incoming arcs for this variable z;, that is, 7} = 0. Let K, r;, and g; as
defined as before for Bg with the MDL measure and let K’, 7}, a,nd q. be deﬁned for Bg:. We



prove the theorem by contradiction. Suppose that B is not preferred over Bs. We consider
the difference L(Bs/, D) — L(Bs, D), which equals

tog 2B5) _ N (1 (By, D) - H(Bs, D)) - 5(K' ~ K) log N. (5)
P(Bs) 2
Since B is not preferred over By, this difference is not positive.

Because the prior distribution over all network structures is uniform, we have that the
term log(P(Bs:)/P(Bs)) = 0, so this term may be deleted from (5).

Now consider the entropy terms. A property of entropy is that it is maximal logr; and
minimal zero. So, the minimum value of the difference of the entropy terms —N-(H(Bs,D)—
H(Bs, D))is —N-log ;. Since (5) is not positive, the total difference in cost —3(K’'—K)-log N
is at most N -log ;. Therefore, the following inequality holds,

1 1
5(7'5— 1)g; -log N — 5(7‘;— 1)-log N < N -logr;,

where ¢/ = 1 since 7} = (. Division of this expression by 3(r; — 1) -log N gives,

< 2N logr;
= logN'r;—1

q —

Using the inequality logz < (z — 1)loge, we find,

Adding one gives,
2N
g < ——=loge + 1.

log N
Now, observe that the function f(z) = 2 loge+1 -2 = 2z-(z-1)In? equals 0 for = ~ 9.4.

Since f'(z) = —llg’”—l‘—n";%f—z < 0, we have that f is a descending function. So,

logNlog;e+ 1< N,
and thus ¢; < N. This contradicts the number of parents of z; in B being larger than log V.
From this contradiction, we conclude that (5) is positive that Bs: is preferred over Bs. O

Theorem 3.3 implies that good search algorithms that use the MDL measure will not select
network structures that contain parent sets with more than log N parents, when N is the
number of cases in the database used for learning. A similar result would be expected for the
Bayesian measure. However, this is not true.

Consider a database D,, defined recursively by

T
D1=

_= o
O
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Figure 2: Example of databases D, up to Ds.

Figure 3: Most probable network for D+.
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where the rows represent the individual cases and the columns the values of the variables;
database D, is constructed from D,_; by adding a column for an extra variable z,, filled with
1s. Further, two identical cases are added where z; =0¢=1,...,n and y = (n + 1)mod 2.
For example, Figure 2 shows how the database Dy is build from D; up to Ds.

Figure 3 shows the network structure that scores highest with the Bayesian measure for
Dy;each node z; i = 1,...,7 has anode ;_; in their parent set except for node z; which has
an empty parent set; node y has all nodes z1,...,27 in its parent set. This network was found
by brute force; the Bayesian measure was calculated for all 1.138.779.265 possible networks.
Obviously, the parent set of node y contains more than log(14) =~ 3.81 parents.

To explain why the network stucture shown in Figure 3 is preferred over any other network
stucture for the database D7, we examine the behavior of the Bayesian measure on the
database D,. In general, The Bayesian measure will favor a parent set m; for a variable z;
if knowledge of the values of variables in 7; gives information as to the distribution of the
values z; as long as the number of instantiations of the parent set in the database ¢; is not
too large. Now, let us consider the parent sets of the best structure Bg for D,, according to
the Bayesian measure. In D, each node z;, i=2,...,n—1, may have z;_; in its parent set
because when z;_; has the value 1, we find in the database that z; is 1. In addition, z;;; may
be in m; because when z;;; is 0, we find in the database that z; is 0. The only variable that
would provide more information about the value of z; is y; note that z;’s value is a function of
the values of z;_1, i1 and y for the cases in the database. However, adding y to the parent
set of z; would increase ¢; considerably while the information obtained about the value of z;
would only increase for four cases in the database. Therefore, y will not be in z;’s parent set.
For z, and z, a similar argument holds, except that z, and z,41 respectively are non-existent
and need not be considered.

We now turn to node y. By an inductive argument, it can be shown that any parent set
of size k for y scores worse than the parent set {Za_x+1,-- .,Zn} (see appendix Lemma A.l
and A.2). Further, it can be shown that if 7, = {z&,...,Za}, for some 1 < k < n, then
By cannot be the best structure for D, since taking {Zk—1,--.,2n} for m, results in a better
quality according to the Bayesian measure (see appendix Lemma A.3). As a consequence,
taking {1,...,Zn} for m, results in the highest value for the Bayesian measure (see appendix
Lemma A.4). Therefore, the best scoring parent set for y is the set {z1,...,Zn}. We conclude
that for a database with N cases, a network with a parent set with IV /2 variables can be
assigned the highest quality by the Bayesian measure.

So, while the asymptotic behavior of the Bayesian and MDL measure on databases of
infinite size is the same, this is not the true for practical cases where only a finite database is
available.

4 Conclusions

In this paper, we have investigated the influence of quality measures on learning Bayesian
belief networks for both infinite size databases and finite size databases.

We have shown that the Bayesian measure and the minimum description length (MDL)
measure have some properties for infinite databases in common. When a given topological
ordering on the set of variables is assumed, both measures prefer minimal I-maps obeying
this ordering. Furthermore, both measures prefer minimum I-maps, that is, I-maps for which
a minimal number of probabilities needs to be specified in order to construct the joint prob-
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ability distribution of the belief network. Thus, as a P-map exists, then a P-map will be
overwhelmingly preferred over any non P-map. This property justifies the use of quality
measures for recovering causality.

However, the behavior of the two measures differ on finite databases. For the MDL
measure the sizes of the parent sets in a preferred network structure are bounded by the
logarithm of the database size; for the Bayesian measure, this property does not hold, in fact,
a parent set may be as large as half the database size. This is due to the MDL measure
assigning a cost to each probability that has to be estimated in a Bayesian belief network
with the network stucture at hand. The Bayesian measure assigns costs only to probabilities
for instantiations of parent sets that appear in the database.

In Bayesian belief network learning applications where a database is relatively small com-
pared to the number of variables, it is very likely that the database contains parts that make
the Bayesian measure behave as described, resulting in network stuctures with an enormous
number of arcs.

Tt would be interesting to investigate the behavior of Bayesian measures with other priors
than Cooper and Herskovits use; instead of a uniform prior over all probability tables, a
uniform prior over all network stuctures may be an interesting alternative.
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Appendix

Let for the four lemmas that follow D, be a database as defined in Section 3.2 with nodes
{zy,...,%n,y}. Let my(m,) be the contribution to the Bayesian measure when y has parent
set m,, defined by
& N;o!Nj!
my(my) = [] = Sk LA
T (N 1)
where ¢ is the number of unique instantiations of m, that can be found in the database, N;;
the number of cases for which y takes value k and 7, is instantiated as w;, and N; = Njo+Nji.
Further, we consider two parent sets 7, and =,. Let ¢', Nj,, Njy, and N be the values of
g, Njo, Nj1, and N; applied to Ty

Lemma A.1 Let 7, = {Zj_k, Tj-k+1,- - 2z} (k>0,k<j<n)andlet
Ty = {Tnoks Tnok+1s- - . Ty} then m(m,) < m(my).

Proof: Let b be the number of counts of 0’s for the last instantiation of 7, at the bottom of
the database as depicted in Figure 2 and let a be the number of 0’s for the first instantiation
for which N; # 2. We can write m(m,) as

al(a(£2))! (g!_)k'l bi(b(+2))! (6)
(2a + 1(£2))! \3! (26 + 1(+2))V
where (+2) are optional terms representing the case that the number of cases with y = 1

more, less, or equal to y = 0 for the first instantiation of 7. The term (+2) is an optional
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term representing that there may be two cases more with y = 1 than with y = 0 for the last
instantiation. So, there are six ways to interpret Formula 6. Likewise, we can write for m(, ),

(g})’“ (a+b+d—2)(atb~d(£2)(+2))! )
(20 +2b+ 1 —2(£2)(+2))!

3!

where d is 0 or 2 to represent that it is possible that in the first instantiation, the number of
cases with y = 0 may vary from y = 1. We show that (7) is an upper bound of (6) and thus

that m(r,) < m(r,). By writing z% for (zf!y)! and grouping common terms, we can write (7)
as,

al(a(£2))! (2_!>’°‘1 2! (a + b+ d — 2)i+d=2q + b — d(+2)(+2))*=442D ®)
(2a + 1(£2))! \3! 3! (20 + 2b — 1(i2)(+2))26—2(+2) )
The first two terms are exactly the same as in (6). So, let us concentrate on the third term,
(a+b+d—2)d=2a +b— d(£2)(+2))=*B 2! 9)
(2a + 2b — 1(£2)(+2))2=202) 3!

We proceed by comparing ‘peeling’ terms of the form ZX from (9) starting with as high as
possible values of z -y and w - z. We can write (9) as,

(a+b+d-2)(a+b—d(£2)(+2))
(2a + 2b — 1(£2)(+2))(2a + 2b — 2(£2)(+2))
(a+b+d-3)H3atb—d- 1(£2)(+2))2=4-1042) 9
(2a + 2b — 3(£2)(+2))2=21+2) 3

(10)
By inspection, we find that,
(a+b+d—2)(a+b—d(£2)(+2)) S b(b(+2))
(2a + 2b — 1(£2)(+2))(2a + 26 — 2(£2)(+2)) ~ (2b+ 1(+2))(2b6(+2))’
and therefore, (10) is larger than,
b(b(+2)) (a+b+d—3)29=3(a 4 b—d—1(£2)(+2))=d=13D 91
(26 + 1(+2))(26(+2)) (2a + 2b — 3(£2)(+2))2=22) 3!

Note that the last part is of the same form as (9) but now with b — 1 instead of b, thus we
can repeat this step. After b — 2 times applying this step, we get as lower bound of (10),

B=2(b(+2))2=2 (a + d — 2)4a — d(£2)(+2))=2E2 2!
(2b+ 1(+2))2==2 (2a + 3(£2)(+2))X22 3!
By inspection, we find that,
(a+d—2)Ha — d(£2)(+2))=%2 21 21(2(+2))!
(2a + 3(£2)(+2))2*2 3! 5(+2)!
Therefore, (11) is larger than,

(11)

b2=2(b(+2))=2 2!(2(+2))!
(26 + 1(+2))2=2 (5(+2)!) °

which is equal to é’% So, we have shown that (9) is larger than @ﬂ;% Therefore,

(8) is larger than (6) which completes the proof.
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Figure 4: Example of parent set of y

Lemma A.2 Let 7y = {xn_k,zn_kﬂ,...,:cn} and m, C {z1,..,za}, IMyl = K+ 1> 0,
wl # my then m(my) < m(my).

Proof: Regard parent set m, as groups of consecutive nodes. In Figure 4, an example with
four groups is shown for Die. Counsider the score of the parent set on top, and the one right
below. In comparing their contribution to the Bayesian measure, all instantiations where
zg = 0 need not be considered. And in fact, one could act as if Dg was used.

By Lemma A.1, we find that the parent set on top scores lower than the one right below.
By the same argument, this parent set scores less than the one below it, and the one on the
bottom scores highest of them all.

So, by shifting groups of nodes in the parent set we find parent sets that score better and
better after each shift, where the parent set m, has highest score.

[

Lemma A.3 Let 7, = {zn_k,wn_k+1,...,xn} (k<n-1)and let 7y = m, U {ZTp-r-1} then
m(ry) < m(my).

Proof: By definition, 7, is equal to 7, united with z,_x-1. Note that {ws,.. .,w,} differs
from {wi,.. .,'w;,} only for the case that all z,_,...,%n are 1 and z,_x_1 is 0. So,

¢ NIINLD A Nio!Nj!
'y _ o1y NtVi oy NiotNia®
m(r,) = m(x) = 11 G5y o +or

=1

Let b be the number of counts of 0’s for the last instantiation of m, at the bottom of the
database as depicted in Figure 2. Since all instantiation are the same for z,_x = 0, this can

be written a5 ( B(b(+2)! 2! Bl(b— 2(+2))!
(2b+ 1(+2))! 3! (2b- 2(+2))!> ’
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where C is a positive constant. By bringing common terms out of the brackets, we get for

k<n-2,
o ( (b(+2))(b - 1(+2)) _ _2_')
(20 + 1(+2))(26(+2)) 3! ’
which by inspection is less than 0. And, if k = n — 2 we get,

113t 21! 1 1
pf 29 Ay o = - —
¢ ( 5! 3! 3! ) ¢ (20 18)’

which also is less than 0. O

Lemma A.4 Letw, & {21,...,2,} and let 7y = {z1,.. .y Zn} then m(w)) < m(my).

Proof: Follows directly from the previous three lemmas: for any m, G {z1,...,2,} With
|7,| = k — 1 we have the parent set ® = {Zn_k, ..., Tn} sSUCh that m(7}) < m(m,) by Lemma
A.2. By repetitively applying Lemma A.3, thus extending 7, node by node, we find that
m(my) < m(Ty). O
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