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Abstract

More and more real-life applications of the belief network framework begin to emerge.
As applications grow larger, the networks involved increase in size accordingly. For large
belief networks, the computations involved in probabilistic inference tend to become rather
time consuming, even so to an unacceptable extent. To address this problem, we have
proposed in a previous paper to incorporate the method of evidence absorption into Pearl’s
algorithms for probabilistic inference. In the present paper, the ability of this method to
improve on the average-case computational expense of probabilistic inference is illustrated
by means of experiments performed on different classes of randomly generated belief
networks. Both the set-up of the experiments and the results obtained are detailed.
The results from our experiments are shown to reflect to a large extent the use of belief
networks incorporating a randomly generated digraph. We comment on this observation
by addressing the suitability of using of randomly generated belief networks in this type
of experiment.

1 Introduction

More and more knowledge-based systems employing the belief network framework are being
developed for various domains of application, most notably for medical diagnosis and prog-
nosis [Andreassen et al., 1987; Heckerman et al., 1992]. The success of the framework can
be attributed to its powerful formalism for representing probabilistic knowledge and to its
general algorithms for mathematically sound probabilistic inference. As real-life applications
of the framework begin to emerge, however, the tendency of the basic algorithms involved
to slow down problem solving becomes apparent. Since probabilistic inference is NP-hard
[Cooper, 1990], this tendency cannot be denied in general; the algorithms associated with the
framework have an exponential worst-case time complexity. Current research therefore aims
at improving on the average-case computational performance of these algorithms.

In a previous paper, we have proposed integrating the method of evidence absorption into
Pearl’s algorithms for exact probabilistic inference to save on the computational effort spent
on average-case problem solving [van der Gaag, 1993]. The basic idea of this method is to
dynamically modify a belief network as evidence becomes available to reflect newly created
independencies. Since Pearl’s algorithms for probabilistic inference exploit the independencies
portrayed by a belief network directly, the incorporation of evidence absorption into these
algorithms is expected to speed up problem solving. To gain more insight into this ability
of the method of evidence absorption, we have conducted several experiments on different



classes of randomly generated belief networks. In this paper we present the results obtained
from these experiments.

The paper is organised as follows. Section 2 briefly reviews the belief network framework,
and describes the method of evidence absorption and its integration into Pearl’s algorithms
for probabilistic inference. In Section 3, we outline the set-up of our experiments and present
the results obtained. The results from our experiments are discussed in detail in Section 4.
In Section 5 we comment on the suitability of using randomly generated belief networks for
experiments with the method of evidence absorption. The paper is rounded off with some
conclusions in Section 6.

2 Preliminaries

In this section we briefly review the basic notions involved in the belief network framework. We
further describe the method of evidence absorption and its integration into Pearl’s algorithms
for probabilistic inference. These preliminaries serve only as a sketch of the background of
our experiments and are not meant to be tutorial; a more elaborate introduction to the belief
network framework and to Pearl’s algorithms can be found in [Pearl, 1988].

2.1 The Belief Network Framework

The belief network framework comprises a formalism for representing joint probability distri-
butions and a set of algorithms for exact probabilistic inference.

The belief network formalism provides for both a qualitative representation and a quan-
titative representation of the joint probability distribution on a set of statistical variables
discerned in a domain. The qualitative part of a belief network takes the form of an acyclic
digraph. Each vertex in this digraph represents a statistical variable that can take one of a
set of values. The arcs of the digraph represent interdependencies between these variables.
Informally speaking, we take an arc V — W in the digraph to represent a direct ‘influential’
relationship between the variables V' and W; the direction of the arc designates W as the
‘effect’ of V. Absence of an arc between two vertices means that the corresponding variables
do not influence each other directly and, hence, are (conditionally) independent. In building
a belief network for a domain of application, its graphical part is constructed to reflect as
many of the independencies between the variables discerned as possible. Associated with the
digraph of a belief network is a numerical assessment of the ‘strengths’ of the represented
relationships: with each vertex is associated a set of conditional probabilities describing the
influence of the values of its immediate predecessors on the probabilities of its values. The in-
dependencies portrayed by the graphical part of the network and the associated probabilities
together model the joint probability distribution for the problem domain at hand.

A belief network is used for making probabilistic statements concerning the variables
discerned in the domain of application. To this end, two algorithms for probabilistic inference
are associated with the formalism: an algorithm for (efficiently) computing probabilities of
interest from a belief network, and an algorithm for processing evidence, that is, an algorithm
for entering evidence into the network and subsequently (efficiently) computing the revised
joint probability distribution given the evidence. Several such algorithms have been developed,
the most well-known of which are the algorithms by J. Pearl [Pearl, 1988]. Since we will build
on Pearl’s algorithms for probabilistic inference, we will briefly outline their basic idea. In
doing so, we take an object-oriented point of view. The digraph of a belief network is taken



Figure 1: An Example of Evidence Absorption.

as a computational architecture: the vertices of the digraph are autonomous objects having a
local processor capable of performing certain probabilistic computations and a local memory
in which the associated probabilities are stored; the arcs of the digraph are bi-directional
communication channels. Through these communication channels the vertices send each other
parameters providing information about the represented joint probability distribution and the
evidence obtained so far. Each vertex is able to compute the probabilities of its values from
the information it receives from its neighbours and its own local probabilities. The details
of the computations involved are not relevant for the present paper. It suffices to emphasize
that the computational effort spent on probabilistic inference is largely determined by the
sparsity of the digraph of the network; in fact, Pearl’s algorithms exploit the independencies
portrayed by the digraph of a network directly and perform the better from a computational
point of view as the digraph is sparser.

2.2 Evidence Absorption and Pearl’s Algorithms

The method of evidence absorption is applied to a belief network after a piece of evidence
has been entered. The method seeks to incorporate the independencies newly created by the
evidence explicitly into the network at hand. To this end, the topology of the digraph of the
network is modified and the conditional probabilities assessed for its vertices are adjusted. The
modification of the graphical part of the network amounts to deleting from the digraph all arcs
departing from the vertex for which evidence has been entered. We illustrate this modification
by means of an example. Consider a belief network comprising the singly connected digraph
shown in Figure 1(a) and suppose that evidence is entered for the variable V3. The digraph
is modified by the method of evidence absorption by deleting all arcs departing from vertex
V3. The modified digraph is shown in Figure 1(b); the evidence is represented by drawing
vertex V3 with shading. As will become clear in the sequel, the modification of the probabilities
involved is of no relevance to the present paper. For further details on the method of evidence
absorption, we refer to [van der Gaag, 1993].

Since the method of evidence absorption tends to delete arcs from the digraph of a belief
network, it is worthwhile to integrate the method into Pearl’s algorithms to cut down on the
computational expense of further probabilistic inference: the more arcs are deleted from a



digraph, the sparser the digraph will become, and, as mentioned before, the computational
effort involved in probabilistic inference is largely determined by the sparsity of a network’s
digraph. The basic idea of integrating the method of evidence absorption into Pearl’s al-
gorithms is as follows. When a piece of evidence for a specific variable is entered into the
network, the method of evidence absorption is applied. Then, Pearl’s algorithms are called
upon to actually propagate the evidence. The correctness of the thus extended algorithm
derives from the observation that after propagation of the evidence the modified network
and the original network model the same updated joint probability distribution and the same
independency relation given the processed evidence.

3 The Experiments and Their Results

In the previous section, we have seen that the method of evidence absorption tends to delete
arcs from the digraph of a belief network and never inserts any new arcs. The most interesting
question to address now is what impact applying the method of evidence absorption has on
the topology of the digraph of a belief network as successive evidence is entered, since this
impact can be related directly to the computational expense involved in further probabilistic
inference.

From a theoretical point of view, the best case and the worst case are easily identified.
The worst case would be a digraph for which evidence is obtained only for vertices without
any outgoing arcs. In this case, applying the method of evidence absorption is pointless:
there are no arcs deleted from the digraph and further computations are just as expensive
as when evidence absorption had not been applied. It is worth noting, however, that the
method of evidence absorption would not weigh heavily on the computational effort spent
on probabilistic inference: the only additional work required would be a simple check on a
vertex’ successor set. In the best case, the method of evidence absorption causes the digraph
of the network to fall apart into components of size one only for a single piece of evidence:
this would be a digraph having the shape of a tree of depth one for which evidence is entered
for the root vertex.

The above observations are very general. To gain more insight into the impact of the
method of evidence absorption in situations which were not predesigned, we have conducted
several experiments on different classes of randomly generated belief networks. In this section,
we discuss these experiments and their results. In Section 3.1, the software developed for use
in the experiments is described. In Section 3.2, we outline the various experiments performed.
Section 3.3 details the results obtained from these experiments. An interpretation and detailed
discussion of the results are deferred to Section 4.

3.1 The Generators Used

As outlined before, the aim of our experiments is to gain insight into the impact of the method
of evidence absorption on the average-case computational expense involved in probabilistic
inference. Since this impact derives from the way the method modifies the graphical part of
a belief network and not from the modification of the associated conditional probabilities, we
have designed our experiments to apply to the graphical part of a network only. In each of
the experiments, we have generated a set of acyclic digraphs. Each digraph is generated to
comprise n vertices, n > 1, and m arcs, n—1<m < -;-n (n—1). In each digraph, k pieces of
evidence are entered for which the method of evidence absorption is applied, 1 < k < n. The
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integers n, m and k differ in the various experiments and will be further detailed in Section
3.2.

3.1.1 The Graph Generator

For generating acyclic digraphs comprising a pre-specified number of vertices and arcs, a
graph generator has been written in Common Lisp. At the basis of the generator lies an
ordered list of vertices V;, Vs, .... For a digraph of n vertices, the first n elements are selected
from this list. Subsequently, m arcs are created from the selected list of vertices, using the
random number generator facilities of our Common Lisp system. For each arc, two vertices
are selected at random from the list of vertices V;,...,V, of the digraph; the pair is taken to
represent an arc directed from the lower-ordered vertex to the higher-ordered one. Note that
this approach prevents the introduction of cycles into the digraph.

In our experiments, only connected digraphs have been considered. We have decided to
introduce the bias of connectivity into our experiments because digraphs occurring in real-life
belief networks tend to be connected. We would like to note that this bias is commonly used
in this type of experiment [Suermondt & Cooper, 1990]. To incorporate the connectivity
bias, the graph generator is furnished with a connectivity test. This test is employed in the
following sense. For a digraph with m arcs, the specified number of arcs is generated in the
manner described above. After having inserted m arcs into the digraph, the resulting graph
is tested for connectivity. If the graph is not yet connected, then additional arcs are created
and inserted, one at a time until the digraph has become connected. Subsequently, arcs are
selected at random from the thus generated digraph and deleted until the desired number of
arcs is arrived at; however, before eliminating a selected arc it is verified whether the digraph
will remain connected.

A digraph generated by the graph generator described above is not truly random in the
sense of the theory of random graphs [Bollobas, 1985}; randomness has been destroyed as a
result of the incorporation of the bias of connectivity. In addition, we observe that of the
class of connected acyclic digraphs of specific size not all graphs have equal probability of
being generated; the way the connectivity bias has been implemented accounts for the loss of
uniformity of generation. As these properties may seem unwished-for, we would like to note
that the generation of random digraphs is a complex research issue in theoretical computer
science. Rather than contribute to this line of research, our aim has been to create a practical
generator that would be ‘random enough’ for our purposes. As will become clear in the sequel,
the results obtained from our experiments indicate that our generator indeed achieves a high
degree of randomness. In addition, it is noted that generators reported to have been used for
similar experiments exhibit properties closely resembling the properties mentioned above; we
refer for example to the graph generator used in the experiment with loop cutsets reported
by H.J. Suermondt and G.F. Cooper [Suermondt & Cooper, 1990].

3.1.2 The Evidence Generator

To study the impact of repeated application of the method of evidence absorption, in each
experiment we have entered k pieces of evidence into each of the digraphs generated. Recall
that we are interested primarily in the impact of the method of evidence absorption on
a digraph’s topology and not so much in the precise probabilistic computations involved in
propagating the evidence. We therefore have modelled entering a piece of evidence by selecting



a vertex from the set of vertices of the digraph at hand and applying the modifying operation
of the method of evidence absorption to the digraph’s topology only.

Vertices modelling pieces of evidence are selected by an evidence generator. This generator
selects vertices from the digraph at hand either randomly or with one of two different biases.
These biases concern the location in the digraph of the vertices for which evidence is entered.
One bias aims at selecting vertices located in the upper part of the digraph; in the sequel, this
bias will be referred to as the upper bias. The other bias aims at selecting vertices located
in the lower part of the digraph; this bias will be termed the lower bias. These biases have
been introduced into the evidence generator because it is expected that the location in the
digraph of the vertices for which evidence is entered plays a major role in the impact of the
method of evidence absorption on a digraph’s topology. Note that for diagnostic applications,
the vertices for which evidence is entered tend to be located in the lower part of the digraph
whereas for prognostic applications these vertices are more likely to be located in the upper
part of the network.

The two biases mentioned above are implemented in the evidence generator as a two-stage
selection process. The process of selecting vertices located in the upper part of the digraph
starts with selecting a vertex V; from the ordered list of vertices Vi,...,V, of the digraph
in a random fashion, 1 < ¢ < n; the vertex modelling the piece of evidence then is selected
among the vertices V3, ..., V;. The property that this two-stage selection process implements
the wished-for bias derives from the observation that the ordering of the vertices employed
by the graph generator coincides with a topological ordering of the vertices of the generated
digraph. The bias for selecting vertices located in the lower part of the digraph is modelled
in a similar fashion.

3.2 The Experiments Performed

Before presenting the results, we outline the experiments performed and the objectives we
had in designing each of these experiments.

Experiments with the method of evidence absorption are performed in a search space
spanned by four parameters:

o the number of vertices of the digraphs investigated;

o the number of arcs of these digraphs;

e the number of pieces of evidence that are entered,;

e the location in the digraph of these pieces of evidence.

In the first experiment, the aim is to develop a feel for the influence of the various parameters
on the behaviour of the topology of a digraph under evidence absorption. To this end, a
coarse-meshed net is laid over the search space and the combinations of parameter values
corresponding with the meshes of this net are investigated. The number of vertices of the
digraphs generated is fixed to fifty — due to the use of randomly generated digraphs, we feel
that it is the ratio of the numbers of vertices and arcs that is of significance rather than the
number of vertices in itself. The pieces of evidence entered into the digraphs are selected
in a random fashion: the impact of the location in the digraph of the evidence is studied
in a separate experiment. The remaining two parameters defining our search space, that is,
the number of arcs of the digraphs and the number of pieces of evidence entered, are varied.



We investigate digraphs of fifty vertices comprising fourty-nine arcs (that is, singly connected
digraphs), and digraphs of fifty vertices with seventy-five, one hundred, one hundred and fifty
and two hundred and fifty arcs (that is, multiply connected digraphs), respectively. We have
refrained from investigating more densely connected digraphs, as in real-life applications the
digraphs of belief networks tend to be sparse [Pearl, 1988]. The numbers of pieces of evidence
investigated are one, ten and twenty-five.

Before describing which information is collected from this experiment, we recall that the
aim of incorporating the method of evidence absorption into Pearl’s algorithms is to improve
on the average-case computational expense involved in probabilistic inference. Since the
computational effort spent on inference depends on the sparsity of the digraph of the belief
network at hand, we determine from the experiment the minimum and maximum number
of deleted arcs as well as the average number of arcs deleted over all digraphs investigated.
In addition, we observe that if the digraph of a belief network has fallen apart into sepa-
rate components, then further probabilistic inference can be restricted to single components.
We therefore also determine from the experiment the average number of components after
evidence absorption and the average sizes of the minimum and the maximum component.
In addition, the cumulated count of the sizes of all components arising in the experiment is
determined.

The aim of our second experiment is to study, in isolation, the influence of the number of
arcs on the behaviour of a digraph’s topology under evidence absorption. In this experiment,
we once more consider digraphs comprising fifty vertices each. Again, the pieces of evidence
entered into these digraphs are generated in a random fashion. We have now fixed the number
of pieces of evidence entered to ten. The number of arcs of the digraphs is varied from fifty
up to one hundred and fifty, increasing by two. From this experiment, we determine the
average number of arcs deleted over all generated digraphs, the average number of components
resulting after evidence absorption and the average sizes of the minimum and the maximum
component.

The third experiment is similar to the second one in the sense that its aim also is to study
the impact of one of the parameters defining the search space for experimentation in isolation:
it is the number of pieces of evidence that is varied in this experiment. We once more generate
digraphs comprising fifty vertices; the number of arcs of the digraphs generated has been fixed
to one hundred. The pieces of evidence entered into these digraphs are generated randomly.
The number of pieces of evidence entered is varied from one up to twenty-five. From this
experiment, the same information is collected as from the second experiment.

The fourth experiment has been designed to investigate the influence of the location in
the digraph of the vertices for which evidence is entered. To this end, we repeat the first
experiment twice: once using the bias of selecting vertices located in the lower part of the
digraph and once using the bias of selecting vertices located in the upper part of the digraph.
We do not repeat the second and third experiment using these biases: we feel that repeating
these experiments would only reveal the same relationships between the parameters of the
search space involved. From the fourth experiment, we collect the same information as from
the second and third experiment.

In each experiment, we have created several sets of one hundred digraphs, one set for
each combination of parameter values investigated. We are aware that this number is not
large enough to allow any statistically sound conclusions to be drawn. However, for each
combination investigated, there is such a huge number of different digraphs that generating
and testing a representative number of digraphs would simply not be feasible.
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3.3 The Results of the Experiments

In this section, we present the results obtained from our experiments with the method of
evidence absorption as outlined above.

3.3.1 The First Experiment

Before presenting the results of our first experiment, we recall that in this experiment we have
generated digraphs comprising fifty vertices; the pieces of evidence entered into these digraphs
have been generated randomly. The experiment is composed of several tests in which we have
varied the number of arcs of the digraphs and the number of pieces of evidence entered.

Test 1

We have generated three sets of singly connected digraphs. For the first set, we have selected
one piece of evidence for each digraph; for the second set, the number of pieces of evidence
equals ten; for the third set, this number equals twenty-five. To each digraph, the method
of evidence absorption has been applied for the selected pieces of evidence. For the modified
digraphs, we have found the following statistics:

Number of pieces of evidence entered 1 10 25
Minimum number of arcs deleted 0 3 16
Mazimum number of arcs deleted 4 18 33
Average number of deleted arcs 0.79 9.58 24.81
Average number of components 1.79 10.58 25.81
Average size of the minimum component 23.65 1 1

Average size of the mazimum component 47.67 27.4  10.75

In addition to these statistics, Figure 2 presents the cumulated count of numbers of compo-
nents per component size.

Test 2

We have generated three sets of multiply connected digraphs comprising seventy-five arcs. For
the first set, we have selected one piece of evidence for each digraph; for the second set, the
number of pieces of evidence equals ten; for the third set, this number equals twenty-five. To
each digraph, the method of evidence absorption has been applied for the pieces of evidence
selected. For the modified digraphs, we have found the following statistics:

Number of pieces of evidence entered 1 10 25
Minimum number of arcs deleted 0 6 20
Magzimum number of arcs deleted 5 29 46
Average number of deleted arcs 1.35 14.89 36.51
Average number of components 144 595 16.36

Average size of the minimum component 3143 152 1
Average size of the mazimum component 49.5 445  30.18

In addition to these statistics, Figure 3 presents the cumulated count of numbers of compo-
nents per size.
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25 (c) Pieces of Evidence Entered.
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Test 8

We have generated three sets of multiply connected digraphs comprising one hundred arcs.
For the first set, we have selected one piece of evidence for each digraph; for the second set,
the number of pieces of evidence equals ten; for the third set, this number equals twenty- five.
To each digraph, the method of evidence absorption has been applied for the selected pieces
of evidence. For the modified digraphs, we have found the following statistics:

Number of pieces of evidence entered 1 10 25
Minimum number of arcs deleted 0 9 36
Mazimum number of arcs deleted 7 31 67
Average number of deleted arcs 2.08 20.59 49.45
Average number of components 1.32 455 12.61

Average size of the minimum component 3482 248 1
Average size of the mazimum component 49.67 46.38 37.74

In addition to these statistics, Figure 4 presents the cumulated count of numbers of compo-
nents per size.

Test 4

We have generated three sets of multiply connected digraphs comprising one hundred and
fifty arcs. For the first set, we have selected one piece of evidence for each digraph; for the
second set, the number of pieces of evidence equals ten; for the third set, this number equals
twenty-five. To each digraph, the method of evidence absorption has been applied for the
selected pieces of evidence. For the modified digraphs, we have found the following statistics:

Number of pieces of evidence entered 1 10 25
Minimum number of arcs deleted 0 7 56
Mazimum number of arcs deleted 10 47 96
Average number of deleted arcs 295 2944 74.82
Average number of components 1.09 292 9.18

Awverage size of the minimum component 4559 6.39 1
Average size of the mazimum component 49.91 48.06 41.74

In addition to these statistics, Figure 5 presents the cumulated count of numbers of compo-
nents per size.

Test 5

We have generated three sets of multiply connected digraphs comprising two hundred and
fifty arcs. For the first set, we have selected one piece of evidence for each digraph; for the
second set, the number of pieces of evidence equals ten; for the third set, this number equals
twenty-five. To each digraph, the method of evidence absorption has been applied for the
pieces of evidence selected. For the modified digraphs, we have found the following statistics:

10
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Number of pieces of evidence entered 1 10 25

Minimum number of arcs deleted 0 29 84
Mazimum number of arcs deleted 14 84 151
Average number of deleted arcs 564 49.32 125.73
Average number of components 1.07 217 5.76

Average size of the minimum component 46.57 1.57 2.96
Average size of the mazimum component 49.93 48.83 45.33

In addition to these statistics, Figure 6 presents the cumulated count of numbers of compo-
nents per size.

3.3.2 The Second Experiment

Before presenting the results of our second experiment, we recall that the aim of this exper-
iment has been to study in isolation the influence of the number of arcs on the behaviour
of a digraph’s topology under evidence absorption. In this experiment, we have generated
several sets of digraphs comprising fifty vertices each; the pieces of evidence entered into these
digraphs have been generated randomly. We have varied the number of arcs of the generated
digraphs from fifty up to one hundred and fifty, increasing by two for each set. To each di-
graph generated, we have applied the method of evidence absorption for ten pieces of evidence
selected. For the modified digraphs, we have found the statistics summarized in Figure 7;
Figure 7 (a) shows the average number of deleted arcs, in Figure 7(b) the average number of
components of the modified digraphs is shown, and Figures 7(c) and 7(d) plot the average
sizes of the minimum and maximum component of the modified digraphs, respectively.

3.3.3 The Third Experiment

Before presenting the results of our third experiment, we recall that the aim of this experiment
has been to study in isolation the influence of the number of pieces of evidence entered on the
behaviour of a digraph’s topology under evidence absorption. In this experiment, we have
generated several sets of digraphs comprising fifty vertices each; we have fixed the number
of arcs of these digraphs to one hundred. The pieces of evidence entered into these digraphs
have been generated randomly; the number of pieces of evidence entered is varied from one
up to twenty-five, increasing by one for each set of digraphs. To each digraph generated, we
have applied the method of evidence absorption for the pieces of evidence selected. For the
modified digraphs, we have found the statistics summarized in Figure 8; Figure 8 (a) shows
the average number of deleted arcs, in Figure 8(b) the average number of components of the
modified digraphs is shown, and Figures 8(c) and 8(d) plot the average sizes of the minimum
and maximum component of the modified digraphs, respectively.

3.3.4 The Fourth Experiment

Before presenting the results of our fourth experiment, we recall that the aim of this exper-
iment has been to investigate the influence of the location in the digraph of the vertices for
which evidence is entered. In this experiment, we have generated several sets of digraphs
comprising fifty vertices each; the number of arcs of the digraphs, the number of pieces of
evidence entered, and the bias for selecting the evidence are varied.

14
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Figure 8: The Results of the Third Experiment — (a) The Average Number of Deleted Arcs,
(b) The Average Number of Components, (c) The Average Size of the Minimum Component,
(d) The Average Size of the Maximum Component
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Test 1

We have generated six sets of singly connected digraphs. For the first set, we have selected
one piece of evidence for each digraph using the bias for the lower part of the digraph; for
the second set, the number of pieces of evidence equals ten; for the third set, this number
equals twenty-five. To each digraph, the method of evidence absorption has been applied for
the selected pieces of evidence. For the fourth, fifth, and sixth set, we have performed the
same tests now using the upper bias. For the modified digraphs, we have found the following
statistics:

Number of pieces of evidence entered 1 10 25

Bias used lower  upper lower  upper lower  upper

Average number of deleted arcs 0.45 1.54 5.15 14.24 16.11  32.85
(57%) (195%) (54%) (149%) (65%) (132%)

Average number of components 1.45 2.54 6.15 15.24 17.11 33.85
(81%) (142 %) (58%) (144%) (66%) (131%)

Average size of the minimum component 34.66 8.1 1.98 1 1 1

Average size of the mazimum component 48.71 46.04 3421 2143 17.85 7.55

Note that the table also indicates the average number of deleted arcs as a percentage of the
average number of deleted arcs found when selecting the vertices to obtain evidence for in a
random fashion.

Test 2

We have generated six sets of multiply connected digraphs comprising seventy-five arcs. For
the first set, we have selected one piece of evidence for each digraph using the bias for the
lower part of the digraph; for the second set, the number of pieces of evidence equals ten;
for the third set, this number equals twenty-five. To each digraph, the method of evidence
absorption has been applied for the pieces of evidence selected. For the fourth, fifth and sixth
set, we have performed the same tests now using the bias for the upper part of the digraph.
For the modified digraphs, we have found the following statistics:

Number of pieces of evidence entered 1 10 25

Bias used lower  upper lower  upper lower  upper

Average number of deleted arcs 0.70 2.34 7.89 21.37 24.67 50.28
(52%) (173%)  (53%) (144%) (68%) (138%)

Average number of components 1.24 1.65 2.89 9.22 9.1 26.97
(86%) (115%) (49%) (155%) (56%) (165%)

Average size of the minimum component  39.22 21.58 7.97 1 1 1

Average size of the mazimum component 49.75  49.33 47.72  40.97 40.39 18.7

Test 3

We have generated six sets of multiply connected digraphs comprising one hundred arcs. For
the first set, we have selected one piece of evidence for each digraph using the bias for the
lower part of the digraph; for the second set, the number of pieces of evidence equals ten;
for the third set, this number equals twenty-five. To each digraph, the method of evidence
absorption has been applied for the pieces of evidence selected. For the fourth, fifth and sixth
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set, we have performed the same tests now using the upper bias. For the modified digraphs,
we have found the following statistics:

Number of pieces of evidence entered 1 10 25

Bias used lower  upper lower  upper lower  upper

Average number of deleted arcs 0.97 3.00 11.06  29.31 33.81 68.26
(47%) (144%) (54%) (142%) (68%) (138%)

Average number of components 1.06 1.57 21 7.46 6.48 23.63
(80%) (119%) (46%) (164%) (51%) (187%)

Average size of the minimum component 47.56  25.01 15.71 1 1 1

Average size of the mazimum component 49.93 49.43 48.81  43.38 44.15 25.40

Test 4

We have generated six sets of multiply connected digraphs comprising one hundred and fifty
arcs. For the first set, we have selected one piece of evidence for each digraph using the
bias for the lower part of the digraph; for the second set, the number of pieces of evidence
equals ten; for the third set, this number equals twenty-five. To each digraph, the method of
evidence absorption has been applied for the pieces of evidence selected. For the fourth, fifth
and sixth set, we have performed the same tests now using the upper bias. For the modified
digraphs, we have found the following statistics:

Number of pieces of evidence entered 1 10 25

Bias used lower  upper lower  upper lower  upper

Average number of deleted arcs 1.27 4.67 16.50 43.40 50.32 100.70
(43%) (158%) (56%) (147%) (67%) (135%)

Average number of components 1.02 1.41 1.46 5.88 3.45 1.89

(94%) (129%) (50%) (201%) (38%) (206%)
Average size of the minimum component 49.02 304 3041 149 3.94 1
Average size of the mazimum component 49.98  49.59 49.53  45.09 47.53 31.86

Test 5

We have generated six sets of multiply connected digraphs comprising two hundred and fifty
arcs. For the first set, we have selected one piece of evidence for each digraph using the
bias for the lower part of the digraph; for the second set, the number of pieces of evidence
equals ten; for the third set, this number equals twenty-five. To each digraph, the method of
evidence absorption has been applied for the pieces of evidence selected. For the fourth, fifth
and sixth set, we have performed the same tests now using the bias for the upper part of the
digraph. For the modified digraphs, we have found the following statistics:

Number of pieces of evidence entered 1 10 25

Bias used lower  upper lower  upper lower  upper

Average number of deleted arcs 2.55 7.61 27.80 72.54 81.29 168.21
(45%) (135%) (56%) (147%) (65%) (134%)

Average number of components 1.01 1.3 1.09 4.53 1.56 16.13

(94%) (121%) (50%) (209%) (27%) (280%)
Average size of the minimum component 49.51  35.3 46.08 2.47 2795 1
Average size of the mazimum component 49.99 49.7 4991 4647 49.44  34.87
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4 Discussion of the Results

In the previous section, we have outlined the experiments we have performed with the method
of evidence absorption and presented the results obtained from these experiments. Here, we
will closely examine these results.

4.1 The Number of Deleted Arcs

Applying the method of evidence absorption amounts to deleting from a digraph all arcs
departing from a vertex for which evidence has been entered. We begin our discussion by
considering the average numbers of deleted arcs found in the various experiments.

From a theoretical point of view, we observe that in a digraph comprising n vertices and
m arcs, the average number of arcs departing from a vertex equals 2. When applying the
method of evidence absorption for one piece of evidence, the number of deleted arcs therefore
is expected to approximate this ratio. Since deleting the arcs departing from one vertex does
not influence the number of arcs departing from any of the other vertices in the digraph, we
find that for k pieces of evidence the number of deleted arcs is expected to approximate k- *.
For a given digraph, this formula indicates a linear relation between the number of pieces of
evidence entered and the number of arcs deleted by evidence absorption. The results of our
experiments confirm this observation. For example, Figure 8(a) shows a linear increase in
the number of deleted arcs for an increasing number of pieces of evidence entered. From the
formula k - 2, we further observe that the number of arcs deleted by evidence absorption for
a fixed number of pieces of evidence is related linearly to the total number of arcs comprised
in the digraph at hand. This observation is also confirmed by our experiments. For example,
Figure 7(a) indicates a linear increase in the number of deleted arcs for an increasing total
number of arcs.

When using either the lower bias or the upper bias in selecting vertices to enter evidence
for, the number of arcs deleted by the method of evidence absorption deviates from the
number of arcs deleted when selecting vertices in a random fashion: the experiments show
that when the lower bias is used the number of deleted arcs decreases, and that this number
increases when the upper bias is used. These results are easily explained by considering the
probability of selecting a vertex without any departing arcs in a digraph. Note that the more
such vertices are selected, the fewer arcs will be deleted by evidence absorption. We recall
that the lower and upper biases have been implemented building on a topological ordering of
the vertices of a digraph. It will be evident that a vertex that is assigned a higher number
in this ordering has a higher probability of having no arcs departing from it than a vertex
that is assigned a low number in the ordering. As a consequence, when applying the lower
bias there is a higher probability of selecting a vertex without any departing arcs than when
applying the upper bias.

For the lower bias, we observe that the number of deleted arcs varies between 43% and
68% of the number of arcs that is deleted when vertices to enter evidence for are selected
randomly. Note that this percentage increases as more pieces of evidence are entered into the
digraph. This increase can be explained from the observation that the more pieces of evidence
need to be generated, the higher in the digraph these vertices will have to be selected. A
similar observation applies to the upper bias where the number of deleted arcs varies between
131% and 195% of the number of arcs that is deleted when vertices to enter evidence for are
selected randomly.
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4.2 The Components of the Modified Digraphs

The main aim of incorporating the method of evidence absorption into Pearl’s algorithms for
probabilistic inference is to improve on the computational effort spent on average-case problem
solving. The impact of the method is most marked if the digraph of the network has fallen
apart into separate components since then further probabilistic inference can be restricted
to single components. We therefore closely examine the average numbers of components and
their respective sizes found in the experiments.

In singly connected digraphs, any arc deletion causes the digraph to fall apart into separate
components. For multiply connected digraphs, however, we observe that the more arcs are
comprised in the digraph, the higher the probability that there is more than one path between
two vertices and that arc deletion does not cause the digraph to fall apart. A theoretical
analysis of the behaviour of the topology of a randomly generated multiply connected digraph
under evidence absorption is far from trivial and would require further research. Since we feel
that the method’s impact in view of randomly generated digraphs may not be representative
for its impact on real-life belief networks, we refrain from such an analysis. To nevertheless
explain the results concerning the numbers of components of the modified digraphs obtained
from our experiments and the sizes of these components, we compare the behaviour of the
topology of a randomly generated digraph under evidence absorption with the behaviour of
the topology of a random digraph under arc deletion. We would like to recall that the digraphs
involved in our experiments are not truly random; moreover, the arcs to be deleted are not
selected entirely at random either. However, we feel that our experiments incorporate enough
randomness to justify such a comparison.

We consider the generation of a random digraph by successive addition of arcs between
randomly selected vertices [Bollobas, 1985). It will be evident that the more arcs are added to
a digraph in the making, the more likely it is to become connected. A well-known result from
random graph theory is that a random digraph with n vertices is almost always connected if
it comprises O(n - logn) arcs or more. Moreover, a random digraph with between O(n) and
O(n - logn) arcs typically comprises one large component of O(n) vertices, called the giant
component, and many small components of size at most O(logn) each. Now consider adding
to a digraph having the topology just desribed an arc between two randomly selected vertices.
We distinguish between three situations:

e the new arc connects two vertices comprised in the giant component — the probability
that this situation will occur is rather high and even increases as the giant component
increases in size;

e the new arc connects one vertex from within the giant component and one vertex from
within one of the tiny components — the probability that this situation will occur is
fairly small and even diminishes as the giant component grows; note that since adding
such an arc results in the giant component encapsulating a tiny one, we have that the
probability that the giant component will increase in size is inversely proportional to
its current size;

e the new arc connects two vertices not yet comprised in the giant component — the
probability that this situation will occur is small and even diminishes as the giant
component grows.

We now observe that the behaviour of the topology of a random digraph under arc deletion
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is dual to its behaviour under arc addition. From this observation we have that by successive
arc deletion a connected random digraph will at first stay connected until it has shrunk to
comprise approximately O(n - logn) arcs. Further arc deletion will tend to yield a topology
in which one giant component can be discerned and many tiny ones.

The digraphs generated in our experiments with the method of evidence absorption are
rather sparse and therefore are likely to exhibit the behaviour outlined above. The cumulated
counts of component sizes shown in the Figures 3, 4, 5, and 6 clearly reflect the giant-
component topology. The behaviour of the giant component itself is seen most markedly in
Figures 7(d) and 8(d). Figure 7(d) shows that as the number of arcs of the generated digraphs
increases, the size of the giant component rapidly rises to approximate the number of vertices
of the digraphs; note that the amount of increase in size of the giant component for an increase
in the number of arcs is inversely proportional to the size the component already has. Figure
8(d) shows that as the number of pieces of evidence entered, and hence the number of deleted
arcs, increases, the giant component slowly decreases in size. Figures 7(b) and 8(b) depict the
average number of components found in our experiments. Figure 7(b) shows that the number
of components rapidly decreases as the number of arcs of the digraphs, and hence the size of
the giant component, increases; Figure 8(b) shows that the number of components increases
as the number of pieces of evidence entered increases. Both Figure 7(c) and 8(c) demonstrate
that the size of the minimum component, and hence the size of the tiny components, is very
small compared to the size of the giant component.

5 The Use of Randomly Generated Belief Networks

The aim of the experiments reported in this paper has been to gain insight into the ability
of the method of evidence absorption to improve on the computational expense involved in
probabilistic inference. We have chosen to perform our experiments on randomly generated
digraphs to avoid the risk of fine-tuning the set-up of the experiments to the method to be
investigated. A close examination of the results obtained from the experiments has revealed
several interesting properties of the method of evidence absorption. Yet, from the discussion
in the previous section it will be evident that these properties to a large extent derive from
applying the method to randomly generated digraphs — in fact, the results obtained from
our experiments cannot be exploited for drawing detailed conclusions as to the method’s
behaviour on belief networks that do not incorporate a random digraph. Unfortunately, the
digraphs found in present-day real-life belief networks do not exhibit a random topology.
There are several alternative set-ups for experimentation with the method of evidence
absorption possible that do not involve using randomly generated belief networks. One al-
ternative is to apply the method to a range of existing real-life belief networks. Experiments
with the method of evidence absorption on real-life belief networks would give accurate insight
into the method’s true ability. At present, however, only few full-scaled, real-life belief net-
works are available, rendering extensive experiments on such networks practically infeasible.
Another set-up for experimentation is to closely examine existing belief networks and derive
general properties the digraph of a real-life belief network is expected to have — experiments
then are performed on randomly generated networks exhibiting these properties. However,
although most present-day belief networks have been designed for the same task, namely the
task of diagnosis, and therefore are expected to share some characteristics, they show a large
variety in their digraph’s topology [Wessels, 1994]. This variety can be explained to some
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extent by the differences in the respective domains. Yet, the variety in topologies can at
least partly be attributed to there being no consensus as to the wished-for properties of a
belief network other than most general ones. In fact, most existing networks are taylored to
non-standardized state-of-the-art methods for reasoning with a belief network which tend to
impose rather strong restrictions on the topology of the graphical part of the network. Since
research on reasoning methods rapidly progresses, future belief networks may very well differ
considerably from present-day networks. We conclude that at present it is not possible to
draw any decisive conclusions as to the properties a realistic belief network is expected to
have. Despite this observation, we do not expect that future belief networks will comprise
digraphs of random topology. We feel that as applications grow larger, the digraphs involved
will tend to have a topology in which subgraphs with a high degree of connectivity can be
discerned modeling different focal areas of attention of the domain at hand; these dense sub-
graphs will tend to be loosely interconnected. As long as this tendency is not confirmed by
full-scale real-life networks, however, setting up experiments along these lines runs the risk of
fine-tuning to the method to be investigated.

From the above observations, we conclude that although the use of randomly generated
belief networks in our experiments may leave much to be desired, at present it seems to be
the only feasible set-up for experimentation.

6 Conclusions

As more and more real-life applications of the belief network framework begin to emerge, it is
becoming apparent that the basic algorithms involved in probabilistic inference tend to slow
down problem solving. Recent research therefore aims at improving these basic algorithms.
In a previous paper, we proposed the method of evidence absorption to this end. To gain
some insight in the ability of this method to improve on the computational expense involved
in inference, we performed several experiments on different classes of randomly generated
belief networks. Unfortunately, the results obtained from these experiments to a large extent
reflect the use of randomly generated belief networks and do not provide for drawing detailed
conclusions as to the method’s behaviour on real-life networks.

In present-day real-life applications of the belief network framework, the networks in-
volved exhibit a large variety in their digraph’s topology. Since the impact of applying the
method of evidence absorption on probabilistic inference to a large extent is determined by
the topological properties of the digraph of the network at hand, it will have to be decided
for each belief network separately whether or not applying evidence absorption is expected
to be advantageous. To this end, a simple investigation of the location in the network’s di-
graph of the vertices for which evidence is likely to be entered suffices; note that it is not so
much the number of outgoing arcs of these vertices that determines the impact of applying
evidence absorption as these vertices’ ability to let the digraph fall apart into components of
approximately equal size upon evidence absorption. We would like to emphasize that apply-
ing the method of evidence absorption does not weigh on the computational complexity of
probabilistic inference.

We have mentioned before that due to the use of randomly generated belief networks
the results obtained from our experiments with the method of evidence absorption do not
provide for drawing detailed conclusions as to the method’s behaviour on real-life networks.
Although our experiments were designed to investigate the behaviour of one specific method
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only, we feel that a similar observation applies to using randomly generated belief networks
in other experiments in which the topology of the digraph of a network plays a central role.
As long as there is no well-established insight into the properties of real-life belief networks
other than most general ones, however, using randomly generated networks may be the only
feasible method for experimentation. Yet, care has to be taken in drawing conclusions from
the results of such experiments.
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