Rewrite Systems for

Integer Arithmetic

H.R. Walters and H. Zantema

UU-CS-1994-43
October 1994

Utrecht University
S X S,

S o, -
3 = Department of Computer Science
TS ,‘g, Padualaan 14, P.O. Box 80.089,
e} »
71y 3508 TB Utrecht, The Netherlands,

Tel. : ... + 31- 30 - 531454

ISSN: 0924-3275

Rewrite systems for integer arithmetic

H.R.Walters H.Zantema,

Centre for Math. and Comp. Sc. Utrecht University, Comp. Sc. Dept.
P.O. Box 94079, 1090 GB Amsterdam P.O. Box 80.089, 3508 TB Utrecht
H.R.Walters@cwi.nl hansz@cs.ruu.nl
Abstract

We present three term rewrite systems for integer arithmetic with addition, multiplica-
tion, and, in two cases, subtraction. All systems are ground confluent and terminating;
termination is proved by semantic labelling and recursive path order.

The first system represents numbers by successor and predecessor. In the second,
which defines non-negative integers only, digits are represented as unary operators. In
the third, digits are represented as constants. The first and the second system are com-
plete; the second and the third system have logarithmic space and time complexity, and
are parameterized for an arbitrary radix (binary, decimal, or other radices). Choosing
the largest machine representable single precision integer as radix, results in unbounded
arithmetic with machine efficiency.

Key Words & Phrases: integers, term rewriting, specification languages, formal semantics, confluence,
termination.

1991 CR Categories: D.1.1 [Programming Techniques]: Applicative (Functional) Programming; F.3.2
[Logics and Meanings of Programs): Semantics of Programming Languages, Algebraic approaches to
semantics.

1991 Mathematics Subject Classification: 68Q40: Symbolic computation, 68Q42: Rewriting Systems and
68Q65: Algebraic specification.

Note: Partial support was received from the European Communities under ESPRIT project 5399 (Com-
piler Generation for Parallel Machines — COMPARE).

1 Introduction

In [CW91] a term rewrite system is presented of base four integers with addition and multipli-
cation. This rewrite system is proved to be locally confluent modulo associative-commutative
multiplication and addition. Termination is not established and seems to be very hard to
prove; it is listed as an open problem in [DJK93]. The system does not easily generalize
to arbitrary number base. In [BW89] a rewrite system is presented of non-negative binary
integers with addition, which is shown to be ground confluent and terminating. Both systems
have logarithmic space and time complexity. Here, by space complexity we mean the space
required to store a number as a function of its absolute value, and by time complexity we
mean the number of steps required to reduce the addition, subtraction or multiplication of
two such numbers, to normal form.

In this article we discuss term rewrite systems for integer arithmetic, where we desire (ground)
confluence, termination, logarithmic complexity, good readability, a minimal equational set-
ting (non AC) and an arbitrary number base.

We will present three rewrite systems which have most of these properties. All systems
are pure term rewriting systems, unconditional and not taking terms modulo equations. All
systems are ground confluent (which follows from having unique ground normal forms) and
terminating (which is proved by recursive path order ([Der87]) and, where appropriate, se-
mantic labelling ([Zan93])).

The first system is the common successor-zero system for natural numbers, extended with
a predecessor function. This successor-predecessor system is referred to as SP. Confluence
and termination are easily established. Drawbacks of this system are, firstly, that it has
linear space and time complexity, or worse, in the case of multiplication, and secondly, that
the successor-zero notation of numbers is hardly palatable to the human eye and is therefore
mainly of theoretical importance.

The second system (DA, digit application) concerns non-negative integers only, but it does
have all desired properties. It is confluent and terminating without assuming commutative-
associativity of addition or multiplication; it has logarithmic complexity; and features human
readable syntax.

In this system the digits occur as unary operators, written in postfix notation. An (in-
visible) constant of value zero is needed to represent numbers. This corresponds to the usual
human syntax except for the number 0 which is represented by the invisable constant. The
system needs some auxiliary functions. '

The third system (JP, juxtaposition) defines integers consisting of sequences of digits,
where digits are constants. It is ground confluent, but not confluent. It has logarithmic
complexity, does not rely on auxiliary functions and features human-readable syntax. The
system is terminating; the termination proof is quite involved. It is given in two levels: first
the system obtained from ignoring all unary minus-signs is proved terminating, second the
remaining rules for which this ignorance yields equality are proved terminating. Both of these
termination proofs are given by transforming the system to an infinite labelled system by the
technique of semantic labelling and proving termination of the labelled system by recursive
path order.

The systems DA and JP are presented for an arbitrary radix (number base); only the
digits 0, and in one case 1, have special significance. All rules containing other digits are
represented using rule schemata, which we will introduce in Section 3.

Apart from the formal logarithmic complexity, our rewrite systems have very good prac-
tical efficiency. For example, considering JP, discussed in Section 5:

e The binary version has 30 equations; the measured number of reduction steps for per-
forming multiplication of two positive integers not exceeding n seems to be bounded by
2 x log’n * (1 + loglog n).

e The decimal version of our rewrite system has essentially the same 30 equations, only
some of them are parametrized. For instance, instead of the 81 rules for non-zero digit
multiplication, a single rule schema is given. One of the instances is, for example,
7x8 — 56. The efliciency of multiplication is of the same order as in the binary version.

e Using the largest machine-representable single precision integer as radix, results in an
implementation which provides unbounded integers at near-machine efficiency. This is
discussed in Section 6.

Hence this system can be used as the basis for an implementation of integer arithmetic. Its
efficiency is comparable with that of the more usual implementations. A major advantage

2

of our approach is its extensibility: extension of the implementation by new functions like
exponentiation can be done simply by only adding a few rewrite rules to the system.

In Section 2 we present the system SP. In an intermezzo in Section 3 we present rule
schemata. Then, in Section 4 we present the system DA and in Section 5 the system JP.
In Section 7 we present an overview of the various rewrite systems, and we discuss some
conclusions.

Our notation and terminology are consistent with [K1092]. We consider ordinary (non-AC)
operators, and we are interested exclusively in rewriting finite terms.

2 Successor-zero integers

In the following rewrite system 0 is the constant zero, s and p are the functions representing
successor (plus one) and predecessor (minus one), +, * and — have their usual meaning in
arithmetic, and z, y and z are variables.

(1) =z+0 -+ T (10) s(p(z)) -+

(2) z+s(y) — s(z+y) (11) p(s(x)) -

(8) z+ply) — plz+y)

(4) z-0 - (12) (z—y)+y — =«

(5) z—s(y) — plz—y) (13) (z+y)-y — =

(6) z-ply) — s(z-y) (14) s(z)+y - s(z+y)
(7) zx0 - 0 (15) s(z) -y = s(z—vy)
(8) z*s(y) — (z*xy)+z (16) plx)+y — p(z+y)
(9) zxp(y) — (zxy)—z (17) plz)-y — plz-y)

The system SP

Termination of the TRS SP is established with recursive path ordering ([Der87]), taking the
following precedence of operators: * > {+,—} > {s,p}.

Local confluence is easily verified using, for example, the Larch prover ([GG91]). Note
that rules 12—17 are required only to establish local confluence; they are not required for
ground confluence. Confluence follows from local confluence and termination.

One easily checks that 0, s™(0), p™(0) for n = 1,2,3,... are the ground normal forms.
Hence ground normal forms correspond bijectively to integers.

The space complexity of this rewrite system is linear. That is, to represent a number
n, a term of size O[n] is required at least. Addition of two numbers, in absolute value not
exceeding n, requires O[n] reductions (worst case); multiplication requires O[n?] reductions.
For example, the multiplication of 5 and 6 requires 46 reductions using the left-most inner-
most reduction strategy.

3 Rule schemata

In the sequel we will consider rewrite systems in which non-zero digits occur, but we will do
so for an arbitrary radix. The rules concerning these digits are very regular, and are similar
for each radix.

In our system we express this fact by presenting these rules with rule schemata. A rule
schema is a notational device defining a family of rules at once. The left-hand side is a
term containing schema variables (e.g., 8); the right-hand side contains schema variables and
schema diagrams representing common arithmetic operations (e.g., ®).

The meaning of a rule schema is the set of rules obtained by ranging all schema variables
over, as the case may be, all digits or the non-zero digits, and by using a predetermined
interpretation for the schema diagrams. We reserve the notation d°, §,, etc., for schema
variables that range from 0 to the largest digit, and 4, i, etc., for digits that range from 1
to the largest digit. That is, using R to represent the radix, we have 0 < 8" <R -1and
1<§<R-1

Note that schema diagrams are meta notation and do not occur in the signature. We will
discuss the individual schema diagrams where we use them. There, we will also discuss the
specific properties of we use to establish (ground) completeness.

4 Natural numbers with digits as unary operators

In our second rewrite system DA all digits are interpreted as unary postfix operators (hence,
digit application). That is, a natural number followed by a digit is again a natural number.
The base of this induction is a constant of value zero represented by the empty string. In the
sequel we will make this string explicit — by surrounding it with parentheses, — whenever this
is necessary for clarity. For example, we will write + () — z. A minor inconvienience is the
fact that the number 0 is now represented as the empty string.

We will use the following three schema diagrams: @, for addition modulo R, © for addition
carry, and ® for digit multiplication. Since digits are functions themselves, the meaning of
schema diagrams is taken appropriately. We enclose schema diagrams that signify function
applications rather than proper sub-terms in angle brackets.

For addition we define (§; @ ;) to be the postfix operator corresponding to last digit of
8; + 8. For example, (z)(5 ® 2) denotes (z)7 and (x){7 @ 8) denotes (x)5. We denote this
schema as a postfix operator.

In complement, the carry schema defines the addition carry. If §; + 8, < R then z(3; ©5;)
signifies x; if §; +8, > R then z{0, ©6,) signifies s(z). Here s is an auxiliary function symbol
defined in the system. For clarity, this schema is also denoted as a postfix operator, even
though it signifies a function application, or no function application at all.

For multiplication, the schema diagram © is introduced giving the result of multiplication
of two digits. For example, 2 ® 4 denotes 8, while 5© 6 denotes 30.

In addition to the function s, the system defines one auxiliary unary operator for every
digit. We will write these functions as x,,. The meaning of x,, (x) is 6" * x. Note that each
*,, is an auxiliary function; not a schema diagram.

(1) 00 = 0

(2) O+z = =«

(8) z+() = =

) 36 +ys, — (T+y)(6,©85)(0; ®6)
5y Qrz = 0

(6) 28" xy = (zxy)0+*,.(y)

(7) s) = 1

(8) s(z8°) = (z)(1©5°)(188)

(9) *.() = 0

(10) w,(2h) > (k,(@)0+5 08

The system DA

Ground normal forms: The set of ground normal forms of this rewrite system is: N =
{()} U ®, where ® is the smallest set satisfying & = {6} U {8’ | € ®}. This fact is easily
verified. Clearly ground normal forms correspond bijectively to non-negative integers.

Correctness: The natural numbers are a model for this rewrite system under the given
interpretation; it is easily verified that all equations hold.

Termination: Termination is proved simply by recursive path order choosing the prece-
dence
«>{x.}>+>s>{0}>().

Confluence: The only overlap between the left hand sides of the rules is between the rules
2 and 3, only giving the trivial critical pair ((), ()). Hence the system is locally confluent, and
hence, by termination, confluent.

5 Integers with digits as constants and juxtaposition

A natural next step is to extend the system of the last section to integers by adding rules for
the unary and binary minus operator. Both for termination and for confluence this gives some
complications. For instance, one expects a rule (—z)5 — —((p(x))5) for a predecessor operator
p for which there is a rule p() = —(()1). This yields the self-embedding reduction (—())5 —
—((p())5) = —((=(()1))5). Similar problems arise for choosing other representations for
predecessor. Even if termination can be achieved, then confluence is a big problem. Adding
rules like — — z — z yields many critical pairs that turn out to be not convergent.

From now on we leave the requirement of confluence, and only require ground conflu-
ence. For many applications, for example the implementation of ordinary arithmetic, ground
confluence is sufficient.

We also leave the representation of digits being unary symbols; we choose digits to be
constants and introduce a juxtaposition operator which combines digits into numbers. For
example, the number 12 is defined by applying the (invisible) juxtaposition operator to the
digits 1 and 2. Because of this juxtaposition operator this final system is called JP.

5

There are several reasons to change the representation. One reason is that it becomes even
closer to human representation of integers. A second reason is that no auxiliary functions are
needed any more. A third reason is that the tables for addition, subtraction and multiplication
of two digits can be directly considered as rewite rules. For example, instead of the rule

*7(28) — (x:(2))0 + ((()5)6

we simply have the rule 7 * 8 — 56.

The interpretation of the juxtaposition operator is defined as follows: [zy] = R*[=]+1vl
where R is the radix. The operator is left-associative. For example, in base ten, [123] =
[(12)3] = 10 % [12] + [3] = 10 * (10 * [1] + [2]) + [3] = 100 % [1] + 10 * [2] + [3] = 123. For
our rewrite system we will keep this interpretation in mind, but the multiplication operator *
is not strictly needed as an auxiliary function. In normal forms, the right-hand argument of
the juxtaposition operator is always a digit, but non-digits may occur in intermediate terms.

The schema diagrams we will use are all similar: they represent the normal form of a
simple function applied to one or two digits, resulting in a digit, or two juxtaposed digits,
possibly with a minus sign. The schemas are: @ for addition, © for subtraction, ® for
multiplication, ~ for R complement (i.e., § =R — 8) and ~ for predecessor (i.e., b=4-1).
For example, the decimal meaning of 5 ® 6 is 30, and the meaning of 3 is 7. If &, is 1, it is
understood that 5152 signifies 5, rather than 00,.

To avoid parentheses we introduce priorities: juxtaposition has highest priority; then
unary minus; then multiplication, and then then addition and subtraction. Where necessary
parentheses have been added to improve readability. Rule schemata have bold indices.

(1) 0z — =z (17) 0—z — -I

(2) z(yz) — (z+y)2 (18) -0 —

(3) z(-(y2)) — —((y-2)2) (19) & -6 — 6166

(4) 61(=8;) — 0dy (20) zy—2z — z(y—2)
(5) 20(=8) — =z(-1)d (21) z-yz — -(ylz—=2)
(7) (—z)y = —(=(-v) (23) -z-y — —(z+y)
(8) -——z =z

(9) -0 = 0

(10) O+ — <« (24) Oxz — 0

(11) z+0 = =z (25) zx0 — 0

(12) 6,4+, — 66 (26) b1x8; = 606
(13) c4+yz = ylz+2) (27) zxyz = (zxy)(z*2)
(14) zy+z — z(y+2) (28) zyxz = (zx2)(y*2)
(15) T+-y — T—Y (29) zx—y — —(z*y)
(16) ~T+y = Y-z (30) —zxy — —(z*y)

The system JP

Ground normal forms: The set of ground normal forms of the system JPis: N = {0} U
® U ®~, where ® is defined as the smallest set satisfying ® = AU {aBla € @AB e {0}UA},

—— R

with A being the set of non-zero digits, and &~ = {-¢|¢ € ®}. Hence ground normal forms
correspond bijectively to integers.

This fact is easily verified. We will discuss the only non-trivial case. Consider a term of
the form af.

e if ais 0 or of the form —7, the term can be reduced by rules 1 and 7, respectively.
e suppose « is a non-zero digit. Consider S:

— if € {0} UA, we have o3 € D.
— if B is of the form o7. Rule 2 applies.

— suppose 3 is of the form —p. If p € A rule 4 applies. If p is 0 or of the form o7 or
—o, the term can be reduced with rule 9, 3 or 8, respectively.

e suppose a is of the formen. If Sisa digit, or has the form o7, the argument immediately
above applies. Otherwise g is of the form —p. Again, if p is 0 or of the form o7 or —o
the term can be reduced as mentioned above. Hence p is a non-zero digit.

To recapitulate: the remaining case is where af is of the form (en)(—p), where p € A.

The left-hand side of this term has the same form as af, and our entire argumentation
can be used recursively.

We see that the only irreducible terms not in N are of the form ag, where a, = ni1(—dn)
and where each d; is a non-zero digit. This is impossible for finite terms.

Correctness: The integral numbers are a model for this rewrite system under the given
interpretation; it is easily verified that all equations hold.

Ground confluence: Observe that no two distinct normal forms have the same value,
in this model. From this and the previous observation we can conclude that every term
has a unique normal form. But then ground confluence is established if termination can be
established; this will be shown in the next section. The system is not confluent, for example
we have 5 3

z(8;,(=682)) — x(01d2) — (x + 01)02)
and

.’L'((Sl(—62)) — ((L'+(51)(—62)

without having a common reduct. Also associativity and commutativity of + appear as
critical pairs, hence the only chance to achieve confluence is by taking the + as an AC-
operator. However, Knuth-Bendix completion of this system yields hundreds of critical pairs
and seems not to terminate.

Restricting to natural numbers, ie., taking only the rules in which no —-sign occurs,
the system is locally confluent if + is taken as an AC-operator. However, modulo AC the
termination proof is much more complicated, while for only the naturals we already had a
confluent and terminating system DA without taking + modulo AC.

Termination: Termination of JP is not trivial Standard techniques like recursive path
order do not provide a termination proof. Even termination of only the rules 2, 12 and 13 is
already hard to prove; these rules also occur in the system of [CW91].

Tn the next section we give a termination proof of the full system using the technique of
semantic labelling ([Zan93)).

5.1 Termination of JP
5.1.1 Outline of the proof

In the proof no distinction is made between the binary plus and the binary minus, and no
distinction is made between distinct digits. The proof is given in two levels: first we ignore the
unary minus sign and prove termination of the rules for which the left hand side is different
from the right hand side (R;), next we prove termination of the rules for which equality is
obtained (R,). More precisely, termination of the full system JP follows from termination of
both R; and R, and the observation

topu = @(t) o, $u) V (B() = $(u) A P(t) 2r, P(u))
Here, ¢ and 1 are defined inductively by

¢(d) =0 P(d) =0
¢(z) =2 P(z) =2
¢(—t) = o(t) P(=t) = —¥(t)
¢(tu) = ¢(t)¢(u) P(tu) = P(t)P(uw)
$(t +u) = ¢t —u) = ¢(t) + $(u) Yt +u) =Pt —u) = P(t) +¥(u)

for all variables z, all digits d and all terms ¢, u. The systems R; and R, are constructed in
such a way that the above property holds. For concluding termination of the full system JP
it suffices to prove termination of both R, and R,.

(1) 0x — =

(2) z(yz) - (z+y)2

(3) z(yz) = (y+2)z
(10,17) 0O+z — <«
(11, 18) 40 o =z
(12, 19) 0+0 — 0 (4} 0(—0) — 00

(12) 0+0 — 00 (5) z0(=0) — xz(-0)0
(13) z+yz — ylx+2) (6) z0(—=0) — =z00
(14,20) zy+z — z(y+2) (7) (—z)y - —(=(-v)
(21) z+yz = ylz+z) (8) ——z =

(24) Oxx — O (9) -0 - 0

(25) £x0 — 0 (15,22) a+-y — T4y
(26) 0x0 — 00 (16) —rz+y — y+=zx
(26) 0«0 — 0 (23) —z+y — —(z+y)
(27) cxyz — (T*xy)(z*2) (29) rx(-y) = —(z*y)
(28) zyxz — (zxz)(y*2) (80) (-z)xy — —(z*y)

The system R, The system R,

For the termination proofs for both R; and R; we shall use the technique of semantic
labelling. The version we need is described in the next section.

5.1.2 Semantic labelling

This technique makes use of the fact that a TRS with some semantics can be transformed
into another (labelled) TRS such that the original TRS terminates if and only if the labelled
TRS terminates. The termination proof is then given by proving termination of the labelled
TRS, which is often done by recursive path order.

Let R be any term rewrite system over a signature F and a set X of variable symbols.
Let M = (M,{fm}ser) be an F-algebra. Let > be any partial order on M for which all
operations fas are weakly monotone in all coordinates.

For o : X — M the term evaluation [o] : T(F, &) = M is defined inductively by

[o)(z) = 2°
B)(f (s, ta) = fama((0)tr)s - [0](E))

forz € X,f € Fotr, .. tn € T(F, X).

We require that M is a quasi-model for R, i.e., [6]() > [o](r) forallo : X = M and all
rules | — 7 of R (if we have [o](I) = [0](r) then it is called a model).

Next we introduce labelling of operation symbols: choose for every f € F a corresponding
non-empty set Sy of labels. Now the new signature F is defined by

F ={f|f € F,s €S},

where the arity of f, is defined to be the arity of f. An operation symbol f is called labelled if
S; contains more than one element. For unlabelled f the set Sy containing only one element
can be left implicit; in that case we write f instead of f,. Note that F can be infinite, even
if F is finite.

We assume that every set S; is provided with a well-founded partial order >. Choose for
every f € F a map my : M™ = Sy, where n is the arity of f. We require 7y to be weakly
monotone in all coordinates. It describes how a function symbol is labelled depending on the
values of its arguments as interpreted in M. For unlabelled f this function 7; can be left
implicit. We extend the labelling of operation symbols to a labelling of terms by defining
lab : T(F, X) x M* — T(F, X) inductively by

lab(z,0) = =z,
lab(f(t1,...,ta),0) = Frs(eltn)vnlolta) (12D(E1, 0), - ,lab(tn, o))

forx € X_,_G:X——)M,f € F,t1,...,tn € T(F,X).
Now R is defined to be the TRS over F consisting of the rules

lab(l, o) — lab(r, o)

for all o : X — M and all rules I = 7 of R. Note that this system can be infinite, even if R
is finite.

Finally the TRS Decr over F is defined to consist of the rules

fs(xlv-'awn) — fs‘(mla--'vxn)

for all f € F and all 5,s' € S satisfying s > s'. Here > denotes the strict part of >. Now
we are ready to state the main result of semantic labelling:

9

Theorem

Let M be a quasi-model for a TRS R over F. Let R and Decr be as above for any
choice of Sy and my. Then R is terminating if and only if RU Decr is terminating.

For the proof we refer to [Zan93).

For both R, and R, we shall give a quasi-model M, and Sy and 7 such that the corre-
sponding infinite system RuUDecr can be proved terminating by using RPO over a well-founded
precedence.

5.1.3 Termination of R,

We denote the juxtaposition operator by ¢, for clarity.
As the quasi-model M and the sets S. and S, we choose the strictly positive integers with
the usual order. We choose

Om=1 z-my=cs+my=c+y, T¥my=T*y

for all z,y € M. One easily checks that indeed [0](1) > [o](r) forallo : X — M and all rules
| = r of R;, hence indeed M is a quasi-model for R;. Next we choose

W-(:I:’y) = 7r+(a:,y) =xr+Yy

for all z,y € M. All functions involved are weakly monotone in all coordinates. Now the
infinite system R, U Decr consists of the rules
(1) 02 — foralli>1
(2) g (y-;2) =& (@+ey) iz for j <iand k <%
(3) - (y52) = (WHex)iz forj<iand k <:
(10,17) 0O+, — = foralli >1
(11,18) x+;0 = =z foralli>1
(12,19) 0420 — 0
(12) 04,0 — 00
(18) c+i(y;2) = yi(@+ez) for j <iand k <1
(14, 20) (x-5y)+iz — z i (Y +i 2) for j <iand k<%
(21) c4i(y2) = yilz+ez) forj <iand k <1
(24) 0xz — 0
(25) cx0 = 0
(26) 0%0 — 050
(26) 0%x0 — 0
(27) zx(y2) = (@xy)(@*2) where j is a multiple of ¢
(28) (xsy)xz — (x*z)5(y* z) where j is a multiple of ¢
Ty — TGy for j <1
T4y = ;Y for j < 1.

This system is proved terminating by RPO by choosing the well-founded precedence
D> D> > > o > -1 >

Here -; has the lexicographic status from right to left.

10

5.1.4 Termination of R;

As the quasi-model M and the set S. we again choose the positive integers with the usual
order. Only juxtaposition will be labelled, the other operation symbols remain unlabelled.
We choose

Opy=1 —mr=z+1, T-My=72, THMY=Trxmy=2+Y

for all 2,y € M. One easily checks that indeed [0](1) > [o](r) forallo : X — M and all rules
| — r of Ry, hence indeed M is a quasi-model for R,. Next we choose

w.(z,y) =72

for all z,y € M. All functions involved are weakly monotone in all coordinates. Now the
infinite system R, U Decr consists of the rules

(4) 04,(-0) = 0,40
(5) 40 (-0) = =z(=0)0 for all ¢
(6) £505(-0) — 200 for all ¢
(7 (—x) i1y — —(z s (~y)) foralle
(8) ——z = T
(9) -0 = 0
(15,22) T+-y — T+Y
(16) —z4+y o y+<c
(23) —z4+y = —(=z+v)
(29) zx(-y) — —(z*y)
(30) (—x)xy = —(z*y)
Ty — Ty for j < t.

This system is proved terminating by RPO by choosing any precedence satisfying
LT RN S D and +>-— and *> —.

For -; we choose the lexicographic status from right to left and for + we choose the multiset
status.

5.2 Complexity

The common complexity measure for binary multiplication is the number of bit operations
as a function of the number of bits in both arguments. If we focus on the number of digit
multiplications we have to count the number of applications of rule 26. One can show that
multiplication of two numbers of b, and b, digits respectively takes b, * by of these digit
multiplications. More precisely, any reduction of (ny) * (n) to normal form, where (n;)
represents the normal form of a positive number of b; digits, takes b, * by applications of rule
926. This coincides with common algorithms (|JAHU84] p. 62).

In [AHUS84] two algorithms are given with better asymptotical behavior. Firstly, the
divide-and-conquer algorithm ([AHU84] pp. 62—65) is O[b>¢ 3], Detailed inspection of the
algorithm, however, reveals that the implicit constants render our specification and the divide
and conquer algorithm comparable for b<32 bits. Secondly, the Shonhage-Strassen algorithm,

11

which is based on fast Fourier transform, has complexity O[b - log b log log b]. However, the
constant in this complexity result is so unwieldy that this result is of no practical use. Note
that these complexity results are in the number b of bits, which is logarithmic in the value n
of the argument.

In the context of term rewriting, the number of reductions is a more appropriate measure.
A worst-case bound for this number could perhaps be established, but this bound would also
regard exotic, irregular reduction strategies. Most implementations however, have a fixed,
regular reduction strategy, which could have a better asymptotical behavior.

Considering the left-most innermost strategy only, our multiplication algorithm can be
shown to be O[log3n] = O[b®]. Experimental measurements suggest however that the actual
number of rewrite steps used for binary multiplication is close to b2 log b, which is for practical
use comparable with the common algorithms. For example, the multiplication of two 10-Dbit
numbers requires in the order of 500 reduction steps; that of two ten digit numbers in the
order of 1000 reduction steps.

5.3 Discussion

The rewrite system JP is an efficient, practical system for integers arithmetic. Its human-
readable syntax makes it easy to use, and the absence of auxiliary functions make it estheti-
cally interesting.

There are two flaws to this system: firstly, it is not confluent and secondly, the fact that
compound terms occur as the right-hand argument of the juxtaposition operator requires the
intuitively unexpected rules 1—3.

6 Implementation of rule schemata
Rule schemata can be implemented in three ways:

1. Literal inclusion. This is in fact the method by which humans implement arithmetic:
tables for multiplication and addition are committed to memory, together with various
distributive laws.

This method is suitable for small radices, but becomes impractical as the number of
rules rises (in JP, base ten already requires 499 rules for all tables).

9. Auxiliary functions. The introduction (in JP) of successor and predecessor functions on
digits allows basic operations to be specified using O[R] rules and only affects the com-
plexity within a constant. This method decreases the practical efficiency, and renders
the system less clear. Nevertheless, if 1 is impractical and 3 is impossible, it is the only
alternative.

3. External functions. Every computer supports fixed precision integer arithmetic, which
could be used to compute all needed instances of rule schemata on the fly. Clearly, this
requires additional capabilities in the implementation. One framework for the correct
use of external functions in term rewrite systems is discussed in [Wal90].

We will discuss this third alternative in some more detail.
Using built-in integers is profitable (if it is at all possible) under one condition: the time to
apply a single rewrite rule should be in the same order as that to do the actual calculation (this

12

is usually the case) and that to translate digits from their TRS representation to the machine
representation, and to translate the result back (this depends on the implementation).

An interesting idea! is the following. If R is chosen to be the largest single precision integer
plus one, then all schema diagrams and rule schemata can be implemented using double
precision arithmetic. The TRS uses the machine integers directly for all practical values,
but as soon as values larger than R-1 occur, they are represented using the juxtaposition
operator, or nested postfix application. This results in a highly efficient implementation of
unbounded integers. For example, if R = 32768 the number 9876543210 is represented as
(9)(6496)(5866); the multiplication 9876543210 * 1234567890 is computed using in the order
of 100 reduction steps.

7 Conclusions

In the table below, we have listed the three presented rewrite systems with all discussed
properties. We have included the system from [CW91] since the four systems are to some
degree complementary.

[system | range | conf. [term. | compl. [readability [radix |
[CW91] | Int | moduloac {+,*} | unproved | logn reasonable | 4
SP Int yes yes n poor -
DA Nat yes yes logn good any
JP Int ground yes log n good any

We have presented three rewrite systems for integer arithmetic with addition, multiplica-
tion, and in two cases subtraction. We have shown ground confluence and termination.

In the last system, the common, human readable notation for arithmetic can be used.
The latter two systems have logarithmic complexity and can be used for any radix.

Termination of the last system turned out to be non-trivial. We gave a proof in which the
system was split up into two levels. For both remaining systems we gave a termination proof
first by transforming it to an infinite labelled system by the technique of semantic labelling
and finally proving termination of the labelled system by recursive path order.

In our opinion, our rewrite system DA is perfect for natural number arithmetic, and
our final rewrite system JP is perfect for ground integer arithmetic. The construction of a
complete rewrite system with logarithmic complexity and human-readable syntax remains an
open problem.

References

[AHU84] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer
Algorithms. Addison Wesley, 1984.

[BW89] L.G. Bouma and H.R. Walters. Implementing algebraic specifications. In J.A.
Bergstra, J. Heering, and P. Klint, editors, Algebraic Specification, ACM Press Fron-
tier Series, pages 199-282. The ACM Press in co-operation with Addison-Wesley,
1989. Chapter 5.

LThanks to J.F.Th.Kamperman.

13

[CW91]

[Der87]

[DIK93]

[GG91]

[Kl092]

[Wal90]

[Zan93]

D. Cohen and P. Watson. An efficient representation of arithmetic for term rewrit-
ing. In R. Book, editor, Proceeding of the Fourth International Conference on
Rewriting Techniques and Application (Como, Italy), LNCS 488, pages 240-251.
Springer Verlag, Berlin, 1991.

N. Dershowitz. Termination of rewriting. J. Symbolic Computation, 3(1&2):69-115,
Feb./April 1987. Corrigendum: 4, 3, Dec. 1987, 409-410.

N. Dershowitz, J.-P. Jouannaud, and J.W. Klop. More Problems in Rewriting.
In C.Kirchner, editor, Proceeding of the Fifth International Conference on Rewrit-
ing Techniques and Application (Montreal, Canada), LNCS 690. Springer Verlag,
Berlin, 1993.

S.J. Garland and J.V. Guttag. A Guide to LP, The Larch Prover. MIT, November
1991.

J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and T. Maibaum,
editors, Handbook of Logic in Computer Science, Volume 2., pages 1-116. Oxford
University Press, 1992.

H.R. Walters. Hybrid implementations of algebraic specifications. In H. Kirchner
and W. Wechler, editors, Proceedings of the Second International Conference on Al-
gebraic and Logic Programming, volume 463 of Lecture Notes in Computer Science,
pages 40-54. Springer-Verlag, 1990.

H. Zantema. Termination of term rewriting by semantic labelling. Technical Re-
port RUU-CS-93-24, Utrecht University, July 1993. Accepted for publication in
Fundamenta Informaticae.

14

