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Folding Rulers inside Triangles*

Marc van Kreveld! Jack Snoeyink? Sue Whitesides’

Abstract

An l-ruler is a chain of n links, each of length [. The links, which
are allowed to cross, are modelled by line segments whose endpoints act
as joints. A given configuration of an l-ruler is said to fold if it can be
moved to a configuration in which all its links coincide. We show that [-
rulers confined inside an equilateral triangle of side 1 exhibit the following
surprising alternation property: There exist three values 1 =~ 0.483, 12 =
0.5 and z3 ~ 0.866 such that all configurations of n-link l-rulers fold if
| € [0,z;] or | € (z2,23], but for any ! € (x1,z9] and any ! € (x3,1],
there exist configurations of l-rulers that cannot fold. In the folding cases,
linear-time algorithms are given that achieve the folding. Also, a general
proof technique is given that can show that certain configurations—in the
non-folding cases—cannot fold.

1 Introduction

A linkage is a collection of rigid rods or links that are fastened together at their
endpoints, about which they may rotate freely. Links may cross over one an-
other. A ruler is a chain of links, i.e., any endpoint is fastened to at most one
other endpoint, and two links have an endpoint that is not fastened to any other
endpoint.

Several papers have been written on reconfiguration problems for linkages or
rulers from a geometric point of view, including a survey [9]. Hopcroft, Joseph and
Whitesides [1] proved that reconfiguration of a linkage so that a designated joint
reaches a given position is PSPACE-hard. Joseph and Plantinga [3] proved a sim-
ilar result for moving rulers amidst obstacles. Hopcroft et al. [2] proved that fold-
ing a ruler to a segment with at most a specified length is an NP-complete prob-
lem, but gave a polynomial-time algorithm for reconfiguring a ruler—of which
one point is pinned down to the plane—inside a circle. The running time was
improved by Kantabutra and Kosaraju [5]. Kantabutra [4] studied rulers inside
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a square, with one end fixed and all links of length at most half the side length
of the square. He gave a linear-time reconfiguration algorithm. Lenhart and
Whitesides [6, 7, 8] studied the reconfiguration of simple closed chains of links in
d dimensions and gave a linear-time reconfiguration algorithm.

We consider a reconfiguration problem for rulers that have all links of equal
length and that are confined to an equilateral triangle with unit edge length. The
objective is to fold the ruler onto a single link so that all links coincide. This
problem is of interest because a confining region having acute angles presents
difficulties that have not been studied previously. Also, our results give an addi-
tional example of a motion planning problem that can be solved in linear time
despite n + 2 degrees of freedom.

We call a ruler whose links all have equal length ! an l-ruler, and we scale the
side of the confining triangle to have length 1. Of course there are l-rulers for I
close to 1 that cannot be folded onto a single link, and it is not surprising that
for sufficiently small values of [, all I-rulers fold. However, we have discovered the
following surprising phenomenon. For any n and any link length [ in the range
[0, z1] with z; ~ 0.483, any configuration of an n-link l-ruler folds. For n > 3 and
l in the range (z,x,], where z; = 0.5, there are configurations of n-link /-rulers
that do not fold. For any n and [ in the range (z2, z3), where 3 = \/§/ 2 =~ 0.866,
any configuration of an n-link [-ruler folds. For n > 2 and [ in the range (z3, 1],
there are configurations of n-link l-rulers that do not fold. In the cases where the
ruler can always be folded, we give linear-time algorithms that accomplish this.
In the cases where not every ruler can be folded, we give a configuration that
cannot be folded and prove this.

The remainder of this paper is organized as follows. In Section 2 some notation
1s introduced, and also simple motions of the ruler. In Section 3, we give a linear-
time algorithm to fold I-rulers for [ € (z3,z3]. Section 4 presents a linear-time
algorithm to fold {-rulers for [ € [0, %] (The appendix contains the long and
highly technical linear-time algorithm for I € (3,2;).) Non-foldability of rulers is
studied in Section 5. The conclusions are given in Section 6.

2 Preliminaries

We denote the links of an n-link l-ruler by ¢y, ..., ¢,, where link ¢; has endpoints
Ji~1 and j;. The angle at j; is the angle between links ¢;_; and 4;; the angle at 7,
is the angle ¢; makes with the positive z-axis. A joint j; is open if the angle is 7
radians; a joint is closed if the angle is 0 radians.

We denote the unit-side triangle in which I-rulers are confined by A, which
we visualize as having a horizontal base vw and a top vertex u. Links and joints
may lie on the boundary of A.

For a joint j;, we denote with C; the circle with radius [ centered at Ji- This
circle may have one, two or three connected components inside A, depending on
the position of j; and the value of .



Algorithms for the reconfiguration of a ruler usually break up the motions
for the whole reconfiguration into simple motions, in which only a few joints are
used simultaneously. A minimal requirement for a simple motion is that it can
be described in constant time [7]. We allow the following type of simple motions
for rulers:

e Some joint j; of the ruler does not change its position, and at most a

constant number of angles at joints between a pair of adjacent links change
simultaneously.

o No angles at joints change, but the ruler may translate and rotate as a rigid
object.

Note that the joints that change angle can be far apart in the ruler. A dragging
motion at joint j; is a motion in which the positions of joints j;;» through j,
remain fixed, links ¢;4, and ¢;;, act as an elbow to move j; along some specified
line, and j; drags the first ¢ links so that they translate in the same direction as

Ji-

3 Folding rulers with moderately long links

We will show that any configuration of an n-link l-ruler with [ € (x,, z3] can be
folded, where o = 0.5 and z3 = \/5/ 2 ~ 0.866. The bounds are tight, that is,
Section 5 shows that there exist configurations of a ruler with [ = 0.5 that cannot
be folded, and the same holds for any | > \/5/ 2.

The algorithm to fold an Il-ruler with ! € (x3,z3] has three phases. The
first phase labels all joints in some appropriate way. The second phase brings
an arbitrary configuration into one where the joints lie at the vertices of an
equilateral triangle inside A. The positions correspond to the labels given to the
joints. The third phase turns the triangle into a segment.

Figure 1: Labeling the joints of moderately long links.

Divide A into 4 equal-sized equilateral triangles by connecting the midpoints
of the sides of A (see Figure 1). Let every joint in the triangle adjacent to u be
labeled u, and similarly with v and w. It remains to label the joints in the middle
triangle. For any such joint j; we choose a label that is different from the labels



of j;—1 and jiy1. If ji_1 and j;41 have the same label, say, u, then we assign 7; a
label depending on the direction of the link j;jiy1. If its angle with wv is at most
7/2, then j; is labeled v, otherwise j; is labeled w.

Lemma 1 The labeling defined above has the property that joints incident to the
same link have different labels.

Proof: Since [ > 0.5, no two joints incident to the same link can be in the
same one of the four smaller triangles. By choice, the joints in the middle
triangle have a label different from the adjacent ones. m

To start up the second phase of the algorithm, we define a triangle A" with
vertices ', v and w' and side length [. The sides u'v/, w'w' and v'w' are parallel
to uwv, ww and vw, respectively, and remain that way.

Assume without loss of generality that jo is labeled u and j; is labeled v.
Rotate jo counterclockwise around j; until it hits wv. We claim that if A is
positioned such that u' and jp coincide, then A’ lies inside A. This is easy to see,
because the link j;jo makes an angle between 7/3 and 27/3 with «'v’ (and uv).
We say that jo can support A’ (at u'). More generally, for any link j;ji+1 labeled
v, either j; can support A’ (at u'), or ji4+1 can support A’ (at v'), or both.

Figure 2: The motion of A’ stays inside the dashed triangle and thus inside A.

By translating A’ inside A, we wrap the ruler onto A’, such that any joint
with label u will be at u'. Assume that we have placed all joints up to j;—; on the
vertices of A’!. Assume without loss of generality that j;~; coincides with u' and
j; has label v. We maintain the invariant that joints j;, ..., jn have not changed
position yet.

First, assume that j; can support A’ (see Figure 2, left). Then, by changing
the angles at joints j;_; and j; we let j; support A’ at v'. Since the initial and
final positions of A’ lie inside A, the circular motions described by the vertices
of A’ are inside A. In the figure, A’ stays inside the dashed triangle.

On the other hand, assume that j; cannot support A’. Then, by the above
observations, ji;; can support A’ (see Figure 2, right). If j;11 has label w, then
A’ can simply be dragged to its new position where j;1; and w' coincide. The
motion causes j; and v’ to coincide as well. Next, assume that j;41 is labeled u.



Recall that since j; is labeled v, the angle which j;j;+1 makes with uv is at most
7/2. Rotate j;_1 around j; until j;; and jiy1 coincide. Then rotate j; around
jiz1 = jis1 until it coincides with v'.

Theorem 2 Any configuration of an n-link l-ruler with | € (3, 3] can be folded
in linear time, changing at most three joints simultaneously.

4 Folding rulers with short links

The folding of short n-link [-rulers is split into two algorithms—one deals with
l €0, %] and the other with [ € (%, 7). The latter algorithm is long and technical;
it can be found in the appendix. We advise the reader not to start with that
algorithm before finishing the rest of the paper. This section proves only that
l-rulers with [ € [0,3] can be folded using a linear number of simple motions.
The algorithm attempts to fold the first two links, and then solve the remaining
problem on an (n — 1)-link ruler inductively. Alternatively, it can try to fold
links ¢5, £3 and £4, which leaves a folding problem for an (n — 2)-link ruler. We
show that one of these attempts succeeds without moving js, ..., j. from their
positions.

We begin with a simple observation, and then put j; on the boundary of A.

Lemma 3 If C; has jo and j, on the same component inside A, then {; and £y
can be folded without changing the position of ji.

Proof: Simply rotate jo around j; onto j. =

Lemma 4 Without changing the position of js, links £, and £y can be folded, or
joints j1 and jo can be put against a side of A.

Proof: Translate jo toward j,. If jo reaches js, then ¢; and £, are folded,
otherwise, j; has hit a side of A. Assume without loss of generality that j
has hit vw, and that 7; is closer to v. Move j; leftward along vw towards the
middle, with jsjoj; acting as an elbow; note that jo cannot hit any side of A
during this motion. If j; reaches the middle, then jo can be rotated onto js
because C; has only one component inside A. Otherwise, jo has hit the side
of A, or j, is open and the angle vj,7j3 is at most 7 /2 radians. But then j; is
at least at distance 21/ V/3 from v, and C; has only one component inside A. =

Define the u-triangle as the equilateral triangle inside A with a vertex at u
and with side length I/+/3. Define the v-triangle and the w-triangle similarly. We
continue in one of two ways, depending on whether j, is in a u-, v- or w-triangle,
or outside all of them.

Lemma 5 If j; and j, are on sides of A, and j, is outside the u-, v- and w-
triangle, then £y and £y can be folded without changing the position of ja.
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Figure 3: Three cases of folding ¢, and ¢, when j, is on vw, closer to v, and
outside the v-triangle. In the leftmost case, jp is rotated clockwise onto vw and
then dragged to 75.

Proof: Assume without loss of generality that j; is on the side vw, and closer
to v than to w (see Figure 3). If j; is on vw, then either j, can be rotated
onto j, directly, or jo can be rotated against vw and then dragged towards js.
If j, is against uv and below the perpendicular to uv through ja, then j,
can be rotated around j; onto j, because C; has only one component inside
A. If 7, is against wv and above the perpendicular to uv, then the link 717,
divides A into two parts. If j; is in the triangle j;jov, then jo can be translated
onto jo. If jo is in the quadrilateral part, then j, can be rotated onto j;. =

If the above method fails to fold ¢; and ¢, then we will drag j, and possibly
also j3 and j4. First, we wish to not worry about the first two links hitting sides as
long as 7 is in the v-triangle. To this end, we make the links ¢; and ¢, parallel to
vw with joint j; open, and we keep these links this way until specified otherwise.
Note that j; and jp cannot hit any side (in particular, uw) unless j; leaves the
v-triangle.

u
_ Ja
J3
\
vid—= w
J2

Figure 4: Left: putting j3 on a side, or getting j, outside the v-triangle. Right:
getting j, outside the v-triangle by dragging js.

Lemma 6 If j, is in the v-triangle and on vw, then js can be put outside the
v-triangle, or j, and jz can be put on the same side of A, without changing the
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position of js.

Proof: Drag j; along vw toward w, keeping j4’s position fixed (see Figure 4).
If 75 does not get out of the v-triangle, then j3 has hit wv or vw. If j3 is on
uv, then rotate j, around j3 to that side as well. w

If j2 is put outside the v-triangle, then £; and ¢, can be folded according to
Lemma 5. Otherwise, assume without loss of generality that j, and j;3 are both
on vw.

Lemma 7 If j; is in the v-triangle on side vw and j3 is on side vw, then j, can
be moved outside the v-triangle, or £y, €3 and €4 can be folded, without changing
the position of js.

Proof: If j; can be rotated against uv outside the v-triangle, then we are
done. Otherwise, if j; is on the same component of C3 as jo, then rotate j,
onto j4, and then rotate j3 around j; = j, onto j;. Otherwise, drag j3 along
vw toward w, with jsjsajs acting as an elbow (see Figure 4). If j, does not
leave the v-triangle, then j, must have hit a side of A. This side cannot be
uw, since the distance from the v-triangle to the side uw is greater than 2I.
If the side is vw and joint js is open, then j, can be dragged toward j4 (and
w), with j3 leaving vw. This will bring j, outside the v-triangle. If the side
is vw and joint j; is closed, then ¢; and ¢4 coincide, and we can make /4, to
coincide with these links as well by rotating j; around j, = j4. If the side hit
by ja is uv, then drag j, toward w with j; leaving the side vw, and j, will
leave the v-triangle. This is possible since the angle Zjs73j4 is between 7/6
and 7/3 radians in this case. =

Theorem 8 Any configuration of an n-link l-ruler with | € |0, %] can be folded
in linear time, changing at most three joints simultaneously.

Proof: The lemmas above show that with only a constant number of simple
motions, either #; and ¢; can be folded, or £, £3 and 44 can be folded. Thus the
problem reduces to an (n—1)-link or (n —2)-link l-ruler. The theorem follows

by induction. The base cases are easy (observe for instance that imaginary
links can be added to one end to reduce the number of cases). m

5 Non-foldable rulers

It will be shown that not every configuration of an l-ruler is foldable if [ € (z3,1]
where z3 = /3/2 ~ 0.866, or if | € (z;, ;] where z; ~ 0.48348 and z, = 0.5.
One can make a distinction between two types of non-foldability. It may be that
the ruler is rigidly stuck, or it may be that small motions are possible, but not
enough to fold it. Besides giving examples of stuck rulers, we also provide a proof
technique to show that a ruler is stuck.

The first example of a rigidly stuck ruler consists of two links of length 1, one
coinciding with the edge uv of A, and the other coinciding with vw. It is easy to
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see that this configuration cannot be folded, and that it is rigidly stuck. Next,
assume that the link length is less than 1, joint j; coincides with v, link ¢; lies
on the edge uv and link ¢, lies on the edge vw. This configuration is not rigidly
stuck. However, if [ > z3 = \/5/ 2, then joint j, cannot rotate past the bisector
of v to reach the joint j,. Nor can j; reach jo. The illustrated configuration is

non-foldable.
J6

u U
Jo
J3
J1 J2
. . / \ J2
v A3 B2\ o o Lo BN w v R L S

J1 70
Figure 5: Three rulers that are rigidly stuck.

The second example of a rigidly stuck ruler consists of three links of length
0.5. Joint jo coincides with v, joint j; coincides with the midpoint of wv, joint j,
coincides with the midpoint of uw and j; coincides with w. As in the previous
example, one can decrease the link length slightly and start with roughly the
same configuration, and obtain a non-foldable ruler that is not rigidly stuck. We
prove that this example provides a non-foldable ruler when ! € (z;,z3] where
7 = 0.48348 and z, = 0.5, by using a proof technique which we explain after
the third example.

The third example of a rigidly stuck ruler has nine links of length ~ 0.483576.
Joint jy coincides with w, joint j; lies on the side vw, joint j, lies on wv, joint j3
also lies on uw, joint j4 lies on vw and of the two possibilities, closest to v. Joints
J9, .- -, J5 are the mirror images of jo,..., 74 when reflected in the bisector at u.

To prove that a configuration of a ruler is stuck, we define the state of a
configuration, which is a discretization of it. We use the states to show that a
given configuration cannot change to a different state. We study the possible
state transitions for any configuration, and show that none can take place first.
A state of a configuration consists of the following items (see Figure 6):

1. For any joint 7 and incident link ¢, draw from the joint j the perpendiculars
to the three edges of the triangle A. The link £ can be in any of the three
sectors centered at j, which define one item of the state of the ruler. We
denote the sectors as u-sector, v-sector and w-sector. The boundaries of
the sectors are assigned arbitrarily to one of the incident sectors.

2. For three consecutive joints j;_1, j; and j;;1, the sidedness of the triangle
Ji-1Jiji+1 (a left turn or a right turn) is an item of the state. If joint j; is

8



open or closed, then one of the possible item instances is assigned arbitrarily.

U

Figure 6: Left: £ is in the w-sector of j. Right: ji_;jijiy1 make a right turn.

It follows that any configuration of an n-link ruler with at least two links has 3n—1
items in its state. There are two possible state transitions for a configuration of
a ruler, for which the following states are critical (in other words, when an item
is about to change):

1. A link £ makes an angle of 7/2 radians with one of the edges of A.

2. Three consecutive joints are colinear (the middle joint is open or closed).

If two consecutive links, both incident to some joint j, are in the same sector, then
one need not test whether the three joints incident to these links are colinear with
j open. For this to happen, one of the links must leave the sector first. Similarly,
if two consecutive links, both incident to some joint j, are in different sectors,
then one need not test whether the three joints incident to these links are colinear
with j closed.

There are more choices of defining states, which lead to different transitions
and different critical states. Whichever choice is made, the following is sufficient
for a proof that a configuration of a ruler is non-foldable. It is necessary that
the initial and final configurations be in separate connected components. It is
sufficient that the initial configuration be in an isolated vertex of the state graph
that is different from the final configuration. Following this approach, we show
that the configurations of the rulers of the first and second examples are non-
foldable for the appropriate link lengths.

Lemma 9 For each | € (x3,1], there erists a configuration of an l-ruler that
cannot be folded (where z3 = v/3/2).

Proof: Counsider the configuration of example 1. In a folded configuration of
this ruler, links #; and ¢, are in the same state with respect to joint j;. For
the initial configuration of example 1, this is not the case. We consider which
critical state can occur as the first one (possibly, simultaneously with others).
Consider the state of joint j; and link ¢;. The link ¢; is in the u-sector with
respect to j;. If #; were to change its state to be in the w-sector, then £; must
make an angle of 7/2 radians with the edge uw, but this is impossible, before
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A cannot contain a link with the given link length perpendicular to any of
its sides. The other transitions of the first type cannot occur for the same
reasons. A transition of the second type can occur in one of two forms. The
joint j; can be open, i.e., jo and jp are distance 2! apart, or the joint j, can be
closed, i.e., jo and j, coincide. Clearly, A cannot contain a configuration of
this ruler with j; open. Also, j; cannot close before another state transition
occurs before or simultaneously, because when j; closes the links ¢; and ¢, are
in the same state with respect to j;. =

Lemma 10 For each | € (z1,%3), there exists a configuration of an l-ruler that
cannot be folded (where z, ~ 0.483 and x2 = 0.5).

Proof: Consider the configuration of example 2. In a folded configuration of
this ruler, links #; and £, are in the same state with respect to joint j;. For
the initial configuration of example 2, this is not the case. We consider which
critical state can occur as the first one (possibly, simultaneously with others).
Consider link f5, which is in the w-sector with respect to joint j. Assume
that the first state transition brings £3 in the v-sector. Then j, must lie at
least a distance I above the edge vw in the critical state. Since link £5 is in
the v-sector with respect to jp, link ¢; is in the v-sector with respect to ji,
and jo, j1, j2 make a right turn, the ruler in this critical configuration only fits
inside A if I < z;. Next, assume that the first state transition brings /3 in the
u-sector with respect to jo. This state transition can never occur as the first,
since the state of £3 with respect to js will always change before. The other
possible state transitions of this type can be handled similarly.

Consider joints jo, j1, j2, which make a right turn, and assume that the first
state transition brings this into a left turn. Since ¢; and ¢, are in different
sectors with respect to j;, joint j; cannot close without having another state
transition before or simultaneously. Furthermore, ¢; is in the u-sector of jo
and £, is in the w-sector of j;. If joint j; is open, these sectors must be the
same. Therefore, another state transition must occur before or simultaneously.
Hence, we need not consider state changes for three consecutive joints as the
first state change. m

6 Conclusions

We have studied folding an n-link ruler with equal link lengths inside an equilat-
eral triangle. This paper gives one of the first results on the reconfiguration of
rulers when there are acute angles that constrain the motion of the ruler. Even
in the simple setting of this paper, a surprising result shows up: rulers with short
links can always be folded, rulers with midsize links cannot always be folded,
rulers with fairly long links can always be folded, and rulers with long links can-
not always be folded. We showed these results using techniques that can be used
in other ruler-folding situations as well.
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A Folding I-rulers for 1/3 <<z~ 0.4834

In Section 3 we folded moderately long [-rulers onto an equilateral triangle with
side length ! and then folded this triangle. In this appendix we fold I-rulers for
0 < | < z; ~ 0.4834 onto a trellis. Then we fold the trellis to a triangle and fold
the triangle. We prove in the reverse order that these three foldings are possible.
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A trellis is composed of four equilateral
triangles of side length [—three corner tri-
angles homothetic to A and one upside-
down center triangle, as in Figure 7. If
we translate a trellis in A, keeping sides
parallel, then the six vertices of the trellis
sweep out six equilateral frame triangles,
also shown in Figure 7. These are called
the u, v and w frame triangles for the cor-
ners, and the uv, vw and vw frame trian-
gles for the others. Figure 7: The trellis and frame.

Recall that C; denotes the circle with radius ! that is centered at joint j;, and
A; denotes the set of circular arcs that are the connected components of C;NA.
The vw-fence is the line segment that is the intersection of A with a line parallel
to 7w at distance I. We say that a joint j; is above the vw-fence if the disk
inside circle C; does not intersect the line 7. Define the uv-fence and uvw-fence
similarly.

(a.) vw-fence

~ l
~
~
~

g g =

Figure 8: The relationship between fences and frame depends on [.

There are critical values for [ that determine the relationship between middle
frame triangles and fences. We assume throughout this appendix that 1 /3<I<
7, which is the larger critical value.

Lemma 11 Ifl < \/g/(Z + \/3) ~ 0.4641 then any point of TW is above the uv-
or uw-fence or is in the vw frame triangle.
Let a be the corner of the uw frame triangle nearest w. If1 < 0.4834 then the
circle C, intersects W0 above the vw-fence.
Proof: Figure 8(a) illustrates the first part of the lemma: the fences touch
the middle frame triangles when [ <1 — 2l / V3.
Figure 8(b) illustrates the second part: the lemma is satisfied if [ is at
most the distance between the lower right corner of the uw frame triangle
and the left end of the vw-fence. That is, if

2 < (- (V3/22+(1-1/V3-1/2)"
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A.1 Folding a triangle onto a link, folding a trellis onto a triangle

To begin, we prove that any prefix of links that lie on edges of the center triangle
in a trellis can be folded in place to a single link.

Lemma 12 Let £1, 43, ..., & be a ruler on the center triangle T of a trellis.
Then the ruler can be folded onto £ inside the trellis.

Proof: The circular sector formed by pivoting link ¢, about joint j; onto link
¢, is entirely within the trellis. By induction, we can therefore fold all links
onto fi. m

We can now fold a trellis. To reduce the number of cases, we always fold the
ruler onto a triangle 7 that has one vertex in the corner of the trellis—if we ever
put 7 in the center of the trellis, then Lemma 12 says that we can fold the links
on T to a single link and take a new triangle 7 that is incident to this link and a
corner of the trellis.

Lemma 13 A ruler on a trellis can be folded to a single segment ifl <1 =
0.4834

Proof: As an induction hypothesis, suppose that all links from ¢; to 4;, for
some i > 1, lie on 7, which is a corner triangle of the trellis. This is easy to
obtain in the base case: link £;, being on the trellis, is an edge of a unique
corner triangle that can be chosen as 7. If the next link #;41 is already on 7
then nothing needs to be done. Otherwise, we have three cases depicted in
Figure 9 for folding ¢;,1 onto 7, which depend on the locations of joints Ji4+1
and ji—l-

Figure 9: Cases for folding the trellis.

Case 1: Joints j;41 and j;—1 are in corners of the trellis. Then j; is at
the side between j;_1 and jiy1- Translate 7, moving Ji—1 towards ji;1 and J;
away from the side of the trellis until 7 is again a corner triangle of the trellis
and has vertices ji1, ji, and Jiy1.

Case 2: Joints j; and j;_; lie at the sides of the trellis; joint jit1 lies at
the side or corner. Rotate j; to bring j;—1 to the side near j;y1 while rotating
ji—1 to keep 7 homothetic to the corner triangles. This also makes 7 a corner
triangle of the trellis having vertices ji—1, Jji, and Jiy1.
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Case 3: Joint ji1 is on a side. The triangle T must touch the opposite
corner of the trellis or else joint jit1 and link #;,, are already on 7. This is
the most complicated case—it cannot be folded inside the trellis, but can be
folded inside a unit equilateral triangle if I < 1. To prove this, let us be more
specific about the locations of the trellis and the joints.

Let joint ji+1 be at the side w0 of the triangle A, and j; at the side 7w, and
r near w. We translate the trellis so that one of its vertices coincides with u.
Next, we pivot j;about jiy1, keeping 7 homothetic to A, until j; moves above
the uw-fence. Since | < z1, the triangle 7 can then swing freely on C; to hit
WD at jiy1. Next, rotate about jit1 0 bring j; back onto the trellis, making
r the center triangle. Finally, fold 7 to a segment according to Lemma 12
and choose a new 7 incident to this segment and a corner of the trellis. This
completes case 3.

At the completion of these cases, we have all the links folded onto a corner
triangle. We can move this triangle to the center and fold it according to
Lemma 12. =

A.2 An analysis of two-link rulers

In this section we study the motion of a two link ruler when one end is dragged
along the side of the triangle A. This dragging motion will be the primary tool
in the next and final section, which folds a ruler onto the trellis.

These sections become increasingly complex. It may help to consider why this
is so. A k link ruler has k + 2 degrees of freedom—it can be described by the
position of the first joint and angles for each successive link. Thus, a ruler placed
in the triangle is a point in a (k + 2)-dimensional configuration space consisting
of all possible placements. Showing that every ruler can be folded to a particular
segment implies that this configuration space has a single connected component.

To prove directly that a (k +2)-dimensional set is connected can be daunting,
even when k = 2. Thus, we look at configurations where joints are on the sides
of A. With a two link ruler abc, for example, we place c on a side and drag
it, pivotting on a, until b hits a side (or joints go onto a trellis). This reduces
the problem to three and then to two degrees of freedom—the placement of a
(which we draw in Figure 11). Thus, by proving lemmas about these contact
configurations, we avoid having to look at the entire configuration space.

Consider a ruler consisting of two segments @b and be, where c is along the
7 side of A. Let 7w be horizontal with w on the right. Let’s say that a wall is
any portion of an edge of A that is not contained in a frame triangle. In the next
lemmas, we investigate how b can hit a wall when we drag c along 7w. Figure 10
illustrates these different cases.

Lemma 14 Given a ruler abc with ¢ on VW. If we fix the location of a and drag
¢ toward w, then one of the following occurs.

1. Joint ¢ or b reaches a frame triangle.
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Figure 10: Illustrations of the cases of Lemma 14, in
which b hits a wall as ¢ is dragged along 7w toward w.

2. Joints a, b and c become colinear.
3. Joint b hits a wall on TW

(i). between the v and vw frame triangles, or
(i4). between the vw frame triangle and the vertical line through the right
endpoint of the vw-fence.

4. With 1> V3/(2+ V/3) = 0.4641, joint b hits a wall on UW

(i). inside the circle C centered at the left corner of the vw frame triangle,
or

(ii). between the vw-fence and the uvw frame triangle.
5. With 1> /3/(2 +/3) = 0.4641, joint b hits a wall on v
(i). inside the circle C centered at the right corner of the vw frame triangle,
or
(i). between the vw-fence and the uv frame triangle.

Proof: The only events that can prevent ¢ from reaching the frame triangle
at w are joint b hitting a side of A or the ruler abc straightening. We can
look at the cases in which b hits sides of A without b or ¢ being in a frame
triangle. Note that b is below the vw-fence since c is on VW.

In case 3(ii), joint a must be right of the vertical line through b, or else
dragging c right would move b away from the wall. But a must then be left
of the vertical line through the right endpoint of the vw-fence.

In 4(ii), there is room for b between the vw-fence and the uw frame triangle
only if link length | > 0.4641, by Lemma 11. In 4(i), c must be between the
ww-fence and the vw frame triangle for b to hit the wall between the uw and
w frame triangles. The fact that cis left of the vw frame triangle means that
b hits inside the circle centered at the left corner of the vw frame triangle.
This case occurs only if I > 0.4641. Furthermore, b is above the uv-fence if
[ < 0.4834 by Lemma 11.
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The cases for 5 (i) and (ii) are similar to those for 4 (i) and (ii). =

3: b hitstw U

p, 4(iiA)

e, (i) J W & A(iiB)
b hits here in 3(i): ¢ in case 3(i).
. . b,
b, 5(iiA)e_, N G/TCEIONS\ case 4(i)

& 5(iB) g 4(iiA)

4(i) AGiA). A4(iB).

4: b hits uw

e, BRI o
5(iB).  5(1) 5: b hitsuv

Figure 11: Locations for a that make b hit a wall in the cases of Lemma 14 asc
is dragged along 7w toward w. (Small circles mark the centers of relevant arcs.)

We can characterize the locations for a (and ¢) in terms of the location that
b hits the wall. For example, a lies on C, when b is on the wall—additional
conditions may restrict which portion of C,. One can determine all locations for
a that cause b to hit a certain wall segment by taking the union of the appropriate
portions of Cy for all positions where b hits that segment. Figure 11 illustrates
the regions for a that are described in the next lemma.
Lemma 15 When b is on a wall, we have additional restrictions in the following
cases of Lemma 14:

9. Joint a is below the vw-fence and right of the vertical line through b.

4(i). Joint a is above the 3(° line through b.

4(ii). Joint c is either (A) left or (B) right of the vertical line through b. Joint
a is either (A) right of the vertical or else (B) left of the vertical through b
and below the 8° line through b. (Actually, a can be coincident with c in
(B), but then the three joints are colinear.)

5(i). Joint a is below the -30° line through b or coincident with c.

5(ii). Joint c is either (A) left or (B) right of the vertical line through b. Joint a
is either (A) left of the vertical or above the -30° line or else (B) right of
the vertical and below the -30° line through b.
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Proof: Since a is fixed, joint b moves along C, in a direction determined by
the motion of ¢. The conditions on a (and ¢) ensure that this motion is into
the wall. m

Figure 12: Locations for @ and b that prevent motion of ¢ both left and right.

Next we look at what can happen when we try to drag c either right or left.
The cases are illustrated in Figure 12.

Corollary 16 Given a ruler abc with ¢ on 7w, by dragging c towards v and w
we get b or ¢ into a frame triangle unless

(1). joints a, b and ¢ become colinear,

(2). case 3(i) of Lemma 14 applies in one direction and 4(i) in the other,

(8). cases 38(ii) and 5(iiA) of Lemma 14 apply, or

(4). cases 4(1B) and 5(iiB) of Lemma 14 apply.
Proof: If we take the union of the a regions described in Lemma 15 and inter-
sect them with the reflection about a vertical line, then we find the positions
in which a can prevent motion in both directions. Figure 12 illustrates the
combinations for which the regions for a intersect and the resulting sliding
ranges for ¢ on TW remain between the vw and w frame triangles. The mo-
tions of b are also shown. (Other potential combinations in which regions for
o intersect are 3(i) & refi(3(ii)), 3(1) & refi(5(iiB)), and 4(ilA) & refl(5(iiA)).
These do not appear because the conditions regarding vertical lines cannot
be met by sliding c.) =

By way of remark, if [ < V3/(2 + V/3), then cases 2-4 of Corollary 16 cannot
apply.
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A.3 Folding a ruler onto the trellis

We are finally ready to fold a ruler with length I < z; =~ 0.4834 onto the trellis.
We first put joint jo into a frame triangle (and thus onto the trellis), then we
look at how the two-link rulers jojij2 and jajs jo work together and show that by
dragging j» either j; can be moved onto the trellis or three links can be folded to
one. Once we have the first joint on the trellis, frame triangles can be a big help.

Lemma 17 Suppose that jo is on the trellis. If one of the joints ji, ja, Js, OT Ja
ever gets into a frame triangle, then we can put j, onto the trellis.
Proof: If j; is in a frame triangle, then we can drag the trellis by moving jo
on C, until j; is on the trellis. If joint 2, j3, OT ja is in a frame triangle, then
we can drag the trellis toward that joint until a lower-numbered joint enters
a frame triangle. m

Now, consider the ruler jo, j1,- s Jn-

Lemma 18 Given a ruler jo, j1, - .., One can move jo into a frame triangle or
fold the first two links.

Proof: Consider the ruler jaj1jo with the position of j, fixed. If j; or jo are
in frame triangles, then we can put jo into a frame triangle. Otherwise, rotate
jo to a wall and apply Corollary 16. The only way for j2j1 jo to be colinear in
A minus the frame triangles is to fold jo onto jo. If, on the other hand, one of
the cases (2)—(4) hold, then dragging jo along the wall moves j; above some
fence so that jo can rotate on Cj t0 jz. =

We make one more useful observation. If we can put two joints together above
a fence, then we can fold three links to one.

Lemma 19 Given a ruler with joints abed, if a and c are pogﬁioned at a common
point above some fence, then we can fold all three links onto cd without moving d.

Proof: Joints b and d lie on the single arc A=A, =

Lemma 20 If jo is on the trellis, we can put j1 onto the trellis or fold three links
to one by rotating at most seven joints.

Proof: We apply our analysis of two-link rulers to jojijz and jsjsja. First,
we make sure that colinearity can never prevent joint j, from reaching a
frame triangle. Then we rotate j to a wall and drag it until jojij2 or jajsJ2
stop the motion according to Corollary 16. We handle mixed cases—where
jajsjz prevents motion of j, in one direction and joJ1 jo prevents motion in the
other—by reducing them to cases where the ruler jojij. does not restrict the
motion of jo. Finally, we show how to solve these cases by folding three links
to one or moving a joint into a frame triangle and applying Lemma 17.

If jo is in a corner frame triangle, then we move the trellis away from this
corner, pivoting on ja, until jo is at the edge of the frame triangle strictly
inside A. (Notice that if joint j, hits an edge of A during this process, then
41 is in a frame triangle.) Now, since A minus the corner frame triangles
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has diameter at most 2I and jo is in the frame inside this region, any future
colinearity of jojijz will imply that jo has entered a frame triangle.

Since jo is in a frame triangle, j; 1s on an arc of A; that intersects a frame
triangle. We can move ji into that frame triangle, pivoting on js, unless 72
hits a wall. By rotating and reflecting A, we can assume that this wall is 7W.

Suppose, without loss of generality, that the ruler jojij2 does not allow Jo
to slide freely to the right. We will show how to either satisfy the theorem
or else arrange that one joint (j, or js) can slide without restriction from
preceding links. Since jo is in a frame triangle, j, can be restricted only by
cases 3(i), 3(ii), or 5(iiA) of Lemma 14—only these cases have an region for
o that intersects a frame triangle. (See Figures 11 and 13.)

. : E5(iiA)
n .
é Jo

-—

92" J2 J1

Figure 13: Dealing with cases in which jojij2 restricts ja.

Case 5(iiA): This case is the casiest—we move the trellis to have a
vertex at w and jo moves out of the critical region and no longer restricts
the motion of jo. (This is because the arc Ag goes above the yw-fence
after the move.)

Case 3(ii): Joint j; is between the vw frame triangle and the uw-
fence, which means that j, is near v. If we drag j, toward v, Lemma 14
implies that only the ruler j4j3jo can prevent jo's entry into the v frame
triangle.

If joints ja, J3, and J2 become colinear by folding then jo=7s4 and
Lemma 19 implies that we can fold three links. With any other colin-
earity, j4 is in the frame. The only case of Lemma 14 that applies to the
ruler jajsja is 3(1). (Joint j is too close to v for 4(iiB).) In that case, drag
jo and j; along @y, pivoting on js and moving the trellis as necessary.
Joint j3 hits the wall at ji. Next, move jp on C3 = Cy1 to U0 and move the
trellis to . Then the ruler jojij2 does not restrict the motion of j, on uv.

Case 3(i): Joint j; is below the uv-fence and can move to the vw
frame triangle unless jz hits v according to case 4(i). But then the trellis
can be moved to u so that jo can slide freely between the uv-fence and
the vw frame triangle. Thus, js can slide on ww without constraint from
JoJ1j2ds:

We can now slide a joint freely along a wall, with respect to preceding
links. We shall call the joint j, and assume that the wall is between the vw
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and v frame triangles on 7W. According to Corollary 16, we can put ja Or J3
onto the frame unless (1) jajaj2 become colinear or I > v/3/(2+ V3) = 0.4641
and one of the cases (2), (3), or (4) depicted in Figure 12 (and Figure 14)
occurs.

J
./
13

“J2=J4
Figure 14: Only the ruler jajaja restricts jo

Case (3): This is the easiest case. Joint jo (as c) is always above
the uw-fence, so Ap has one connected component. Joint js sweeps this
component, so must hit j1. Then the positions of j» and j4 place them
on the same connected component of A3 = Ap; we can move jp 0 fold
J1j2jajs tO @ single link.

Case (4): In this case, joint j3 stops jo from reaching the vw frame
triangle by hitting ww according to 5(iiB). Move j; as close to the vw
frame triangle as possible. Apply Lemma 14 to ruler jsjajs in an attempt
to drag js into the uw frame triangle. (Notice that we can slide j, toward
the vw frame triangle so that j» never prevents this motion of j3.) One of
four outcomes occurs. First, if js reaches the frame, then we are done by
Lemma 17. Second, if js exits the case (4) region of Figure 12 then we are
done because j; is no longer restricted in both directions by jajsja- Third,
if j4 hits a wall in the case (4) region, then it does so at j, and above the
uwv-fence; Lemma 19 says we can fold three links to one. Finally, if 75, Ja
and js; become colinear, then js = Jjs. Joints j2 and js are on the same
connected component of As = As, so moving js folds j2 j3jajs to a single
link.

Case (2): In this case, joint j3 Stops ja from reaching the vw frame
triangle by hitting uv above the uw-fence. Attempt to drag js3 on uv;
notice that we can slide j; so that it never prevents the motion of 73.

Either j; reaches the frame triangle at v, and we are done by Lemma 17,
or js goes below the ww-fence and j, enters the vw frame triangle, or one
of the cases of Corollary 16 occur for js jajs. In case (1), joint j3 becomes
coincident with js above the uw-fence and Lemma 19 says that we can fold
Jojajajs to a single link. We need not consider (2), because there j3 goes
below the uw-fence. In cases (3) and (4), we slide j3 as far toward the uv
frame triangle as possible and Jjs hits 7w at j2. Now, js and js are on the
same connected component of A = As and we can again fold jaj3jals-
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Case (1): In the last case, j4, js and jp, become colinear. If one of
these joints is in a frame triangle then Lemma 17 applies—this must occur
if the ruler jajsjs straightens. Otherwise, jajaje folds so that ja = Ja.

If j, = j4 is above a fence, then Lemma 19 applies. Otherwise, we have
two components of Ay = Ay. If joint j3 is on a component that intersects
a frame triangle or one of joints ji or Js, then we are done by Lemma 17
or by folding three links to one. In the remaining case, which is illustrated
in Figure 14(1), joint j3 can be moved to UV and dragged into the uv frame
triangle without interference from the rulers jijaJs or JsjaJs.

This completes the proof that joints can be moved onto the trellis or links
folded. Since our motions affect at most three links before and three links
after the freely sliding vertex, we move at most seven joints. =
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