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Abstract

In this paper we look at default reasoning from a dynamic, agent-oriented, point of
view. Using the KARO-architecture that we previously defined ([15, 16, 24, 25]),
we introduce actions that model the (attempted) jumping to conclusions that is a
fundamental part of reasoning by default. Application of such an action consists of
three parts. First it is checked whether the formula that the agent tries to jump to
is a default, thereafter it is checked whether the default formula can consistently be
incorporated by the agent, and if this is the case the formula is included in the agent’s
beliefs. We define the ability and opportunity of agents to apply these actions, and the
states of affairs after application. To formalize formulae being defaults, we introduce
the modality of common possibility. This modality is related to, but not reducible to,
the notions of common knowledge and ‘everybody knows’-knowledge. To model the
qualitative difference that exists between hard, factual knowledge and beliefs derived
by default, we employ different modalities to represent these concepts, thus combining
knowledge, beliefs, and defaults. Based on the concepts used to model the default
reasoning of agents, we look into the dynamics of the supernormal fragment of default
logic. We show in particular that by sequences of jumps to conclusions agents can end
up with extensions in the sense of default logic of their belief.

Content Areas: Reasoning about Action, Knowledge Representation, Nonmonotonic
Reasoning.

1. Introduction

The formalization of the behaviour of rational agents is a topic of continuing interest in
Artificial Intelligence. Since the pioneering work of Moore ([35, 36]) in which knowledge
and actions are considered, research has concentrated on belief and knowledge, and the
problems of these two mental attitudes have received intense investigation (for a survey see
(8, 34]). In recent years, research in Al has been dealing with other aspects of the agents’
behaviour, including commitment, desire, intention, and obligation ([4, 18, 43, 45]).

In [15] we defined a framework in which the knowledge and abilities of agents, as well
as the opportunities for and the results of their actions are formalized. In this so called
KARO-architecture' it can for instance be modelled that an agent knows that some action

!The term KARO, for Knowledge —~ Abilities ~ Results —~ Opportunities, is chosen in analogy with the
BDlI-architectures of Rao & Georgeff ([39, 40, 41]).



is a correct plan to achieve some goal since it knows that performing the action will lead
to the goal, and that it knows that an action is a feasible plan since the agent knows of
its ability to perform the action. In subsequent research we extended our framework with
nondeterministic actions ([16]), epistemic tests ([25]), and communicative actions ([24]).

The main aim of this paper is to formalize a form of default reasoning by rational
agents in our framework. The capacity to reason by default is very important when
modelling rational agents: in many situations agents lack certain knowledge concerning
the situation at hand, but nevertheless have to take decisions. The formalization that we
present here has two remarkable features. The first is the attention we pay to the dynamic
part of default reasoning: agents may execute certain actions that model the jumping
to conclusions that is a major part of the reasoning by default. The second remarkable
feature is the use of the new modality of common possibility to define defaults. The idea
underlying this definition is that defaults are formulae that by virtue of their plausibility
are used to fill in gaps in the knowledge of an agent. A formula is considered to be
plausible, and hence considered to be a default, if it is a common possibility. We argue on
the basis of some lemmas that common possibility indeed models a useful kind of defaults.

Although we combine both features mentioned above in the framework presented in
this paper, we would like to stress that these are by no means dependent on each other.
The dynamic part depends in no way on the notion of common possibility to formalize
defaults: any representation of defaults can be used in combination with the actions that
constitute the dynamic part. And the notion of common possibility is also interesting in
a purely epistemic context, without any reference to dynamics.

The combination of different modalities of knowledge and belief has been investigated
by several authors (for example [14, 22, 23]), and the same can be said for the combination
of knowledge and defaults ([6]). Nevertheless, the system that we end up with is probably
the first one that combines knowledge, beliefs and furthermore treats defaults the way that
we do. Furthermore our system offers a formalization of default reasoning from an agent-
oriented, semantic point of view. However, the most important contribution of this paper
is that it firmly places default reasoning in the dynamic context where, in our opinion, it
belongs.

1.1. Organization of the paper

The rest of the paper is organized as follows.

In Sect. 2 we (re)introduce some of our ideas on knowledge, abilities, opportunities,
and results. Furthermore the notion of epistemic updates is explained, and the formal
definitions of the KARO-architecture are given. Sect. 3 deals with our approach towards
default reasoning. We formally define defaults and the beliefs of agents in 3.2. In 3.3
the consistency checks necessary to ensure correctness of the jumps to conclusions are
introduced, and in 3.4 the definitions of the action that models an attempt to jump to a
conclusion are given. In 3.5 we look into the agents’ abilities with respect to the jumping
to conclusions actions. Some remarks on the notion of default plans and the part they
play in the reasoning of agents concerning the correctness and feasibility of their plans
conclude Sect. 3. In Sect. 4 we look into the dynamics of supernormal default logic. We
show in particular that successive jumps to conclusions can be used by agents to end up
with extensions in the sense of default logic of their original belief set. In Sect. 5 we
summarize and discuss options for further research.



2. Knowledge, abilities, opportunities, and results

Formalizing knowledge has been a subject of research both in analytical philosophy and
in Al for quite some time (cf. [8, 13, 34, 35]). In representing knowledge we follow, both
from a syntactical and a semantic point of view, the approach common in epistemic logic:
the formula K, denotes the fact that agent i knows ¢, and the semantics of knowledge
is given by means of a possible worlds semantics.

An important aspect of any investigation of (human) action, is the relation that exists
between ability and opportunity. In order to successfully complete an action, both the
opportunity and the ability to perform the action are necessary. Although these notions
are interconnected, they are surely not identical (cf. [20]). The abilities of agents can
be seen as comprising mental and physical powers, moral capacities, and human and
physical possibility. The opportunity to perform actions is best described by the notion
of circumstantial possibility. A nice example that illustrates the difference between ability
and opportunity is that of a lion in a zoo (cf. [7]): although the lion will never have the
opportunity to eat a zebra, it certainly has the ability to do so. We propose that in order
to make the behaviour of rational agents, like for instance robots, as realistic as possible,
abilities and opportunities need also be distinguished in Al environments. In Al two
approaches are common when it comes down to abilities. The first is to declare abilities
fixed, and allow only actions of which the agent is able (cf. [43]). The major disadvantage
of this approach is that it cannot be modelled that agents acquire abilities or that they
loose abilities, even though these are rather natural notions: rational agents can acquire
abilities by learning, and by performing ability-destructive actions (cf. [15]) agents may
loose abilities?. The second approach is to somehow reduce abilities to opportunities (cf.
for instance [45]). The major disadvantage of this approach is that one loses the possibility
to reason about actions for which opportunity but no ability exist and vice versa, which
provides for a considerable loss of flexibility compared to our approach. We formalize the
abilities of agents via the A; operator; the formula A ;o denotes the fact that agent ¢ has
the ability to do a.

In defining the result of an action, we follow the ideas of [48], in which the state of
affairs brought about by execution of the action is defined to be its result.

When using the definitions of opportunities and results as given above, the framework
of (propositional) dynamic logic provides an excellent means to formalize these notions. If
we use events do;(«) to refer to the performance of the action a by the agent ¢, the formula
(doi(a))p represents the fact that the agent i has the opportunity to do a and that doing
« leads to ¢. The formula [do;(a)]p is noncommittal about the opportunity of the agent
to do a but states that should the opportunity arise, only states of affairs satisfying ¢
would result. Besides the possibility to formalize both opportunities and results when
using dynamic logic, another advantage lies in the compatibility of epistemic and dynamic
logic from a semantic point of view: the possible world semantics can be used to provide
meaning both to epistemic and dynamic notions.

2 A typical real-life example of an ability-destructive action is the stinging of a bee: bees have a one-time
ability to sting; when the opportunity to sting comes around a second time it cannot be taken.



2.1. Informative actions

When formalizing the behaviour of rational agents, the treatment of informative actions
should receive due attention, not only since these actions frequently occur in real life, but
also because of the importance of these actions for planning. The distinguishing feature of
informative actions is that their effect is to extend the information that an agent has about
the current situation. Typical examples of informative actions are sensing and observing,
but also the jumping to conclusions which is an important part of default reasoning.

In [25] we show how the informative action that consists of testing (or observing) the
real world can be formalized in our system; in [24] we deal with the transfer of knowledge
through communication. The semantics of both actions is based on the use of epistemic
updates, a notion we introduced in [25]. In this paper we use the analogous notion of
dozastic updates to model the extension of beliefs that follows the application of defaults.
The idea behind both these updates is the following. An informative action produces in-
formation concerning some proposition ¢ for the agent that executes the action. As such,
this action puts an end to any uncertainties concerning ¢ that the agent may have, hereby
reducing the number of epistemic (doxastic) alternatives that it has. Given this intuitive
meaning of epistemic and doxastic updates, it is obvious that these actions cause transi-
tions between pairs (Model, State), thus generalizing the usual actions from dynamic logic
that cause inter-state transitions within a model. The actual formalization of epistemic
updates in models that obey an S5 axiomatization for knowledge, these are the models
we considered in [24, 25], is based on the idea that an update of the knowledge of an agent
¢ in a state s with a formula ¢ divides the original epistemic equivalence class of i in s
into two new equivalence classes: one containing the epistemic alternatives that support
¢, the other containing those that do not support ¢ (cf. [25]). In this way it is ensured
that after the update, agent ¢ knows whether ¢ in the state s.

The formalization of doxastic updates, and their use in the modelling of reasoning by
default, is the subject of Sect. 3.

2.2. The KARO-architecture

Next the definitions of the KARO-architecture are given. The system that we define here
is a modified version of the one given in [25].

2.2.1. The syntax

In addition to natural numbers representing the rational agents whose behaviour we are
formalizing, we introduce a constant e in our language. The intuitive reading of this
constant could either be external environment/observer, or supervisor. The idea, is that
this external environment performs some actions that are not for the agents to perform,
but that appear in the implementation of actions which are. A typical example of such an
action is the epistemic update: this update is used in the implementation of the epistemic
test, but is not an action that the agent may perform. These special ‘low-level’ actions
are not visible for the agents: when they reason about an action « in the implementation
of which such a low-level action occurs, then « appears as an indivisible unit to the agent.
Since these low-level actions are used only in determining results and opportunities of
the agents’ actions, it is of no use to discuss the ability of the external environment with
regard to these actions.



2.1. DEFINITION. Let some finite set {1,...,n} of agents, and some denumerable sets II
of propositional symbols, and At of atomic actions be given. The language £ and the class
of actions Ac are defined by mutual induction as follows.
1. L is the smallest superset of IT such that
o if p,9 € L then —p,p V1 € L,
e if1 €A, a€ Acand ¢ € L then K¢, (do;(a))p, A;a € L.
The elements of £ are called formulae. The purely propositional fragment of L is
denoted by L,.
2. Ac is the smallest superset of At such that
e if ¢ € £ then confirm ¢ € Ac,
e if o; € Ac and oy € Ac then ay;a, € Ac,
if p € £ and oy, € Ac then if ¢ then oy else a, fi € Ac,
e if p € £ and o; € Ac then while ¢ do o od € Ac,
The elements of Ac are called actions.
The language £’ and the class of actions Ac’, formalizing the external environment part
of our language, are defined as follows:
o L' is the set {(do.(&/))¢ | ¢ € £ and o/ € Ac'} where
o Ac' is the set {ep_update (9,j) | ¥ € £, j € A}

The constructs A, —, ¢, tt and ff are defined as usual. Other additional constructs
are introduced by definitional abbreviation:

M;p is  -Kimp

[do. ()] is  —(do,(a))—¢ where z € AU {e}
if ¢ then a; fi is if ¢ then oy else skip fi
skip is confirm tt

fail is confirm ff

a® is skip

ant! is  a;a™

2.2.2. The semantics

2.2. DEFINITION. The class M of Kripke models contains all tuples M =< & , R, r,c >
such that

1. S is a set of possible worlds, or states.

2. m: I xS — bool is a total function that assigns a truth value to propositional
symbols in possible worlds.

3. R: A — p(S x 8) is a function that yields the epistemic accessibility relations for
a given agent. Since we assume to deal with S5 models, it is demanded that R(3)
is an equivalence relation for all ;. For reasons of practical convenience we define
[s]r(i) def {s'€ 8| (s,s') € R(3)} to be the R(¢) equivalence class of s.

4. r: AX At = S — p(S) is such that r(i,a)(s) yields the (possibly empty) state
transition in s caused by the event do;(a). This function is such that for all atomic
actions a it holds that |r(z,a)(s)] <1 for all 4 and s, i.e., these events are determin-
stic.

5. ¢ : AX At =+ S — bool is the capability function such that c(i,a)(s) indicates
whether the agent ¢ is capable of performing the action a in s.



2.3. DEFINITION. Let M = (S, 7, R, r, c) be some Kripke model. The set Mc of epistemic
sub-models of M is defined by:

Mc ={<S,n,R,r,c >e M | Vi € AR'(:) C R(i)]}

2.4. DEFINITION. Let M = (§,7,R,r,c) be some Kripke model, let S’ C 8, and © be
some formula.

e Cl (8 ¥ s xs.
s [Pl = {ses| M,s o}
2.5. DEFINITION. Let M = (S, 7, R, 1, c) be some Kripke model from M. For propositional

symbols, negated formulae and disjunctions, M, s |= ¢ is inductively defined as usual. For
the other clauses M, s |= ¢ is defined as follows:

M;s EK;p Vs € S[(s,8") € R(1) = M, s’ = ¢
M, s = (doi(a))p & IM, S M, 8" € x(5,a)(M,s) &M, s = ¢
M, s = Aa &c(i,a)(M,s) =1
where r and c are defined by:
r i (Ax Ac)U ({e} x Ac) = (Mc x S)US — p(Mc x S)
(i, a)(M',s) = M',x(i,a)(s)
r(i, confirm p)(M’,s) ={M, )it M sk
0 otherwise
r(i, a5 00) (M, 8) = r(i,a2)(r(, 01 ) (M, 5))
r(i,if ¢ then oy =r(i,a;)(M',s) if M sk
else a; fi)(M',s) r(i, az)(M’, s) otherwise

r(i,while ¢ do g od)(M',s) = {(M",s') | Ik € NIMy,so...IM,, s, €S
Mo, 80 = M, s& My, 5, = M",s' &Vj < k
[Mjs1, 8541 € x(i, confirm g5 an)(M, 5,)]
&M, s' = o]}
and
r(e,ep-update (¢,7))(M',s) = M", s where
M = (S",’TI'H,RH,B",I‘", C") € M(_: with
S" = Sl,ﬂ_ll — 7'(",1‘” — rl’ ¢" = ¢ and
R"(¢') = R'(#") for ' # i,
R'() = (R'() \ Cleg([s]r()) U (Cleg([s]r(5)) N [9]) U (Cleq([s]resy) N [+9])

where r(i, a)(0) =0
and
c : Ax Ac— (Mc x 8§)US = bool
c(i,a)(M', s) = c(i,a)(s)
c(i, confirm ¢)(M', s) =1ifM skEyp
0 otherwise
c(t,ar;az) (M, s) = c(i, a1 )(M', 8) & c(3, a3)(x (3, 0y )(M', 5))
c(i,if ¢ then oy = c(4, confirm p;a;)(M’, s) or
else ap fi)(M',s) c(4, confirm —p; az)(M', s)

c(i,while ¢ do oy od)(M’,s) =1 if Ik € N[c(s, (confirm p; oy )*;
confirm —p)(M’',s) = 1]
= 0 otherwise
where c(z, a)(0) =1.



Satisfiability and validity are defined as usual.

2.6. REMARK. Note that no definition of the ability for the epistemic update function is
given, since this action is only used in the implementation of other actions and is not
available to agents for execution.

The definition of r(e,ep_update (¥,;)) is based on the intuition given above; the
definition of the function r for the other actions is the standard one for the class of
deterministic while programs (see for instance [9]).

With regard to the abilities of agents, the motivation for the choices made in Def. 2.5
is the following. An agent is capable of performing a sequential composition ay;ay iff
it is capable of performing o; and it is capable of executing o, after it has performed
;. The definition of c(i, confirm ¢)(s) is based on the idea that an agent is able to get
confirmation for a formula ¢ if and only if this formula holds. Note that the definitions of
(i, confirm ¢) and c(i, confirm @) express an interesting relation between circumstances,
opportunities, and abilities: in circumstances such that ¢ holds, the agents both have the
opportunity and the ability to confirm ¢. An agent is capable of performing a conditional
composition, if it is able to either get confirmation for the condition and thereafter perform
the then-part, or it is able to confirm the negation of the condition and perform the
else-part afterwards. Lastly, an agent is capable of performing a repetitive composition
while ¢ do a; od iff it is able to perform the action (confirm ¢;a;)*; confirm —y for
some k € IN.

2.2.8. Modelling tests and communication via epistemic updates

To give an impression as to how epistemic (and later on doxastic) updates are used in mod-
elling informative actions, we look globally at epistemic tests (cf. [25]) and communication
(cf. [24]).

By performing an epistemic test, which roughly corresponds to an observation, for
some formula ¢, agents aim at acquiring knowledge whether ¢. If ¢ is the case in the
state where the test is performed the agent acquires the knowledge that ¢, otherwise it
knows - after testing. To capture the intuitive idea of observations, it is demanded that
tests can only be performed for propositional formulae. The actual implementation using
epistemic updates is defined as follows.

x(i, test )(M, s) = (e, ep-update (p,)))(M, 5)

We showed that formalizing tests in this way results in an intuitively acceptable framework
(cf. [25]).

With regard to communication we defined a send action that roughly behaves as fol-
lows: if some agent i requests a formula ¢ from agent j, and it is both the case that j
knows ¢ and that 4 trusts j on ¢, then j transfers its knowledge on ¢ to agent i. The
implementation of the send action is informally defined as follows.

® r(j,send(i, »))(M,s) = r(e, ep-update (,7))(M, s)

if M, s = Kip and i trusts j on ¢ and has made a request for ¢.

The doxastic updates, which we use to model belief updates instead of knowledge

updates, are based on the same ideas as the epistemic updates presented here.



2.2.4. Some remarks on completeness, decidability, and complezity

In [25] we presented a complete axiomatization of the basic logic system without informa-
tive actions. One of the main features of this axiomatization is the presence of infinitary
rules used to capture the infinite character of the repetitive composition. Due to these
infinitary rules, decidability cannot be proved in a standard way (cf. [19]). Although we
expect the basic logic system without informative actions to be decidable, proving this fact
remains an open problem, and the same can be said for the complete system containing
informative actions.

The basic logic without informative actions can be seen as the join of an S5 logic for n
agents joined with a deterministic propositional dynamic logic for n agents, and with an
ability component added to it. The satisfiability problem for an S5 logic for n > 2 agents
is known to be PSPACE complete ([11]), and satisfiability in (agentless) propositional
dynamic logic with deterministic while-loops is also known to be PSPACE complete ([12]).
Since joining logics only enlarges complexity (cf. [44]), the satisfiability problem for the
complete system including informative actions is at least PSPACE complete.

2.2.5. A comparison with other architectures

Several other formalizations of multi-agent frameworks have been proposed in the litera-
ture on Al Here we briefly mention some of these formalizations, and point out differences
with our KARO-architecture.

The first of these systems was probably the one defined by Moore. Moore was not only
the first to introduce the logic of knowledge into AI, but was also the first to combine a
logic of knowledge and action ({35, 36]). His main concern was the study of knowledge-
preconditions for actions - the question what agents need to know in order to be able
to perform some action. Moore defines a notion of ability in terms of ‘know how’: the
knowledge of how to perform an action is defined to denote the ability to perform the
action. Moore uses quantifying in in a first-order framework to define that an agent knows
what an action is. In our opinion the main drawback of this notion of ability lies in the
fact that it cannot account for agents that are able to perform actions without knowing
how to perform the action. This property is for instance typical for human(oid) agents:
these agents continually perform actions (walking, talking etc.) without knowing how
they do this. The developments in research on epistemic and dynamic logic that followed
Moore’s work, make this first system look a little bit out of date now: the notation seems
unnecessarily complex, and the system is altogether rather difficult to understand.

In more recent years, the system of Cohen & Levesque ([4]) has been very influential.
Syntactically, their system is a many-sorted, quantified, multi-modal logic with equality,
containing four primary modalities: one representing the beliefs of an agent, one represent-
ing the agents’ goals, one modality indicating that some action will happen next, and one
indicating that some action has just happened. The concepts of intention and commitment
are defined in terms of these primary modalities. Semantically, Cohen & Levesque use a
possible worlds model. Some obvious differences exist between our approach and the one
of Cohen & Levesque. First of all, the primary modalities of their system differ completely
from ours: whereas we consider knowledge, abilities, results, and opportunities, Cohen &
Levesque deal with belief, goals, and a sort of future and past notion of combined ability
and opportunity. It is furthermore the case that their system has a ‘temporal logic’ flavour



to it, whereas ours is typically ‘dynamic logic’ of nature.

The system of Rao & Georgeff ([39, 40, 41]) also deals with formalizing the behaviour
of rational agents. Their framework is based on three primitive modalities: beliefs, de-
sires, and intentions. Semantically their formalism is based on a branching model of time,
in which belief-, desire- and intention-accessible worlds are themselves branching time
structures. The emphasis of their approach lies within formalizing the revision of inten-
tions, beliefs, and goals. The system of Rao & Georgeff differs at least in two obvious
aspects. Firstly, their choice of fundamental notions differs from ours. Secondly, again the
underlying framework is typically a temporal logic one, and not a dynamic logic one.

Although not really a logic-based formalization, the research on agent-oriented pro-
gramming as initiated by Shoham ([43]) also deals with the behaviour of rational agents.
Shoham’s framework is meant to provide a new programming paradigm, based on a so-
cietal view of computation. A logical system with clear syntax and semantics should
underlay any AOP system. The logical system that Shoham defines in [43] contains three
primary concepts, namely belief, obligation (or commitment) and capability. Due to the
absence of actions in Shoham’s language, the notion of capability that Shoham uses is
completely different from ours. However it bears some resemblance to the notion of feasi-
bility and correctness that we formalized in our Can-predicate (see [15]): where we state
that some agent has a plan that is known to be correct and feasible to achieve a given
goal ¢, Shoham would say that this agent is capable of (achieving) ¢. In the work of
Thomas ([45]) a logical system is given to provide for a formal foundation of a part of
the agent-oriented programming language. The basic notions that Thomas considers are
beliefs, capabilities, plans and intentions. Although capability is claimed to be primitive,
it is in fact defined as future opportunity. Semantically Thomas uses a possible worlds se-
mantics based on an underlying branching-time structure, in which various atomic actions
provide for the branching. Although Thomas’ framework resembles ours in her choice
of primitive modalities, there are some important differences. First of all, as mentioned
above Thomas’ notion of ability differs from ours, and is not really primitive. Secondly,
only atomic actions are considered, whereas our framework basically deals with the com-
positional behaviour of complex actions. Lastly, although actions are explicitly present in
the language, the whole system still has a temporal logic, and not a dynamic logic, flavour
to it.

Summarizing, two major differences between our approach and other well known ap-
proaches can be pointed out. Firstly, none of the other systems mentioned above deals
with abilities as a really primitive notion. We treat ability as a first-class citizen, and
propose that the advantages of doing so in terms of an enhanced flexibility and expressive-
ness, visible for instance in the formalization of learning and forgetting, are substantial.
A second remarkable difference lies in the fact that we use dynamic logic as the basic
underlying system whereas the systems mentioned above (with the exception of Moore’s
system) use some sort of temporal logic for this goal. In our opinion a logic of action
should be able to express both results and opportunities of actions, which was our main
reason to choose for a dynamic and not for a temporal logic. The main advantage of
using dynamic logic, however, is that our state transitions bear less weight than those in
a temporal logic framework. Transitions in a dynamic framework do not fix a number
of possible futures, but are used to reason about results and opportunities. As such, the
incorporation of informative actions seems to be much more straightforward in a dynamic
logic based framework, than in a temporal logic based one.



3. Defaults and dynamics

As mentioned in Sect. 1, the capacity to reason by default is very important when modelling
rational agents. In default reasoning, reliable yet fallible conclusions are derived on the
basis of the presence of certain information and the absence of other information. A
natural way to look at the kind of derivations that are common in default reasoning is
to regard these as ‘jumps to conclusions’. Whereas in classical logic derivations can be
considered to ‘walk to a conclusion’ by taking one well-argued, secure step at a time, in
default reasoning one jumps to conclusions that one in general cannot walk to.

Usually agents know certain formulae to be true, other formulae to be false, and are
uncertain with respect to still other formulae. The agent may try to fill in the gaps
in its knowledge by trying to jump to certain conclusions. These attempted jumps are
modelled as explicit actions, try_jump ¢ for ‘try to jump to ¢’, in our dynamic framework.
The execution of such a try_jump ¢ action consists of three stages. In the first stage
it is checked whether the formula ¢ is a suitable candidate to jump to. The formulae
that are suitable candidates for a given agent in a given state are called its defaults.
These formulae intuitively correspond to supernormal defaults —these are prerequisite-
free, normal defaults- in Reiter’s default logic ([42]) and possible hypotheses in Poole’s
system ([38]). If the formula that the agent is trying to jump to is a default, the second
stage of execution follows; if the formula is not a default, the jump fails. In the second
stage of execution it is checked whether the default can consistently be adopted by the
agent to fill in some gap in its knowledge (due to the extreme flexibility of our framework
the actual consistency check is more elaborate; exact details can be found in 3.3). If
the default cannot be adopted consistently, the jump reduces to the empty action skip;
otherwise the default is actually adopted, which constitutes the third stage of execution.

It is important to notice that in our opinion formulae derived by default are of a differ-
ent nature than facts known to be true . In this we agree with several other formalizations
of default reasoning, like for instance NML3 ([6]), EDL ([31, 32, 33]) and DIL ([26, 27, 37]).
To accommodate for this qualitative difference between known facts and beliefs, we intro-
duce a new modality, representing the beliefs (typically acquired by default) that an agent
has. The implementation of the try_jump action is such that formulae derived by default
are included in the agent’s beliefs, and not in its knowledge.

3.1. Formalizing defaults: defaults as common possibilities

In the intuitive ideas expressed above, an important part is played by the defaults, the
formulae that may be jumped to. An obvious approach towards formalizing these defaults
would be to extend the Kripke models M with some additional § function, that yields
for each agent in each state of M the formulae that are candidates for jumping. In this
way each agent is equipped with its predefined set of defaults. Although this works out
properly, we would like to propose another approach towards the formalization of defaults.
We want to formalize defaults by using concepts already present in our KARO-architecture.
In this way the process of reasoning by default is formalized in its entirety within our
KARO- architecture. In order to do this we need a modal (epistemic) translation of
defaults that somehow does justice to the empirical character of defaults. If one looks
at some of the modal (epistemic) translations of defaults that have been proposed in the
literature ([21, 28, 29, 30, 46]), it turns out that for supernormal defaults tt : /¢ in an S5
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framework all of these translations amount to either the formula M;p — ¢ or M;p — K.
These epistemic translations stem from the usual, static, account of default reasoning and
are therefore not completely suitable for our goals. Intuitively, our notion of defaults
corresponds to the premises of both the implications given above, whereas the conclusions
of these implications are (possibly) brought about by execution of the try_jump ¢ action.
Hence the obvious thing to do would be to consider the premises of the implications
M;p — ¢ and M;p — K;p, viz. the formula My, as a candidate to represent our kind
of defaults. In that way agents would consider each formula that they do not know to be
false to be a default. However in our opinion this formalization would do not justice to
the empirical character of defaults. More in particular, the idea of defaults being rooted
in common sense, which is generally accepted to form the roots of defaults, is not visible
when formalizing defaults as ordinary epistemic possibilities. In our multi-agent KARO-
architecture common sense is related to the knowledge and lack of knowledge of all agents.
To capture this idea of defaults as determined by the (lack of) knowledge of all agents, we
propose the modality of common possibility. The intuitive interpretation of some formula
¢ being a common possibility is that it is considered possible by all agents, i.e., none of
the agents knows ¢ to be false. If one considers epistemic possibility to correspond to the
natural language ‘might’ (cf. [47]), common possibility could be interpreted as a ‘uniformly
supported might’ if ¢ is a common possibility, then each agent accepts that ¢ might be
the case. A real-life example of such a uniformly supported might is for instance the
statement ‘there is a block of 99 consecutive nines in the decimals of #’, since nowhere in
the assembled knowledge of all humans is there any fact contradicting this statement. For
the same reason the statement ‘there is no block of 99 consecutive nines in the decimals
of 7’ is a uniformly supported might. Also both ‘P = NP’ and ‘P # NP’ are uniformly
supported mights. A non-mathematical example is that, assuming that Ronald Reagan
-being one of a group of human agents- was aware of his own knowledge, exactly one
of the statements ‘Reagan was aware of Iran-Contra gate’ and ‘Reagan was not aware
of Iran-Contra gate’ is a uniformly supported might. It is not possible that both are,
since Reagan has knowledge contradicting one of these statements. In this case the agents
that do not know which one of these statements is a uniformly supported might are not
able to jump to any conclusion concerning Reagan’s awareness (see also 3.5). In these
examples common possibilities/uniformly supported mights have an optimistic flavour to
them: agents that jump to these formulae seem a little hazardous. In fact however these
agents are not that bold at all: there is no other agent that could tell them that their
jumps are made for incorrect reasons. So not only does the jumping agent itself not have
any knowledge contradicting the default, but also is it not possible to acquire this kind of
knowledge through communication with other agents.

3.2. Defining common possibilities and beliefs

The common possibility operator N is defined in accordance with the intuition given in
the previous section.

3.1. DEFINITION. For all formulae ¢, the formula N, for nobody knows not ¢, is defined
by:

def

Ny =MpA...AM,p
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3.2. REMARK. Note that for single-agent frameworks common possibility is just epistemic
possibility. Except when explicitly stated otherwise it is assumed throughout this paper
that we deal with genuine multi-agent situations.

3.3. REMARK. Although the common possibility operator is intuitively related to the
modalities of ‘everybody knows’ and common knowledge (cf. [8, 34]), it is in fact an
independent modality that cannot be reduced to one of these other modalities.

The formalization of belief, typically acquired by default, as we present it, combines
two approaches from the literature, viz. [22] and [31]. Following [22], and thereby also
[13], we consider the main difference between knowledge and belief to be the veridicality
of knowledge. That is, if an agent knows ¢, then ¢ must be true, but when an agent beliefs
¢, @ need not be the case.

Syntactically, our approach is based on the one of [22].

3.4. DEFINITION. The language £ as given in Def. 2.1 is extended with the operators B;
for all agents 7. The formula B,y represents the belief of the agent 7 in ¢. Formulae
without occurrences of any B; operator are called B-free, B-objective or simply objective.

The semantics of the belief operator as we give it, is conceptually different, yet essen-
tially identical, to the one given in [22]. Instead of an accessibility relation, in [22] denoted
by T, we use a set of designated worlds that together constitute the body of belief of the
agent. Defining the semantics like this has two advantages as compared with the defini-
tions of [22]. The first is merely an intuitive one: by using a set, the worlds that define
the beliefs of an agent have become more tangible. One can see at a single glance how the
beliefs of the agent are determined, without examining a-possibly complex accessibility
relation. The second advantage is of a more technical nature. As we will see in Sect. 3.4,
the technique of doxastic updates can more easily be applied when belief is interpreted
using sets instead of accessibility relations.

3.5. DEFINITION. The Kripke models as given in Def. 2.2 are extended with a function
B: A xS/R — p(S), such that for all agents 4,7’ and sets [s]r;) it holds that:

o B(i,[s]r()) is undefined if ¢ # 4'.

* B(} [s]r) < [s]res

e B, [s]r) # 0.

Truth of belief formulae in states of a model is defined as follows:
M,s =B,p & Vs' € B(4, [s]r) M, s’ = ¢

When defining the semantics of belief as done in 3.5, we still obtain the desirable
properties of the notion of belief of [22]. The following lemma states that the set of
designated (belief) worlds defines a doxastic accessibility relation in the sense of [22] and
vice versa.

3.6. LEMMA. Let M = (S,m,R,B,r,c) be a Kripke model.

o Let the semantics for the B, operator be as in Def. 8.5. Let for all agents i € A the
relation T(i) C S x S be defined by:

T(1) = {(t,u) € § x § | Is € S[t € [s]r) &u € B(4, [s]ry))]}
Then for all agents i € A:
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1. T(3) s serial
2. T(1) CR(%)
3. for all s,t,u € S: if (s,t) € R(i) and (t,u) € T(z), then (s,u) € T(3)

e Let the semantics for the B, operator be given by a serial relation T(i) such that
T(7) C R(4) and for all s,t € S, if (s,t) € R(1) and (t,u) € T(3), then (s,u) € T(i).
Define for all agents i and for all [s]ru), B, [s]rs) = {' € S| (s,¢") € T(4)}.
Then:

1. B(3, [s]r@)) # 0
2. B(3, [slres)) € [s]re)

3.2.1. Knowledge, belief, and common possibilities

In this paragraph we look more deeply into the epistemic and doxastic notions that we
introduced thus far. In particular we establish some relations that exists between these
notions.

As already remarked in Def. 2.2, knowledge obeys an S5 axiomatization, this in accor-
dance with common practice in AI (cf. [8, 22, 34]).

The belief operator B; satisfies a KDD45 axiomatization (this according to the Chellas
qualification given in [3]). This means in particular that agents do not hold false beliefs,
and they have both positive and negative introspection on their beliefs.

3.7. LEMMA. For all agents i and formulae ¢ and ¢ we have:
E Bi(p = ¥) = (Bip = Biy)

|= "‘B,’ﬂ"

F Bip = B;B,p

F -Bip = B,=Bp

Ee = F By

The relation between knowledge and belief is as in the system of [22]. It is in particular
the case that knowledge is stronger than belief, that the belief in knowledge is equivalent
with the knowledge itself, and that knowledge of belief and belief are equivalent notions.

3.8. LEMMA. For all agents i and formulae ¢ and i we have:
e EKip— Bip
e FK;~¢ = -Biyp

3.9. DEFINITION ([14]). A formula ¢ is i-dozastic sequenced if there is a formula v, and
operators Xy,...,X,, € {K;,B;,-K;,~B;} and m > 0 such that p =X, ... X,,¢.

3.10. LEMMA ([14]). Let ¢ be an i-dozastic sequenced formula. Then:
s EFKiper o
e EBipoy

3.11. REMARK. Besides the desirable properties expressed in Lemma 3.8 and Lemma 3.10,
our system also has some of the undesirable properties of the system of [22]. In particular,
we inherit the property that the desirable axiom B;p — B,K;p cannot be added to
our system without collapsing knowledge and belief. In [14] it is investigated how the
underlying axiomatizations for knowledge and belief could be modified in order to allow
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the axiom B;p — B;K;p without causing a collapse. It turns out that in order to allow for
this axiom, other desirable axioms have to be discarded. For instance, removing negative
introspection for knowledge would allow B;p — B;K;y to be included as an axiom. We
are not convinced that presence of this axiom outweighs any of the losses that it causes,
and therefore decide to use the ‘standard’ system of Kraus & Lehmann.

Not surprisingly, our common possibility operator N shares some of the properties of
the epistemic possibility operator M;. In particular, N satisfies the dual KT4 axiom-
atization, but satisfies only one direction of the dual 5 axiom. However, whereas the
epistemic possibility operator satisfies the (in general undesired) axiom of weak belief
M;(p V ¢) & (M;p VM) (cf. [17]), the common possibility operator satisfies only the
right-to-left implication.

3.12. LEMMA. For all formulae ¢ and ¢ we have:
¢ — Np

. ENpVN-p

E NNy — Nop

E —-Ny - N-Nyp

- N-Ngp — ~Ngp

¥ N(p V) = (NpVNy)
E Ne = N(p V)
Fe—19=FENp—>Ny
£ N AN(p — 9) = Ny
. ENe ANy - N(p AvY)
e Ny — ~N-op

ND RSO e~

O k

3.13. REMARK. The properties formalized in Lemma 3.12 indicate that N¢ is an accept-
able candidate to represent defaults. Clause 1 states that true formulae are defaults.
This is a consequence of the reflexivity of the epistemic accessibility relation that ensures
veridicality of knowledge. For each agent considers all formulae that hold in the ‘cur-
rent’ state to be possible, and hence all these formulae are uniformly supported mights.
Clause 2 indicates that in principle all gaps in the agent’s knowledge are ‘fillable’, i.e.,
for all formulae ¢ either ¢ or -y is a default. Possibly the most important and remark-
able property of the common possibility operator with regard to its usability to represent
defaults is given by clause 6. This clause indicates that disjunctive defaults are not neces-
sarily trivialized, that is, these disjunctions are not necessarily reduced to their disjuncts.
This property is very important for the expressive power of our framework. Consider
for instance the situation of a lottery with m > 1 players. Then it is not the case that
player 1 wins by default, and neither is this the case for any of the players 2 to m — 1.
But it is also the case that by default one of these m — 1 players actually does win.
Since {~Nuwy,...,"Nwy,_1,N(w; V...V w,_;)} is satisfiable, this aspect of the lottery
can be formalized in our framework. Note that this situation cannot be formalized by
taking ordinary (single-agent) epistemic possibility instead of common possibility, since
M.(p V) & M;p V M;9 is a valid formula. Clauses 10 and 11 show that the Nixon-
diamond can be represented. That is, it is possible to represent that it is a default that
Nixon was a pacifist and that it is a default that he was a non-pacifist, even though it is
not a default that he was a walking contradiction.
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Some of the aspects of the relations between knowledge, belief and common possibility
are formalized in the following lemma.

3.14. LEMMA. For all agents i and formulae ¢ and ¥ we have:
E K,~¢ — -Nyp

¥~ Bi~¢ = ~Ng

F NKip < Kip

E NBip < B,y
EN-Kip ¢ -Kip
F N-Bip < =By
= Ny = KNy

¥ B;Ny = Ny

b Ny — B;Nyp

I—_- B,N(p — ﬁI(iﬁ(,o

~ D %NS v oo

[N,

3.15. REMARK. The clauses 1 and 2 of Lemma 3.14 nicely emphasize the ontological dif-
ference between knowledge and belief: it is possible that an agent considers a formula to
be a default although it beliefs the negation of the formula, but if the agent knows the
negation of the formula, the formula will not be considered a default. The clauses 3 to 6
are related to the introspective properties that the agents have both for knowledge and
belief. The last clause states, when read in its contrapositive form, that formulae known
to be false are not believed to be defaults; this seems to be highly desirable a property for
a rational agent.

3.3. Checking consistency

In [6], Doherty formulates two general conditions under which an agent should be per-
mitted to adopt by default a formula as one of its beliefs. The first of these conditions
basically states that the formula must be a default: it should be plausible according to
some criteria. We have formalized this demand for plausibility by introducing the notion
of common possibility. Here we look into the second condition: the consistency of the
formula that is to be believed with the other beliefs that the agent already has.

In our framework, two different consistency checks need to be performed. The first
of these is the obvious one, in which it is checked that the formula that is to be believed
is possible given the beliefs of the agent. That is, for a formula ¢ it is verified that
-B;—¢ holds. This is a straightforward consistency check of the kind that is employed
in consistency-based formalizations of default reasoning (cf. [28]). The second consistency
check that is to be performed is due to the expressiveness of our framework in which
defaults are not necessarily propositional formulae, but may contain all sorts of operators.
Now when allowing non-propositional formulae, it is possible that an update with a formula
that can consistently be assumed, does still not result in the agent actually believing the
formula. The following example, a variant of an example given in [24], illustrates this
point.

3.16. EXAMPLE. Let i € A be some agent. Consider the model M = (S,n,R,B,r,c),

with § = {30,31}, 7T(py 50) = 1,7T(p,81) = Oa R(Z) - SzaB(ia [S]R(i)) = [S]R(i), and r and ¢
are arbitrary. In this model the following statements are true:
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o M,sq ’= PA -B;p
[ M,31 bép/\"'lB,p
o M,so = B;~(pA-B;p)

Although the formula ¢ &of p A =B;p is consistent with the beliefs of the agent in M,
it is not possible to incorporate this formula in the beliefs of the agent by performing a
doxastic update. For a doxastic update in sy with ¢ results in a model M’ such that
B'(3, [s]r(:)) = {s0}. For this model it holds that M', s = B;p.

We solve the problem observed in example 3.16 in a rather pragmatic way: it is simply
checked whether a doxastic update indeed results in the formula being believed. If this
is not the case, the formula does not pass this second consistency check and is therefore
not adopted by the agent as one of its beliefs. The presence of dynamic operators in our
language allows for a concise representation of this second consistency check. Formulae
that pass this second check are called default honest, in analogy with the notion of honesty
as defined by Halpern and Moses ([10]). A typical class of default honest formulae is that
given by the language L, of all propositional formulae; typical default dishonest formulae

are those that are inconsistent in the Kraus & Lehmann axiomatization of knowledge and
belief ([22]).

3.4. Jumping to conclusions

Having dealt with the formalization of both defaults and the beliefs derived by default, and
the appropriate checks for consistency, we are now able to define the try_jump action that
formalizes the three-stage process of jumping to conclusions. Besides the try_jump action,
we introduce two new low-level actions that are used to model the different stages in the
execution of the try_jump action.

3.17. DEFINITION. The class Ac of actions (and hence the language £) as defined in 2.1
is extended as follows:

e if i € A and ¢ is a formula then try_jump ¢ € Ac
The class of actions Ac' is extended with the sets {dox_update (¢, )}, representing the
low-level action that performs dozastic updates, and {bel update (y,j)} representing
belief updates. For both sets ¢ is an element of £ and j € A.

3.18. DEFINITION. Let M = (S, m, R, B, r,c) be a Kripke model, let ¢ € A be some agent,
and let ¢ be some formula. The function r is for the action try_jump , and the meta-actions
dox_update and bel_update defined as follows.
e r(i,try_jump ¢)(M,s) = r(e,bel_update (p,1))(M,s) if M,s = Ny,
e r(i,try_jump ¢)(M,s) =0 if M,s }= Ne.
e r(e,bel_update (y,1))(M,s) = r(e,dox_update (p,7))(M,s)
if M, s = -B;—¢ A (do.(dox_update (p,?)))B;p,
e r(e,bel update (y,7))(M,s) = M, s otherwise.
e r(e,dox-update (p,i))(M,s) =0 if M,s &= B;—p.
e r(e,dox update (¢,%))(M,s) = M',s,
where M' =< 8,7, R,B’,r, ¢ > with B'(%, [s]r(;)) = B(4, [s]rq))N[¢] if M, s = B;—e.
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3.19. REMARK. In the first two clauses of Def. 3.18 a case distinction is made on ¢ being
a default: in the case where ¢ is not a default, i.e., M, s = Ny, the attempt to jump to ¢
fails. In the case where ¢ is a default, it is checked whether ¢ can consistently be adopted
by the agent, i.e., it is checked whether M, s = —=B;—¢ A (do.(dox_update (y,%)))B;¢p;
dependent on whether this consistency check is passed a belief update is performed. Note
the different treatment of the case where ¢ is not a default and the one in which ¢
cannot consistently be assumed: in the first case the try_jump action reduces to fail,
in the second case the action reduces to skip. This corresponds to the intuition that
trying to jump to a non-jumpable formula results in a fail, whereas trying to jump to
a jumpable formula that is unacceptable due to the context, does not change anything.
From a technical point of view the reduction to skip in the second case is related to the
treatment of normal defaults with inconsistent consequents in default logic: these defaults
do not cause the resulting extension to be inconsistent -which would correspond to a
reduction to fail in our framework- but are simply neglected -which corresponds to the
reduction to skip.

The formal counterpart of the notion of default honesty (informally introduced in 3.3),
as it is used in Def. 3.18 is as follows.

3.20. DEFINITION. Let M = (S, 7, R,B,r,c) be a Kripke model, let i € A be some agent,
and let ¢ be some formula. The formula ¢ is default honest for ¢ in M, s iff

M, s k= [do.(dox-update (¢,1)|B;¢p

An important class of default honest formulae is that of purely propositional formulae.
The following lemma, the proof of which is straightforward, formalizes this property.

3.21. LEMMA. For all agents i and all purely propositional formulae ¢ € Ly it holds that
k= [do.(dox-update (¢,1)|B;p
or, equivalently

E —B;—¢ — (do.(dox.update (p,%))B;p

The models that result from applying defaults are well-defined in the sense that in
particular the belief function B satisfies the demands it should meet.

3.22. LEMMA. For all Kripke models M and s € S, for formulae ¢ we have:
o if (i, try_jump ¢)(M,s) = M',s then M’ is a well-defined Kripke model.

An important aspect of informative actions, whether they produce knowledge or belief,
is that execution of these actions causes minimal change to the model under consideration.
That is, besides the knowledge and belief fluents, these actions should not affect any other
aspects of the model. This is also the case for our apply default action, provided that the
default that is applied indeed is a default, i.e., it is a plausible conclusion.

3.23. LEMMA. Let M = (S, n,R,B,r,c) be some Kripke model. Let s € S, i € A and

@ some formula. Let M' =< &', n',R',B’,r',c’ > and M',s' = x(i,try_jump ¢)(M,s).
Then:
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1. If M, s = —-B;~p A (do.(dox_update (y,:)))B;p then M',s' = M, s.
2. If M, s |E =B;~¢ A (do.(dox_update (¢,1)))B;p then:
e =8, =n,R=R,r'=r,c’=cands =s,
o \z.B'(j,x) = Az.B(j,x) for j #1
o Let M" =< 8,7, R,B",r,c > be a Kripke model such that
o B"(¢, [s]r@)) = B(&, [s]r(i)) for ¢’ # 1
* B"(i, [slr) € B(% [s]r@)
Then if M",s = B, then B"(3, [s]r@)) € B'(%, [s]r())-

3.24. REMARK. Intuitively, Lemma 3.23 could be read as stating that a jump to a default
causes minimal change to the model. Attempted jumps to non-defaults are doomed to
fail, thereby causing a more or less ‘maximal’ change.

3.25. LEMMA. For all agents i and j, and for all formulae ¢ and ¢ we have:
- = (doy(try-jump @))9 — [do;(try-jump ©)]v
[ Ny ¢ {(do;(try-jump ¢))tt
E ¢ = ¢ =k (do(try-jump ¢))tt — (do;(try_jump ¢))tt
k= (do;(try-jump ¢))tt « (do;(try_jump ¢))tt
P (doi(try-jump ¢))Bip — (doj(try-jump ¢))B;¢p
= No A B~ — (¢ © (do;(try-jump ¢))¥)
For B-free formulae ¢:
= N A =B;~¢ — (do;(try-jump ¢))Bip
8. For B-free formulae v, and for all formulae ¢:
= Biy — [dos(try-jump ¢)|Biy

SIS SR S

3.26. REMARK. Lemma 3.25 shows that the formal equivalents of the intuitive ideas that
we presented are indeed brought about by our definitions. The first clause of Lemma 3.25
states that the event consisting of the attempt to jump to a conclusion is a deterministic
one. Clause 2 formalizes the idea that being a default sets up the opportunity for jumps.
In clause 4 it is formalized that agents have equal opportunities with respect to attempted
jumps to conclusions. Basically this is a consequence of the fact that defaults are rooted
in common sense, and are therefore equal for all agents. Although agents have equal
opportunities, clause 5 states that the attempted jumps to conclusions may work out
differently for different agents. This is as one would expect, since the result of such a
jump depends on the beliefs of the jumping agent. Clause 6 states that the event that
consists of the jump to an unacceptable default, i.e., a default that is inconsistent with
the beliefs of the applying agent, reduces to the empty action skip; nothing changes as
the result of a jump to such a default. Clause 7 formalizes that a jump to an acceptable
default results in the acquisition of belief in the default. The last clause states that
by attempted jumps to conclusions agents retain their set of objective beliefs: no belief
revision of objective formulae takes place.

3.27. REMARK. As already mentioned in Sect. 1, the definitions constituting the dynamic
part of default reasoning are in no way dependent on the modality of common possibility
to represent defaults. In fact arbitrary default rules ¢ : /¢ & la Reiter ([42]) can be
‘dynamized’ in the KARO-architecture in the following way. Assume some Kripke model
M is given together with a function ¢ that yields for each agent in each state of the
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model the set of default rules that the agent has at its disposal. Instead of jumping to
default conclusions, agents apply default rules ¢ : ¢/9 as follows. Based on some modal
translation of the default rule, for instance the translation K;p AM;y — K;¥ as proposed
by Konolige ([21]), it is checked whether the precondition part of the default rule, in this
case K;po A M9, is satisfied. If this is the case the consequent part of the default rule,
i.e., K;9 is brought about by performing the appropriate epistemic update. In this way
agents can reason with general default rules. Further investigation into these matters is
left for a future paper.

3.5. The ability to jump

In the previous (sub)sections, we dealt with the formalization of the opportunity for and
the result of the action that consists of an attempted jump to a conclusion. Here we look
at the ability of agents to make these jumps.

For ‘mental’ actions, like testing (observing) and communicating, the abilities of agents
are closely related to their (lack of) knowledge. This observation seems to hold a fortiori
for the action that consists of jumping to a default conclusion. For when testing and
communicating, at least some interaction takes place, either with the real world in case of
testing, or with other agents when communicating, whereas jumping to conclusions is a
strictly mental, agent-internal, activity. Therefore it seems obvious that the ability of an
agent to make a jump to a default conclusion depends on the mental state of the agent
only. In our opinion an intuitively acceptable formalization of the agents’ abilities is to
state that an agent is able to jump to only those formulae that it knows to be defaults.
So agents have to know their defaults in order to be able to use them. This intuitive idea
leads to the following formal definition.

3.28. DEFINITION. Let M be some Kripke model, let s be some state in M, ¢ € A some

agent, and ¢ some formula. The capability function c is for the action try_jump defined
by

c(i,try-jump p)(M,s) =1 & M, s = K;Nyp
The following lemma formalizes some properties that result from Def. 3.28.

3.29. LEMMA. For all agents i,j and for all formulae ¢ and i we have:
1. = Atry_jump ¢ ¢ Ajtry_jump @
2. E Atry_jump ¢ & K;A;try_jump ¢
3. E Ajtry_jump ¢ — (do;(try_jump @))tt

3.30. REMARK. The first clause of Lemma 3.29 is an important one. It states that agents
do not necessarily have equal abilities with regard to the jumping to default conclusions.
Hence even though all agents have equal opportunities to jump (cf. clause 4 of Lemma 3.25),
with respect to their abilities some agents are more equal than others. Through its abilities
each agent can be equipped with its personal set of defaults, namely those defaults that
the agent is aware of. Note that this nicely corresponds to the intuition: since I know that
birds typically fly I may conclude that Tweety flies when hearing of some bird Tweety.
But although pteroydactyls do fly by default, people who are not aware of this fact will
not be able to conclude that Tweety flies upon hearing that it is a pterodactyl. Clause 2
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states that agents know of their abilities to apply defaults. The last clause states that the
try_jump action is A-realizable ([15]), i.e., the ability to perform the action implies the
opportunity to do so. This property seems to be typical for actions without physical (cir-
cumstantial) prerequisites, of which the application of defaults obviously is a prototypical
example.

3.6. The belief in correct and feasible plans

Inspired by the concepts introduced in [36], we introduced in [15] the Can-predicate and the
Cannot-predicate. Intuitively these predicates formalize the knowledge and the reasoning
of agents regarding the (in)correctness and (in)feasibility of their plans to achieve certain
goals. The definition of these predicates is based on the idea that an agent ¢ knows that
action a is a correct plan to achieve ¢ iff it knows that (do;(a))¢ holds. Agent ¢ knows
that « is a feasible plan for  iff it knows that it is able to do ¢, i.e., K;A;« holds. This
intuition is formalized in the definition of the Can-predicate as we give it. We also defined
a Cannot-predicate, which has as its intended meaning that the agent knows that it cannot
reach some goal ¢ by performing some action a, since it knows that either the action does
not lead to the desired goal or it is not capable of performing the action, i.e., the agent
knows that the action is either an incorrect or an infeasible plan.

3.31. DEFINITION. The Can-predicate and the Cannot-predicate are defined as follows.
e Can;(a,9) = K;({do;(a))p A A;a).
e Cannot;(a, ) = K;(~(do;(a))p V ~A;a).

Situations where agents have complete knowledge are however not very common when
modelling real-life situations. In general agents hardly ever have complete knowledge
concerning the correctness and feasibility of their plans. Still these agents have to decide
on the usability of their actions to achieve certain goals. At this point a special kind of
defaults, so called default plans come into play. Default plans are actions that an agent can
adopt by default in cases where it cannot adopt an action on the basis of its knowledge.
For example ‘Usually when I feel tired, I take a nap and feel better afterwards.’ is a default
plan, and so is ‘If you’re stuck with your research, it is usually a good idea to go and read
something’. Formally, default plans are defined as follows.

3.32. DEFINITION. The action « is a default plan with respect to ¢ for agent ¢ in state s
of model M iff M, s = N({(do;(a))p A A;a).

The result of jumping to a default plan « is a state of affairs in which the agent believes
o to be a correct and feasible plan to achieve the goal. As we did for plans known to be
correct and feasible, we introduce predicates to model plans believed to be (in)correct
and/or (in)feasible.

3.33. DEFINITION. The Could-predicate and the Couldnot-predicate are defined as follows.
e Could;(a,y) def B;((do;(@))p A Aja).
e Couldnot;(a, ¢) ¥ B;(—(do;(a))p V ~A;a).
Note that both these predicates are indeed weakened forms of the corresponding pred-
icates given in Def. 3.31. Note furthermore that due to the fact that beliefs may not be

inconsistent, agents do not hold actions both correct and feasible and incorrect or infeasible
at the same time.
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3.34. LEMMA. For all agents i, actions o and formulae ¢ we have
k= Can;(a, ¢) = Could;(e, ¢).

= Cannot;(«a, ¢) — Couldnot;(a, ¢).

E Could;(a, ¢) = ~Couldnot,(a, ¢).

For reasons of clarity we introduce the abbreviation Consistent;(y) o -B;—p A

(do.(dox_update (p,7)))B;p to represent the fact that ¢ can pass the two stage con-

sistency check. The abbreviation Consistent_Default_Plan;(a, ) % N({do;(a))p A A;a) A
Consistent,;({do;(a)}p A A;«) denotes that both « is a default plan for ¢ and that it is
possible to make the jump to belief in a being a correct and feasible plan for ¢.

3.35. LEMMA. For all agents i, actions « and formulae ¢ we have
e = Consistent_Default_Plan;(a, p) =
E Can;(try_jump ({(do;(e))¢ A A;a), Could;(a, ¢))

Intuitively, Lemma 3.35 states that agents know that they can come to the belief in
correctness and feasibility of default plans. In a sense this lemma states that agents can
convince themselves of the usability of default plans. Special attention should be paid to
the menagerie of modal operators and predicates occurring in Lemma 3.35: the knowledge
operator K;, the Consistent_Default_Plan predicate, the Can- and Could-predicate, the
opportunity and result formula (do;(a))¢ and the ability operator A;.

4. The dynamics of Supernormal Default Logic

The most prominent consistency-based approach to default reasoning is Reiter’s default
logic ([1, 2, 28, 42]). In default logic, default statements are formalized by special inference
rules ¢ : ¥ /9, where ¢,v and ¢ are formulae of the language. In the context of default
logic these inference rules are called defaults. The formula ¢ is called the prerequisite of the
default, v is the justification, and ¥ is the consequent. The intuitive interpretation of such
a default is that if ¢ is known (believed), and % is consistent with the set of knowledge
(belief), then the conclusion ¥ may be inferred. A default ¢ : ¢ / ¥ is called seminormal
if ¢ logically implies 9; it is called normal if ¢ and ¥ are identical, and supernormal if it is
normal and has an empty prerequisite. In this section we give a dynamic interpretation of
the supernormal fragment of default logic, using the concepts introduced in the previous
sections. More specific, we show that our agents may construct eztensions (in the sense
of default logic) of their set of beliefs by successive jumps to conclusions.

Since we restrict ourselves to the supernormal fragment of default logic, the formal
definitions that we give are tailored at this fragment. As such these definitions are con-
siderably less complex than those for general default logic.

4.1. DEFINITION. A default theory A is a pair (W, D), where W is a set of propositional
formulae representing the (propositional) beliefs of an agent and D is a set of formulae,
representing supernormal defaults.

The amount of belief induced by a default theory is given by the extension of the

default theory. In the following definition, which was a theorem in [5], ‘Th’ denotes the
closure operator of classical propositional logic.
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4.2. DEFINITION. Let A = (W, D) be a supernormal default theory. For all sets of formulae
S such that

e SCD

e WU S is consistent

e WUSU/{y} is inconsistent for all ¢ € D\ S,
Th(W U S) is an extension of A.

It turns out that the framework defined in the previous sections provides a sort of
dynamic interpretation of supernormal default logic. More in particular, consider an agent
in some state s of a given model M. For any given finite set D of defaults for the agent
in M, s, it holds that any sequence of successive attempted jumps to the defaults from D
results in a default logic extension of the belief set of the agent given D. The belief set of
an agent, given a model and a state in the model, is given by the following definition.

4.3. DEFINITION. Let M = (8,7, R,B,r,c) be some Kripke model with s € S, and let
i € A
e The belief set of ¢ in M, s, notation B(i, M, s), is defined by:
B(i,M,s) ¥ {p € Ly | M,s = Bip}

4.4. THEOREM. Let M be some Kripke model, let s € M, and let i be some agent. Define
W = B(i, M, s) and let D = {¢1,...,0m} C {¢ € Lo | M, s = Nyp}. For all permutations

("/)la v 7'wm) Of ((ph ce 7(PTIL)? {(P € ‘CO | M’ S I= [doi(trY—jumP ’4111; v ,try_ju.mp 1/Jm)]Bi<P}
is an extension of (W, D).

PROOF OF THEOREM 4.4: We prove the theorem by proving three lemmas and a corollary.

4.5. LEMMA. Forall1 <j,k <m:
o r(i,try_jump ¥i;...;try_jump ¢;)(M,s) # 0
e r(i,try_jump ¢y;...;try-jump ¢;)(M,s) = Nt

PROOF OF LEMMA 4.5: We start by showing both clauses for j = 1. Note that M,s |
N, for all 1 < k < m, by definition of D. Then by inspection of Def. 3.18 we have
r(i, try_jump 9, )(M,s) = r(e,bel update (11,1))(M, s). We distinguish two cases:

1. M, s = =B;=¢; A{do,(dox-update (11,7))B;1;. Then r(e,bel update (¥1,4)(M,s)
= r(e,dox_update (v;,i)(M,s). By definition of r for the dox update action it
follows that r(e,dox_update (¥,4)(M,s) # @, and thus r(i, try_jump ¢ )(M,s) #
0.

2. M, s & —=B;—h; A{do.(dox-update (11,1))B;3b;. Then r(e,bel update (¥1,i)(M, s)
= M, s, by definition of r for bel update .

In both cases r(i,bel_update (3,7))(M,s) # 0, and hence, since also M,s | N,
r(s, try_jump ¥,)(M,s) # 0. Let M', s = r(i,bel update (¢1,7))(M,s). By inspection
of Def. 3.18, it is clear that M',s = N, for all 1 < k < m. Intuitively this is also
clear since jumps to conclusions only affect belief fluents, and defaults are dependent on
knowledge fluents only. The arguments given for 9; can straightforwardly be repeated for
1 t0 1, which suffices to conclude the lemma.

X

4.6. LEMMA. Let forall0<j<m—1:
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d MO, s = Ma §
o Mji1,8= (i, try-jump Yjr1) (M, s)
Note that by Lemma 4.5 these models are all well-defined. Now for all 0 < j<m-—1:
o ;41 € B(i,Mj,8) = B(i, My, 8) = B(i, M;,s)
o Wi & B(i, M;,s) = B(i, Mjy1,8) = Th(B(i, M;,s) U {j})

PROOF OF LEMMA 4.6: We show both clauses.

e The first clause is straightforward: since M;, s B Ny, it follows by Def. 3.18
that if ~;41 € B(i, M;,8), i.e, M, s = Bimj41, then M,i1,8 = M;,s. Hence
trivially B(i, Mjq1,8) = B(i, M;, $).

e From Lemma 4.5 it follows that M;,s k= Ny, for all 0 < j<m, 1< k<
m. From this and using that purely propositional formulae are default honest (cf.
Lemma 3.21), one sees by inspecting Def. 3.18 that from -1 € B(i, M;,s), it
follows that r(s,try_jump ¥;41)(M;,8) = r(e,dox.update (;41,8))(M;,8). We
prove that B(i, Mj41,8) = Th(B(i, M;, s) U {ws1}) by proving that both sets are
subsets of each other.

‘>’ For propositional formulae ¢ we have k= B,y — [do;(try-jump ©)|B:y by
clause 8 of Lemma 3.25, hence B(i, M;,s) C B(i, M;41,s). From clauses 1
and 7 of Lemma 3.25 it follows that ;41 € B(i, M,41,s). Hence B(i, M;, s)U
{41} € B(6, Mj41,) and hence Th(B(, M;s)U{541}) € Th(B(i, Mj11, )
= B(’L, Mj+1, S).

«C> Assume that ¢ € B(i, M;41,8). By definition of dox_update, it follows that ¢
holds in all the states in B;(s, [s]g,(s)) that satisfy ¥;,1. But then ¥4 — ¢
holds in all the states from B;(i, [s]m,(i)), and hence M;, s E Bi(¥j = ).
Then (¥;41 = ¢) € B(i, M;, s), and thus ¢ € Th(B(i, M, s) U {¢);4+1})-

From ‘2’ and ‘C’ we conclude the second clause of Lemma 4.6.

&

4.7. COROLLARY. For all0 < j <m, B(i, M;,s) C B(i, M, 8).

PROOF OF COROLLARY 4.7: Straightforward from Lemma 4.6.
b

Note that since M., is a well-defined Kripke model and since beliefs are not inconsistent
we have that B(i, M, s) is consistent.

4.8. LEMMA. Let fired(D) be the set B(i, Mm,s) N D. Then we have for all ¥ € D\
fired(D), - € B(i, My, 8).

PROOF OF LEMMA 4.8: Let ¢ € D\ fired(D). Since ¢ € D, ¢ = 1y for some 1 < k < m.
Since ¥ € B(i, M, s), it follows by Corollary 4.7 that ¢ & B(i, Mg, s). By contraposition
on the second clause of Lemma 4.6 it follows that =y € B(i, Mj_1,8), and again by
Corollary 4.7 it follows that =¥ € B(i, My, 8).
P
Summarizing, the set fired(D) meets the following three demands:

e fired(D) € D

e W U fired(D) is consistent
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e for all p € D\ fired(D), WU fired(D) U {i} is inconsistent.
According to Def. 4.2, Th(W U fired(D)) is an extension of W.
X

5. Discussion

In this paper we semantically investigated default reasoning from a dynamic, agent-
oriented point of view. In order to do this we defined actions that model the reason-
ing by default of an agent. Execution of an action try-jump ¢ consists of three stages:
first it is checked whether ¢ indeed is a default, i.e., it is checked whether ¢ is plausi-
ble, thereafter it is checked whether ¢ can consistently be included in the beliefs of the
agent, and if this is the case the beliefs of the agent are updated accordingly. To model
plausibility a new modality, viz. that of common possibility, is introduced. Due to the
fact that we allow updates with arbitrary formulae, a strengthening of the usual con-
sistency check of consistency-based default reasoning is necessary. The eventual belief
update that follows application of the try.jump action is formalized using doxastic up-
dates. Having introduced beliefs derived by default, we defined the Could-predicate and
the Couldnot-predicate which formalize the idea of actions being believed to be (in)correct
and/or (un)feasible plans. We furthermore defined the notion of default plans, which are
actions that an agent may adopt by default in cases where it cannot decide on the basis
of its knowledge which action to take.

Armed with the concepts defined to model the default reasoning of agents, we looked
into the dynamics of supernormal default logic. We proved that successive jumps to
conclusions can be used to construct default logic extensions of the belief sets of agents,
thus gaining additional proof of the intuitive acceptability of our framework.

Future research concerning the topics introduced in this paper, will mainly be focussed
on the concept of belief revision. By allowing agents to discard some of their beliefs
(possibly acquired by default), a flexible framework would result that models both default
reasoning and belief revision.
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