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Abstract

Well-foundedness is the essential property of orderings for proving termination. We
introduce a simple criterion on term orderings such that any term ordering possessing
the subterm property and satisfying this criterion is well-founded. The usual path orders
fulfil this criterion, yielding a much simpler proof of well-foundedness than the classical
proof depending on Kruskal’s theorem. Even more, our approach covers non-simplification
orders like spo and gpo which can not be dealt with by Kruskal’s theorem.

For finite alphabets we present completeness results, i. e., a term rewriting system
terminates if and only if it is compatible with an order satisfying the criterion. For
infinite alphabets the same completeness results hold for a slightly different criterion.

1 Introduction

The usual way of proving termination of a term rewriting system (TRS) is by finding a
well-founded order such that every rewrite step causes a decrease according to this order-
ing. Proving well-foundedness is often difficult, in particular for recursively defined syntactic
orderings. It is therefore desirable to have criteria that help decide whether a particular
order is well-founded. A standard criterion of this type is implied by Kruskal’s theorem: if
a monotonic term ordering over a finite signature satisfies the subterm property then it is
well-founded. However, this theorem does not apply for all terminating TRS’s: there are ter-
minating TRS’s like f(f(z)) — f(g(f(z))) that are not compatible with any monotonic term
ordering satisfying the subterm property. Even recursive path order (rpo) with lexicographic
status over a varyadic alphabet, is not covered directly by Kruskal’s theorem ([5]). This mo-
tivated us to look for other conditions ensuring well-foundedness. In this paper we remove
the monotonicity condition and replace it by some decomposability condition. For orderings
satisfying the subterm property and this decomposability condition we prove well-foundedness
in a way that is inspired by Nash-Williams’ proof of Kruskal’s theorem ([10]; as it appears
in [6]), but which is much simpler. A similar technique, for a particular order, has already
been used by Kamin and Lévy ([9]). Standard orderings like recursive path order ([1, 12])
and semantic path order (spo) ([9, 2]) trivially satisfy our conditions, yielding a simple proof
of well-foundedness for these orders. Moreover, our conditions cover all terminating TRS’s:
a TRS terminates if and only if it is compatible with an order satisfying our conditions.
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We are concerned essentially with term rewrite systems over finite signatures. In the case
of an infinite signature the same conditions yield well-foundedness if the signature is provided
with a partial well-order satisfying some natural compatibility with the given term ordering.

The rest of the paper is organized as follows. In section 2 we give some well-known notions
on term rewriting and partial orders. On section 3, we introduce the notion of lifting of an
order, which plays an essential role in the theory presented. On section 4 we present our well-
foundedness criterion for orders on terms built over a finite signature and give some surprising
completeness results involving orders closed under substitutions and orders that are total.

In section 5, we present a well-foundedness criterion for orders on terms built over infinite
signatures. First we follow an approach similar to the one used in section 4. For that we need
the existence of well-quasi-orders on the set of function symbols. This requirement is quite
strong and to overcome it we introduce a different notion of lifting of orders on terms. Using
this new notion we can present a very general and simple result on well-foundedness and show
that in this case the completeness results of section 4 also hold. The criteria presented are
used on section 6 to derive well-foundedness of semantic path order and general path order.

Finally we make some concluding remarks, including some comparison between our results
and Kruskal’s theorem.

2 Preliminaries

For the sake of self-containment we give some notions over term rewriting systems and orders.
For more information the reader is referred to {4].

Let F be a signature (a set of function symbols) and X" a set of variables with FNX = 0.
To each function symbol of F we associate a set of possible arities given by the function
arity: F — P(IN) \ 0, where P(IN) is the power set of IN. In the case that arity(f) contains
only one element for all f € F, we speak of a fixed-arity signature, otherwise we speak of a
varyadic signature.

The set of all terms over F and X is defined inductively as usual and denoted by T(F, X),
the set of ground terms is denoted by T(F). In the sequel we will consider terms over different
kinds of signature, for example finite or infinite signatures and finite or infinite sets of variables.
We will make clear which restrictions apply at any point.

Given any term t, s is a subterm of t if we can write t = C|s] for some context C. If
C[s] = f(...,s,...) and C is not the empty context, we say that s is a principal subterm of
t. We define [t| to be the depth of a term ¢. Recall that depth strictly decreases by taking
(principal) subterms.

A term rewriting system (TRS) is a tuple (F, X, R), where R is a subset of T(F,X) x
T(F,X). The elements of R are the so called rules of the TRS and are usually denoted by
| — 7, with ! a non-variable term and such that all the variables occurring in r also occur in
l.

A TRS R induces a rewrite relation over T(F,X), denoted by —g, as follows: s =g 1
iff s = Cllo] and t = Cfro], for some context C, substitution o and rule ! - r € R. The
transitive closure of — g is denoted by —% and its reflexive-transitive closure by —%. A TRS
is called terminating (strongly normalizing or noetherian) if there exists no infinite sequence
of the form to >pti =R ....

We use the terminology partial order on a set S meaning an irreflexive and transitive
relation on S, that we usually denote by >. By quasi-order we mean a reflexive and transitive



relation, usually denoted by >. Any quasi-order contains a strict partial order, namely >\ <,
and an equivalence relation > N <, that we usually denote by ~.

A partial order or quasi-order over a set S is said to be well-founded if it doesn’t admit
infinite descending chains of the form

Tp>T1>T2> ...

We extend the terminology well-founded to the elements of S: we say that € S is well-
founded if = does not occur in an infinite descending chain as above. Obviously an order >
on a set S is well-founded if and only if all elements s € S are well-founded.

We are interested on orders on the set of terms 7(F, X'). An order > on T(F,X) is said
to be monotonic if s > t implies C[s] > C[t], for any context C. Given a TRS R and a order
> on T(F,X), we say that > is compatible with R if s > t whenever s —p t.

An order on T(F,X) is said to have the subterm property if f(t1,...,t,) > t;, for any
f € F and terms ty,...,t, € T(F,X), where n € arity(f).

3 Liftings and Status

As mentioned before, we replace monotonicity by another condition. This condition relates
the comparison between f(si,...,sm) and f(¢1,...,t,) to the comparison of the sequences
(81,.+.,5m) and (t1,...,t,). Here we need to describe how an ordering on terms is lifted to
an ordering on sequences of terms. To be able to conclude well-foundedness it is essential
that this lifting preserves well-foundedness.

Definition 3.0.1 Let (S,>) be a partial ordered set and S* = U,enS™. We define a lifting
to be a partial order >* on S* for which the following holds: for every A C S, if > restricted
to A is well-founded, then >* restricted to A* is also well-founded. We use the notation A(S)
to denote all possible liftings of > on S*.

A typical example of a lifting is the multiset extension of an order. The usual lezicographic
extension on unbounded sequences is not a lifting. Just take S = {0,1} with 1 > 0, then

(1) >* (01) >* (001) >* (0001) >* ...

If the lexicographic comparison is restricted to sequences whose size is bounded by some fixed
natural NV, then this is indeed a lifting.

Another type of lifting is a constant lifting, i. e., any fixed well-founded partial order on
S*. Clearly other liftings can be defined, for example as combinations of the ones mentioned.
In particular, combinations of multiset and lexicographic order can be very useful. In a
partial order (S,>) where a > b and c is incomparable with a and b, one cannot conclude
{a,c,c) >* {c,b,a), for the multiset lifting nor for any lexicographic lifting. If we define >*
by

(m=n=3) and
(81, -+, 8m) >A (t1y...,tn) <= (s1,82) >maul (t1,12) or
({s1,s9) =™ (t1,t3)) and s3> t3

it is not difficult to see that >* satisfies the definition of lifting and also satisfies {a,c,c) >*
(¢, b,a). This lifting will be used to obtain

F(s(2),4,9) >rpo f(y,x, 8(z))
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Classical >p, cannot be used to compare these two terms.

Definition 3.0.1 is intended to be applied to terms over varyadic function symbols. If we
consider signatures with fixed arity function symbols we can simplify the notion of lifting:
instead of taking liftings of any order we need only take liftings of fixed order, i. e., the lifting
is going to be a partial order over S™, for a fixed natural number n. This is a special case
of a lifting to §*: >* is defined on S* to be the order one has in mind for S™ on sequences
of/\length n, while all other pairs of sequences are defined to be incomparable with respect to
>

Again typical examples of liftings are the lexzicographic extension of > on sequences and
the multiset extension of > restricted to multisets of a fixed size.

We are interested in orders on terms so from now on we choose S = T(F,X), with F
containing varyadic function symbols, and we fix a partial order > on T(F, X).

Definition 3.0.2 Given (T(F,X),>), a status function (with respect to >) is a function
7: F = MT(F, X)), mapping every f € F to a lifting >,

Again for the case of fixed-arity signatures, a status function will associate to each function
symbol f € F a order n lifting >* on T(F, X)", where n is the arity of f.

The following status will be used later in connection with the semantic path order. Let >
be a partial order and > a well-founded quasi-order, both defined on T(F, X). Write > for
the strict part of > (i. e.,, > = > \ X) and ~ for the equivalence relation induced by > (i. e.,
~ = »= N X). For each f € F the lifting 7(f) is given by

() (¢ ¢ s>, or
<31’-.-,3k>> (17---,711) {3~tand(31,-..,3k)>muz<t1,---,tm)

for any k,m € arity(f) and where >™* is the multiset extension of >, s = f(sy,...,s;) and
t = f(t1,...,tm). It is not difficult to see that >7() is indeed a partial order on T(F, X)*
and that >"(f) respects well-foundedness, being therefore a lifting.

4 Finite signatures

In this section we present one of the main results of this paper. For the sake of simplicity
we restrict ourselves to finite signatures. Surprisingly we do not need to fix the arities of the
function symbols. Infinite signatures will be treated separately.

4.1 Main result

In the following we consider the set of terms 7 (F,X), over the set of varyadic function
symbols F and such that F U X is finite.

Recall that a term ¢t € T(F,X) is well-founded (with respect to a certain order > on
T(F, X)) if there are no infinite descending chains starting with £.

We introduce some notation.

Definition 4.1.1 Let > be a partial order over T(F,X) and T a status function with respect
to >. We say that > is decomposable with respect to T if > satisfies

o if f(s1,...,8k) > f(t1,...,tm) then either

4



— 31 <i<k:s> f(ty.. . tm), OT
— {s1,.-,8%) > (B, ).

for all function symbols f € F, k,m € arity(f) and terms s1,...,8k,t1,... Jtm € T(F,X).
We can now present the main result of this section.

Theorem 4.1.2 Let > be a partial order over T(F,X) and T a status function with respect
to >. Suppose > has the subterm property and is decomposable with respect to T, then > 1s
well-founded.

Proof Suppose that > is not well-founded and take an infinite descending chain tp > t; >
.++>t, > -+, minimal in the following sense
e |to| < |sl, for all non-well-founded terms s;

e |tiy1] < |s|, for all non-well-founded terms s such that z; > s.

Note that from the first minimality condition follows that any principal subterm of tg is
well-founded. Assume that ¢;43 = f(ui,...,ur) and some u;, with 1 < j < k, is not well-
founded. From the subterm property and transitivity of >, we obtain ¢; > tit1 > uj,
hence the second minimality condition yields |t;+1| < |u;j| which is a contradiction. We
conclude that all principal subterms of any term ¢;, ¢ > 0, are well-founded.

Since FUX is finite, the (infinite) sequence (¢;);>o must contain a subsequence (t4(;))i>0
with ty;) = f(ui1, . Ui n;), for a fixed f € F. By hypothesis, for each 7 > 0, either

e J1<j<nit uij 2 tg(41); OF
o (uj1,... ,ui,ni> >7(f) (Uit1,15- - aui+1,ni+1>'

Since all terms wu; ; are well-founded, the first case never occurs. Consequently we have
an infinite descending chain

(uo,la oo auo,no> >T(f) (ul,la v 7“1,7&1) >T(f) (u2,1a con au2,n2> >T(f) s

n;

Since > is well-founded over the set | J(|J{ui;}), this contradicts the assumption that
i>0 j=1

7(f) preserves well-foundedness. O

Theorem 4.1.2 provides a way of proving well-foundedness of orders on terms, including
orders which are not closed under contexts nor closed under substitutions.
Consider the recursive path order with status ([1, 12]) whose definition we present below.

Definition 4.1.3 (RPO with status) Let > be a partial order on F and T a status function
with Tespect to >ppo. Given two terms s,t we say that s >rpo t iff s = f(s1,--.,8m) and either

1. t=g(t1,...,tn) and
(a) f> g and s >rpoti, for alll1 < i < m, or

(b) f=g, (51,.--,5m) >:,(,£) (t1,...,tn) and 8 >rpo ti, for all1 <1 < mj or



2, 31<i<m: 8 >rpot or8i=1.

Irreflexivity and transitivity of >rpo are cumbersome but not difficult to check. Well-
foundedness of >rpo, a8 defined in definition 4.1.3, follows from theorem 4.1.2. If we take the
definition of >y, Over a precedence that is a quasi-order with the additional condition that
each equivalence class of function symbols has one status associated, well-foundedness is still
a direct consequence of theorem 4.1.2. We remark that by using our definition of lifting and
status, definition 4.1.2 is a generalization of >rpo orders as found in the literature. With this
definition we are able to prove termination of the following TRS (originally from [7]):

f(s@)my) = fy,z,8(x))
For that we use a lifting given earlier, namely

(m=n=23) and
(31,...,sm) >* (t1,...,tn) = (31,82) >mul (t1,t2) or
((81,82) =mul (tl,tg)) and s3 > {3

and then take >Z,(,{,) = >$‘po. Termination of this system cannot be handled by earlier versions
of >rpo-

In section 6 we shall see that well-foundedness of both semantic path order and general
path order also follow from theorem 4.1.2.

4.2 Completeness results

The next result states that the type of term orderings described in theorem 4.1.2 covers all
terminating TRS’s.

Theorem 4.2.1 A TRS R is terminating if and only if there is an order > over T(F,X)
and a status function T satisfying the following conditions:

e > has the subterm property
e > is decomposable with respect to T
e ifs— gt thens>t.

Proof The ”if’ part follows from theorem 4.1.2: the order > is well-founded and the as-
sumption —g C > implies that R is terminating.

For the ”only-if’ part we define the relation > on T(F,X) by:
s>t <= s#tand 3C[]:s =% Clt]

By definition, the relation > is irreflexive and has the subterm property. Transitivity is
checked straightforwardly using termination of R.

We check that > is well-founded. Suppose it is not and let so > s1 > -+ - be an infinite
descending chain. By definition of >, for each i > 0, we have s; —% Ci[siz1], for some
context C;[ ], so we obtain the infinite chain

S0 —-)’;3 00[81] —-)}‘3 00[01[82]] -—)*}} e
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From termination of R, we conclude that there is an index j > 0 such that
sj = Cjlsjs1] = CilCimlsjuall = - -
Since the sequence is infinite and Ci| ] # O (since sx # sk4+1), for all k > 7, this is a

contradiction.

For each function symbol f € F we define >7(f) by:
(uy,. .. ug) > (v1,. . vm) = flug,.oue) > f(vi, ..y vm)

for any k,m € arity(f). Since > is well-founded, we see that >7(f) is indeed a lifting.

From the above reasoning follows that all the conditions of theorem 4.1.2 are satisfied.
Finally if s =g t, we obviously have s —% C[t], with C the empty context. Since R is
terminating we must have s # and consequently s >¢. O

An alternative proof of theorem 4.2.1 can be given using the fact that a TRS R is termi-
nating if and only if it is compatible with a semantic path order; in the proof of this fact the
same order as above is used. Since spo fulfils the conditions of theorem 4.1.2, as we shall see
in section 6, this provides an alternative proof for theorem 4.2.1.

The order defined in the proof of theorem 4.2.1 has the additional property of being
closed under substitutions (but not under contexts). Consequently we also have the following
stronger result.

Theorem 4.2.2 A TRS R is terminating if and only if there is an order > over T(F,X)
and a status function T satisfying the following conditions:

e > has the subterm property
e > is decomposable with respect to 7
o > is closed under substitutions

e ifs—>ptthens>t.

An interesting question raised by J.-P. Jouannaud is what can be said about totality of
orders satisfying the conditions of theorem 4.1.2. It turns out that totality can very easily
be achieved as we now show. However totality is not compatible with closedness under
substitutions. First we present a well-known lemma.

Lemma 4.2.3 Any partial well-founded order > on a set A can be estended to a total well-
founded order on A.

Proof We give a sketch of one possible proof. Consider K the set of partial orders (S, > s)
satisfying the following conditions:
1. SC A
2. if s,t € S and s >t then s >g5t.
3. >g is total and well-founded in S.
4. ifs>tandt€ Sthense Sands>st.
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Note that since > is well-founded on A, minimal elements do exist and any set containing
a2 minimal element and ordered by the empty order is an element of K, so K is not empty.

We now turn K to a partially ordered set itself by defining the order C as follows:

S C T (as sets) and >5 C >T
S T = q .
(S,>s5) & (T >7) {1fs>TtandsGSthentGSands>st
It is easy to check that C is a partial order on K. The next step is to verify that (K,C)
satisfies the conditions of Zorn’s lemma. We establish then the existence of a maximal
element in K and finally see that that maximal element is a total well-founded order
extending the original one. O

Note that Zorn’s lemma cannot be applied with the usual subset ordering since well-
foundedness is not preserved under infinite unions.

Theorem 4.2.4 A TRS R is terminating if and only if there is an order > over T(F,X),
and a status function T satisfying the following conditions:

e > has the subterm property
e > is decomposable with respect to T
e > is total

o ifs—ptthens>t.

Proof Again the "if” part follows from theorem 4.1.2: the order > is well-founded and the
assumption —+gC> implies that R is terminating.

For the "only-if’ part we use theorems 4.1.2 and 4.2.1. Since R is terminating, by
theorem 4.2.1 there is an order > on T(F,X ) and a status function 7 satisfying the
conditions of theorem 4.1.2 and such that s -p t = 8 > t. By theorem 4.1.2 the
order > is well-founded, but not necessarily total. By lemma 4.2.3, let > be a total
well-founded order extending >>. Since >> has the subterm property, so does >. Fur-
thermore > is also compatible with — g, for ifs >gtthens>tandsos >t In order
to apply theorem 4.1.2 we still have to define a status function 7 for which > is decom-
posable. For each function symbol f € F we define: (w1, .. vk) > (vy, ..., vm) =
flug, ... uk) > f(vi,...,vm), for any k,m € arity(f). Since > is well-founded, >7(f)
is indeed a lifting. Theorem 4.1.2 now gives the result. O

The previous result may seem a bit strange since it tells us that we can achieve totality
on all terms and not only ground terms. This is so because we do not impose any closure
conditions on the order. Note that a total order on T (F, X ) is never closed under substitutions
as long as X contains more than one element. As for closure under contexts, this property
is usually not maintained by naive extensions of the order, it may even make the existence
of certain extensions impossible. In our case the conditions imposed are subterm property
and compatibility with the reduction relation and so any extension will comply with those
conditions whenever the original order does.



4.3 Infinitely many variables

If we allow X to be an infinite set, the conditions imposed on the order on theorem 4.1.2
are not enough to guarantee that the order is well-founded. Just consider a set of variables
X = {z;}i>0 and > satisfying zg > z1 > x2 > .... Even if the conditions of theorem 4.1.2
are satisfied, the order is obviously not well-founded. However, in the presence of an infinite
set of variables, well-foundedness of > on T(F, X) is equivalent to well-foundedness of > on
X, i. e., theorem 4.1.2 can be rewritten as:

Theorem 4.3.1 Let > be a partial order over T(F,X) and T a status function with respect
to >. Suppose > has the subterm property and is decomposable with respect to 7. Then > is
well-founded on T(F,X) if and only if > is well-founded on X.

One direction is trivial, the other is almost identical to the proof of theorem 4.1.2.
As for theorems 4.2.1, 4.2.2 and 4.2.4, they all hold under the additional assumption that
the order considered is well-founded when restricted to X.

5 Infinite Signatures

In the previous section we presented some results which are applicable to orders and TRS’s
over finite signatures. Here we turn to the infinite case, i. e., we consider the set of terms
over an infinite alphabet F, with varyadic function symbols, and an infinite set of variables
X. As usual we require that F N X = 0.

We first discuss orders which are based on a precedence on the set of function symbols.
Afterwards we will present another simplified approach in which we can dispense with the
precedence. This approach is based on a generalization of the notion of lifting.

5.1 Precedence-based orders

It turns out that theorem 4.1.2 can also be extended to infinite signatures. We do however
need to impose some extra conditions.

We introduce some more notation. Let > be a quasi-order over F, called a precedence.
We denote the strict partial order > \ < by > and the equivalence relation > N < by ~.

Definition 5.1.1 Given an order > on T(F,X) and a precedence > on F, we say that > is
compatible with > if whenever f(s1,...y8m) > g(t1,. .. ,ty) and g > f then s; 2> g(t1,.. . ta),
for some 1 <1 <m.

In theorem 4.1.2 we only needed to take into account comparisons between terms with
the same head function symbol, but now we also need to consider the comparisons between
terms whose head function symbols are equivalent under the precedence considered. As a
consequence we need to impose some constraint on the status associated with a function
symbol.

Definition 5.1.2 Given a precedence > on F, an order > on T(F,X) and a status function
7, with respect to >, we say that T and > are compatible if whenever f ~ g then 7(f) = 7(9)-

As usual a well quasi-order, abbreviated to wqo, is a quasi-order > such that any extension
of it is well-founded. We can now formulate theorem 4.1.2 for infinite signatures:

9



Theorem 5.1.3 Let > be a precedence on F, > a partial order over T(F, X ), and T a status
function with respect to >, such that that both > and > and 7 and > are compatible. Suppose
> has the subterm property and satisfies the following condition:

o Vf,g€F, m € arity(f),n € arity(g), 81, -+ Smst1y- s tn eT(F,X):
if f(81,...,8m) > g(t1, ... ta) with f ~ g, then either

—J1<i<m:s 2g(t,...ta), 07
— (81, s 8m) > (1, ta)

Suppose additionally that & is a wgo on F\ Fo and > is well-founded on X U Foy, where
Fo={f € F:arity(f) = {0}}. Then > 1s well-founded on T(F, X).

Proof We proceed, as in proof of theorem 4.1.2, by contradiction. First we remark that
any infinite descending sequence (ti)i>o0 contains an infinite subsequence (t(i))iz0 such
that arity(teq)) # {0}, for if that would not be the case, the sequence would contain
infinitely many variables or constants, contradicting the fact that > is well-founded on
X UFp.

We take a minimal infinite descending sequence (ti)i>0, in the same sense as in theorem
4.1.2. Again, as remarked in the proof of theorem 4.1.2, from the minimality of (¢:)i>0,
the subterm property and transitivity of >, it follows that all (principal) subterms of
any term t;, i > 0, are well-founded.

Let root(t) be the head symbol of the term £. Consider the infinite sequence (root(t;))i>o-
From the first observation above it follows that this sequence contains infinitely many
terms such that the root function symbol of those terms has arities greater than O.
Consequently and since > is a wgo on F \ Fo, we can conclude that this sequence
contains an infinite subsequence (100t (te(i)))i>0 such that root(t4(it1)) = root(te(;)) and
arity(root(te))) # {0}, for all 4.

Also the infinite sequence (root(ti))i>0 contains no infinite subsequence (r00t(ty()))i>0
such that root(tyg41)) ~ root(ty(;)), for all i. Suppose it is not so and let (root(ty(i)))i>0
be such a sequence. Since ty() > ty(i+1) by hypothesis we must have

1. 8ik = ty(i+1)s with s;  a principal subterm of ty;), or

2. (Si,la---asi,k¢(;)> >A (3i+1,1,~-->3i+1,k,,,(,-+1))a where >* is the lifting given by the
status of root(t,,,(o))l, and 8;1,. .8k, a0d Sitlls- - o5 SidLkyiin) 1€ the princi-
pal subterms of respectively ty() and ty(it1), for all <.

Due to the minimality of (¢;)i>0 and the subterm property, case 1 above can never occur.
Therefore we have an infinite descending sequence

A A A
(80,1, ceey S(),kwo)) > (8171, ce ,sl,k“l)) > (32,1, v ,52,k¢,(2)) >
ki)
Since > is well-founded on U U {si;}, this contradicts the definition of lifting.
i>0 j=1

1Recall that for equivalent function symbols, their status coincides.
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Therefore, and without loss of generality, we can state that the infinite subsequence
(To0t(4(i));>q DAS the additional property root(ts(i+1)) > root(tg(;)), for all i.2 Since
to) > t¢(i+1) and > is compatible with >, we must have u > g(i+1)s for some principal
subterm u of tg;), contradicting the minimality of (ti)ixo. O

Some remarks are in order. Since there are no substitutions involved, there is no essential
difference between elements of A’ and Fo. The condition stating that > is well-founded on
X is imposed to disallow the bizarre case where we can have an infinite descending sequence
constituted solely by variables. Usually (e. g. in Kruskal’s theorem) it is required that the
precedence > be a wqo over F, we can however relax that condition to > being a wqo over
F \ Fo provided > is also well-founded on Fo. This is weaker than requiring that > be a
wgo on F. The wgo requirement cannot be weakened to well-foundedness as the following
example shows. Consider F = { fili > 0} with arity(fi) = {1}, for all ¢ > 0. Let > be an
order on T(F,X) with the subterm property and such that

fo(x) > fi(z) > falx) > ...

Take > to be the empty precedence. Obviously b is well-founded and all the other conditions
of theorem 5.1.3 are satisfied, however the order > is not well-founded.

If we remove the condition 7> is well-founded on XUFp”, and strengthen the condition on
> to "> is a wgo on F U X?”, then the same statement as above can be proved (and the proof
is very similar). In this case and for finite signatures, theorem 4.1.2 is a direct consequence of
theorem 5.1.3, since the discrete order is a wqo and the compatibility conditions are trivially
fulfilled.

Theorem 5.1.3 holds in particular for precedences that are partial well-orders (pwo’s).
In this case we only need to compare terms with the same root function symbol and the
compatibility condition of definition 5.1.2 is trivially verified.

As in the finite case, well-foundedness of orders as rpo over infinite signatures, is a conse-
quence of theorem 5.1.3. For that we only need to extend the well-founded precedence to a
total well-founded one, maintaining the equivalence part the same, which is then a wgo. All
the other conditions also hold, so the theorem can be applied.

Another interesting result arises if we relax the requirements on the precedence and
strengthen the ones on the order.

Theorem 5.1.4 Let > be a well-founded precedence on F, > a partial order over T(F,X),
and T a status function with respect to >, such that that T and > are compatible. Suppose >
has the subterm property and satisfies the following condition:

b Vfag € F, mea'rity(f)vnea‘rit’Y(g)7317"'7smat1a'~',tn ET(]:9X):
if f(81,...,8m) > g(t1,...,tn) then either

- 31§i§m:s,~29(t1,...,tn), or
- f>g,or
— f~gand (s, ..., 5m) ST (ty,... tn).

Then > is well-founded on T(F, X).

2Gtrictly speaking, an infinite subsequence of this sequence has that property.
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The proof is very similar to the proof of theorem 5.1.3, therefore we omit it. Note that
well-foundedness of rpo, for an arbitrary well-founded precedence, is a direct consequence of
this result. In the ”classical” approach, first the precedence has to be extended via lemma
4.2.3 to a well-founded total precedence, maintaining the equivalence part, before Kruskal’s
theorem yields the desired result.

It would also be interesting to have a theorem similar to theorem 4.2.1 for the case of
infinite signatures. However for infinite signatures the empty relation is not a wqo any longer
and it is not clear how to choose an appropriate wgo. A possibility is to take & defined by
f ~ g for any f,g € F, which is trivially a wgo, however this choice will not always work as
the following example shows. Consider the infinite terminating TRS given by

a; — aj

for any i >0 and any 0 < j < + and where each a; is a constant. Then any order compatible
with R will never be compatible with a precedence in which a; ~ aj, for all 4,5 2 0.

Another alternative is to take a total well-founded order on F, again by definition a wqo,
but then other compatibility problems arise. Just consider the rule

a = f(0)

If we choose the precedence as an arbitrary total well-founded order on F, we may have f > a,
and the conditions of theorem 5.1.3 will never hold.

5.2 Generalizing liftings on orders

The decomposability restriction (81,--+1Sm) >7() (ty,...,ts) has the inconvenient of forget-
ting about the root symbols of the terms compared. In the case of finite signatures, that is
irrelevant since we only need to compare terms with the same head symbol and the symbol
can be encoded in the status 7. For infinite signatures however, that information is essential,
since given an infinite sequence of terms we no longer have the guarantee that it contains
an infinite subsequence of terms having the same root symbol. As a consequence we need to
impose some strong conditions both on the set of function symbols and on the status and
order used. A way of relaxing these conditions is by remembering the information lost with
the decomposition and this can be achieved by changing the definition of lifting.

In this section we present another condition for well-foundedness on term orderings. Now
we do not require the existence of an order or quasi-order on the set of function symbols F.
Instead we will use a different definition of lifting for orderings on terms.

Definition 5.2.1 Let (T(F,X),>) be a partial ordered set of terms. We define a term lifting
to be a partial order >A on T(F,X) for which the following holds: for every A C T(F, X ),
if > restricted to A s well-founded, then >A restricted to A is also well-founded, where

A={f(t1,...,ta) 1 [ € F, n € arity(f), and t; € A, foralli,0<1 < n}
We use the notation A(>) to denote all possible term liftings of > on T(F,X).

We remark that term liftings can make use of liftings and status functions since the well-
foundedness requirement is preserved. Given an order > on T(F,X), every lifting in the
sense of definition 3.0.1 induces a term lifting of the same order as follows:

F(51y-++18m) >Ag(ty, ... ta) = (81, 8m) >* (t1,. .-y tn)

12



We present a new well-foundedness criterion.

Theorem 5.2.2 Let > be a partial order on T(F,X) and let >A be a term lifting of >.
Suppose > has the subterm property and satisfies the following condition:

e Vf, g € F, me€arity(f),n € arity(g), 81, -+ »Smytly -+ tn eT(F,X):
if s = f(s1,..18m) > g(t1,...,ta) =1t then either

- ngigm:siZg(tl,...,tn), or
—g>Mt

Then > is well-founded on T(F,X).

Proof Suppose that > is not well-founded and take an infinite descending chain tg > t1 >
.ev >ty > -+, minimal in the same sense as in the proof of theorem 4.1.2, 1. e.,

o |to| < |sl, for all non-well-founded terms s;

o |tiy1| < |s|, for all non-well-founded terms s such that t; > s.

As remarked in the proof of theorem 4.1.2, from the minimality of (t;)i>0, the subterm
property and transitivity of >, it follows that all principal subterms of any term t;,
i > 0, are well-founded.

Since t; > tiy1, for all 1 > 0, we must have

1. u; > tiy1, for some principal subterm u; of t;, or
2. t; >A tit1

Due to the minimality of the sequence, the first case above can never occur. Therefore
we have an infinite descending chain

to >Mty >Mta > ..
But due also to minimality, the order > is well-founded over the set of terms
A = {u: u is a principal subterm of ¢;, for some ¢ > 0}
By definition of term lifting we have that >% is well-founded over
A={f(u,...,ur): fEF,kE arity(f) and u; € A, forall 1 <4 < k}
and since {t; : i > 0} C A, we get a contradiction. O

It is interesting to remark that theorem 4.1.2 is a consequence of theorem 5.2.2. To see
that we define the following order >>:

s>t <= (root(s) = root(t)) and (s > t)
Now we define the following term lifting

f(s1y-+->5m) >Ag(ty,...,tn) = (f =g) and (s1,..-,5m) ST (t1,...,tn)

13



where >7(f) is the lifting associated by the status function 7 to the function symbol f. It is not
difficult to see that since the lifting >7(f) respects well-foundedness of >, > is a well-defined
term lifting. Now theorem 5.2.2 gives well-foundedness of >>. But since non-well-foundedness
of > would imply non-well-foundedness of > (by an argument similar to the proof of theorem
4.1.2), we are done.

Furthermore when F is finite, theorem 5.2.2 is also a consequence of theorem 4.1.2 (i e.,
they are equivalent). For that we define the status

(51,00 8m) > (1, s ta) == fls1,55m) SA Fty, .o tn)

It is now not difficult to check that the other implication holds.

Due to the required existence of a partial order on the set of function symbols, the relation
of this theorem with theorems 5.1.3 and 5.1.4 is not yet clear.

An important consequence of the use of term liftings is that we manage to recover the
completeness results stated on section 4.2 and that we could not state for precedence-based
orders.

Theorem 5.2.3 Let R be a TRS over an infinite varyadic signature. Then R is terminating
if and only if there is an order > over T(F,X) and a term lifting >4 satisfying the following
conditions:

o > has the subterm property (and > is closed under substitutions)

o Vf,g€F, mEa-rit}’(f)»n€arit}’(g),sh---,sm,th---,tnET(}',X)=
if s = f(S1,-++18m) > g(t,...,ts) =1t then either
—J1<i<m:s; =gt tn), OF
—s>Mt
e if s —>ptthens>t.

Proof Sketch. The ”if’ part follows from theorem 5.2.2: the order > is well-founded and
the assumption —g C > implies that R is terminating.

For the ”only-if” part the proof is similar to the proof of theorem 4.2.1. We define again
the relation > on T(F,X): s >t <= s#tand 3C[]: s =% Clt]. The only different
part is the definition of term lifting. Since the order > is well-founded we can use it as
the term lifting itself. O

As for the finite case the completeness result concerning totality also holds and the proof
is very similar, so we omit it.

Theorem 5.2.4 Let R be a TRS over an infinite varyadic signature. Then R is terminating
if and only if there is an order > over T(F,X) and a term lifting >A satisfying the following
conditions:

e > has the subterm property
e Vf, g€ F, mearity(f),n € arity(q), 81,.++»Smstiy.-+rtn € T(F,X):
if s = f(s1,...,8m) > g(t1,...,tn) =1t then either
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- Elgigm:siZg(tl,...,tn), or
— s>t

e > is total

e if s gt then s>t

6 Semantic Path Order and General Path Order

In this section we show how well-foundedness of semantic path order [9] and general path
order [3] can be derived using either theorem 4.1.2 or theorem 5.2.2.

Definition 6.0.5 Semantic Path Order.
Let > be a well-founded quasi-order on T (F). The semantic path order >=spo s defined on
T(F) as follows: s = F(81,-+-5m) Zspo 9(t1y - ,tn) = t if either

1. s>1 ands>s,,oti,fora111§_i§n, or

2. s ~t and s >spo ti, for all1 <i<nand (81, +5m) t’;;,‘;l (t1,...,tn), where :’ST;,’(‘,’ 18
the multiset extension of > spo, OT

8. Fie{l,...,m}:8 Zspot

It can be seen that the > 50 has the subterm property and is in general not monotonic.

In the case the alphabet we consider is finite, define the following status. Let > be the
well-founded quasi-order used in the definition of >sp,. For each f € F the lifting 7(f) is
given by

(f) §»t, or
(510 y88) o) {t1y-oofm) {s~ta.nd (51, -y 58) 8 (b1, tm)

for any k,m € arity(f) and where >-§';,‘f,l is the multiset extension of >gspoy s = f (51,-- - 5k)

and t = f(t1,...,tm). It is not difficult to see that >:,(,£) is indeed a partial order on 7 (F, X )

and that >I§£) respects well-foundedness, being therefore a lifting. Since > spo has the subterm
property and satisfies the other conditions of theorem 4.1.2, its well-foundedness follows from
application of the theorem.

For the case we consider an infinite signature, we define the following term lifting: for
s=f(51,..-,8m) and t = g(t1, .-, tn)

soh ¢ (s - 1) or
spo (s~t) and (s1,...,5m) =l (1, s tn)

where again > is the well-founded quasi-order used in the definition of >spo,. Since > is well-
founded and the multiset extension respects well-foundedness, >on is indeed a term lifting.
Using this term lifting, we can apply theorem 5.2.2 to conclude that >gpo 18 well-founded.

The general path order, that we denote by >gpo, Was introduced in [3]. We present the
definition and show how well-foundedness of this order can be derived from theorem 4.1.2 or
theorem 5.2.2.
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Definition 6.0.6 A termination function  is a function defined on the set of terms T(F,X)
and is either

1. a homomorphism from terms to a set S such that
a(f(sla seey Sn)) = fa(o(sl)a s 79(317.))

2. an eztraction function that given a term associates to it a multiset of principal subterms,
1. €.,

G(f(sl, . ,sn)) = [31'1, e ,S,,;k]

where i1,...,4 € {1,...,n}.

Definition 6.0.7 A component order ¢ = (8,>) consists of a termination function defined
on the set T(F) of ground terms, along with an associated well-founded quasi-order > (defined
on the codomain of 0).

Definition 6.0.8 General Path Order.

Let ¢; = (8;,>:), with 0 < i < k, be component orders, such that if 0; is an extraction function
then >; is the multiset extension of the general path order = gpo itself. The induced general
path order xgp, is defined on T(F) as follows: s = F(s1,++-y8m) >gpo gt -stn) =1 if
either

1. Jie{l,...,m}:8; Zgpot OF

2. 8 >gpo tj, foralll < j <, and ©(s) >iex O(t), where © = (fo, . .. ,0r) and >iex is the
lezicographic combination of the component orderings 0; with 0 <1 < k.

The equivalence part is defined as: s = F(s1,-++s8m) ~gpo g(t1,- .- tn) =1 if 8 >gpo tj, for
all1 < j < n, and t >gpo 8, for all 1 < j < m, and 0;(s) ~; 6;(t), for all0 <1 <k, and
where ~; is the equivalence contained in >;.

It is known ([3]) that >gpo is a quasi-order with the subterm property.
Well-foundedness of >g4p, is a consequence of the results previously presented. For the
case of finite signatures we define the following status

(51, -y 8m) =160 (81, tn) = O(F(51,-++15m)) ez O(f(t1,.--»tk))

where as in definition 6.0.8, ©(v) = (6o(v), . ..,0k(v)) and > is the lexicographic combina-
tion of the component orderings 6; with 0 < i < k. If 6; is an homomorphism to a well-founded
set, then 6; is obviously a lifting, and if 6; is a multiset extracting function, since the multiset
construction preserves well-foundedness, we also have that 6; is a lifting. Finally the finite
lexicographic composition of liftings is still a lifting. As a consequence >;,(,{,) is a well-defined
status, and since > gp, has the subterm property and satisfies the other conditions of theorem
4.1.2, we can apply this result to conclude >gp, is well-founded.

For infinite signatures, well-foundedness of >gp, is a consequence of theorem 5.2.2. If we
define the term lifting >-"}po as ©, we see that >—9po is indeed well-defined. Since the other
conditions of theorem 5.2.2 are satisfied, we can apply it to conclude well-foundedness of > gpo-
Finally it is interesting to remark that if we allow the termination function to be not only a
multiset extraction function but an arbitrary lifting, we obtain a generalization of >4, Whose
well-foundedness can still be derived from the results presented.’

3For other similar generalization of >gp0 see [8].

16



7 Conclusions

We presented some criteria for proving well-foundedness of orders on terms. Our approach
was inspired by Kruskal’s theorem but is simpler. Kruskal’s theorem (and extensions as the
one in [11]) is a stronger result in the sense that it establishes that a certain order is a well-
quasi-order (or partial-well-order). Our result allows to conclude well-foundedness directly.
However the essential difference is the domain of application: Kruskal’s theorem implies well-
foundedness of orders extending any monotonic order with the subterm property, hence only
covers simplification orders and it is well-known that those orders do not cover all terminating
TRS’s. Our criteria do not require monotonicity and as a consequence, cover all terminating
TRS’s.

For infinite signatures we managed to present a well-foundedness criterion even simpler
and the completeness results still hold.
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