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Abstract

Office work and software development have many things in common.
For example, both are marked by complex information processes
activities involving coordinated contributions by multiple workers
and systems. Also, in both fields there is interest in process support
systems: tools that assist people in performing, managing and
(partially) automating these processes, using a description (or process
program) of how the process is supposed to proceed.

The goal of the Ariadne project at Utrecht University is to develop a
flexible process support system which can handle a diversity of
processes, ranging from formalized, structured business processes to
ad-hoc, evolving and semi-structured processes defined by
individuals and groups. To cater for this diversity, we not only need a
suitable process progamming language and a flexible environment,
but also different styles of process enactment. For this latter point we
consider it crucial to separate the operational issues surrounding
process enactment from the conceptual modelling of the process as a
space of legal events.

In this paper we explore the use of grammars and parsers for the
conceptual modelling of processes. We represent process models as
parsers created with parsing combinators and encoded in a functional
language. The resulting formalism combines non-determinism, state
and parallellism. We illustrate the use of the approach by several
examples, including the ISPW software process model.



1. Introduction and background

Office work and software development have many things in common. For example, both involve
several kinds of hybrid processes, complex information processing activities aimed at a particular
goal and involving coordinated contributions by multiple workers and systems. It is not
surprising therefore that both domains show a strong interest in process support technology.
Many offices are considering the use of office procedure systems or workflow management tools
[Florijn94a, Gulla%4, Medina-Mora92, Leymann94] to support their routine business processes.
Similarly, in the field of software engineering, researchers and practitioners are exploring process
programming environments to support and automate software development processes [Kaiser93,
Gruhn91, Pierce91, Zucker91, Yasumoto94].

In general, a process support system is a tool that helps people in defining, performing, managing
and (partially) automating office processes. The system is generic in that it can support different
kinds of processes at the same time. A particular type of process is described by a procedure (or
process program) which — roughly speaking - is a program that describes how a particular kind of
process should proceed. The procedure lists the activities that can occur, defines the possible flow
of control among these activities and the data that is used and produced, constrains who should or
can perform activities, etc. Actual processes that take place are executing instances of a procedure.
The process support system maintains each process’ state by keeping the data together in some
electronic store and by tracking the activities that are performed. Using the procedure, the system
can also play an active role: it can offer tasks to workers, remind them of their commitments, check
results and send data from one worker to another.

Process support tools offer several (potential) advantages such as traceability of processes,
consistency in handling and improved efficiency through faster communication. The fact that they
can be parametrized by a reasonably high-level process description means that new applications
can be developed quickly, and existing ones can be adapted easily.

1.1. Characteristics of hybrid processes

The use of the term “office process” above is somewhat of a simplification. Within an office — and
similarly within software development organizations — there are various type of work, each with
different characteristics [Hirschheim85]. The first category is formed by routine, formalized and
structured business processes. These are events which occur frequently, which are well
understood and for which a standard way of handling has been described in detail. Typically this
involves administrative tasks like order processing, invoicing, insurance claim processing, etc.

Formalized process cover only (a small) part of office work. Another type of activity is ad-hoc,
cooperative problem-solving performed in reaction to unforeseen events. When such unexpected
situations occur within the context of a structured business process they may give rise to
exceptions [Karbe90] and turn a routine process into an ad-hoc, non-formalized one. The ad-hoc
nature does not mean that these activities are performed at random or unorganized. They involve
contributions by different people, there is data that is produced and used, there are deadlines to be
met, etc. In fact, there is a plan or procedure, but it is not defined in advance or in great detail.
Rather it is created and adapted on the fly by the people involved, perhaps with the use of tools
like planners [Croft88].

Routine events do not always involve a standard procedure. Often, the way in which a task is
performed depends on who performs it or where it is performed (so-called situated action
[Suchman87]). Decision making, planning and authoring are well-known examples. Situated
action can also happen within the context of formal processes. For example, when a group of
analysts have to reach a decision regarding a loan, this will be one task in a larger, formal process.



Finally, there are activities which are partly standardized. These are called semi-structured
[Kaplan91] processes. Only some aspects of it are defined explicitly in a procedure; the others are
left open or elaborated during the performance of a process. For example we can view an
electronic conversation as a process in which the decomposition into sub-activities is very simple
and the data is just a collection of message. In design argumentation models like IBIS [Conklin88],
the activity-model is very simple, but the data structure is modelled more explicitly as a web of
issues, positions and arguments. Finally, in a process encoding a versioning system, we have a

reasonably detailed activity decomposition but do not place any constraints on the data objects
that are versioned.

Although there do not seem to be many (empirical) studies into the nature of software
development (see [Curtis88, Hofstede89, Verhoef93] for a few examples) there is no reason to
believe why software development should be different from general office work in these issues. Of
course, there are routine processes that are very similar to the business processes in offices. Every
reasonably mature software development organization has procedures to deal with releases, or for
handling changes to a product in a consistent way (see [Rose92, Harrison90] for some sample
fragments). But obviously this does not mean that all software development activities can be
standardized in great detail. Software development on a smaller scale — i.e. programming and
design — is a creative activity. Developers have their own ways of working in dealing with
particular problems [Clemm89] and these are difficult to standardize for use by others
[Verhoef93]. This is one of the reasons why the initial proposal of process support for software
processes [Osterweil87] was received with some scepsis [Lehman87, Curtis87]. Furthermore, even
when a software process is planned in detail on a large abstraction level, the actual work will
contain a lot of ad-hoc informal activities by teams.

1.2. Process support

The generality of the process metaphor suggests the possibility of a general process support
system which can handle this diversity of processes. Such a system should handle interrelated
processes for organizations, groups and individual users and allow structuring of
processes/procedures along different dimensions (activity decomposition, control flow, data
objects, role model and allocation constraints, etc.) and to different degrees of detail. Furthermore,
it should offer generic support for procedure development and evolution (e.g. through analysis of
process models, simulation or the gathering of run-time statistics) and process management and
control (e.g. monitoring and tracking processes, notification of certain operational problems such
as absence of employees, and analysis of process properties such as expected duration). And of
course, it should provide means to handle exceptions and deal with ad-hoc processes. This
includes the relaxation of constraints or the adaptation of a procedure within the context of a
particular process (when permitted). Finally, from a technical perspective, the system should
facilitate the use of existing tools for automated activities and the use of data stored in external
systems, and should be able to operate in a distributed environment. Preferrably, the system
should be able to operate in a loosely coupled environment where network connections are not
permanently available. This facilitates the use of portable computers.

Existing process support tools however, do not meet these requirements. Workflow systems and
office procedure systems lack the flexibility to deal adequately with exceptions and ad-hoc
processes [Kreifelts91, Florijn94a]. In most systems procedures can only be defined by specialists
or administrators and not by end-users. Furthermore, many systems do not offer the means to
relax constraints or adapt a procedure within the context of a particular process which is needed
for ad-hoc processes. Decomposition of a formal task into a lot of different activities by the
members of the team also falls outside the scope of the workflow system. It only registers the fact
that the higher level task has been started and completed.

More flexibility is offered in generic groupware systems that allow users to model (parts of)
collaborative, semi-structured processes. The classical examples of this are the programmable



messaging systems through which users can organize and automate some of the work involved in
handling electronic communication, such as filtering messages, automatic filing or forwarding,
exchanging and manipulating forms [Hammainen90] or objects [Lai88], or even computational
mail [Borenstein92]. In some cases a complete conversation model can be defined, instances of
which are executed via e-mail communication with typed messages [Shepherd90] or as
conversation objects operating on a shared hypertext data-store [Kaplan91, Kaplan92].

While these latter systems allow users to model semi-structured processes and provide more
flexibility to handle ad-hoc processes and exceptions, there are two forms of parametrization that
they do not provide. The first is parametrization of the style of enactment [Kaiser93,
Heimbigner92]): the way in which a particular process “behaves” towards the user. Some
processes (e.g. business processes) require active enactment where the system determines the tasks
that are to be performed next and schedules their execution. Other kinds of processes (e.g. an
electronic conversation) may require more passive enactment where users decide which task they
want to work on next. In yet other cases the existence of a procedure may be implicit. Users may
only see a visual representation of some data and modify it. In this case, the system should track
the activities performed by the users and check whether these correspond to (enabled) actions in
the procedure using some association between the data structure and the actions.

The second issue is the technical implementation of the process. While an electronic conversation
is typically used for asynchronous interaction among people, a tool like gIBIS [Conklin88]
provides facilities for real-time interaction. Updates to the web are immediately propagated to all
other people working on it. However, we can also imagine the use of gIBIS in an asynchronous
setting. While the process model remains the same in both cases, the technical implementation
used to drive the process will be completely different.

1.3. Ariadne: general support for hybrid office processes

The goal of our research in the Ariadne project at Utrecht University [Florijn94b, Florijn94a] is to
create an environment (called Ariadne) which supports the whole range of hybrid office processes
identified earlier and meets the requirements sketched above. In addition to these, Ariadne should
provide different styles of process enactment and technical implementation which can be applied
to the same process, preferrably without changes to the procedure or process.

A primary objective in Ariadne is to bring support for office processes into the computing
environment of end-users. The central ingredient therefore is the process, a context for (group)
work aimed at a particular goal or task. Its basic component is a workspace or dossier, a
dynamically extensible, tree-like data structure holding information relevant to the process. The
workspace can hold arbitrary data-objects — including references to information in external
systems — and can be refined dynamically. Our current work-hypothesis for dossiers is to
represent them as y-terms or flexible records [Ait-Kaci86]. Events occurring in a process can
ultimately be viewed as modifications or extensions to dossier, e.g. filling-out the fields in a form,
linking a new version to a version graph, or adding messages to conversation.

Each process is governed by a procedure which defines the legal actions and action traces that can
occur [Boerboom94, Florijn94c]. More specifically, the procedure constrains the actors (human
user or tool) that can perform an action (e.g. by defining roles and binding-constraints), when an
action can be performed (by describing dependencies and real time-constraints), and what the
effects of an action on the dossier can be. Using object-oriented terms, the procedure defines the
methods that can be performed on the “process object” and defines the protocol that coordinates
when methods can be performed and by who [Nierstrasz93], see figure 1.
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Figure 1: A process as an (active) object

Each process holds a local copy of the procedure that governs it together with an execution state
and history. Processes thus are mostly self-contained objects (apart from references to external
information), which makes the handling of distribution and migration simpler, even in loosely-
coupled networks where connections are not permanently available. Users can — in principle —
take a process along on a portable machine and bring it back later.

The local copy of a procedure can be modified whenever exceptions give rise to this and when
permissions allow it. In order to do this, processes (consisting of a dossier, procedure and
execution state) must have an editable representation. In fact, a complete process can be
represented as a workspace data-structure which allows the introduction of reflective processes,
i.e. processes that operate upon other processes. The typical example is a process in which the
execution of another process is planned or adapted [Pemberton91, Bandinelli93].

Individual users can define their own procedures and create processes governed by existing
procedures. When users are notified of the fact that they can perform an action in a particular
process they can automate their way of handling of this task by specifying the initiation of a new
process (governed by a different procedure) in their local interface agent [Asch92]. The system
maintains the resulting relationships among processes.

1.4. Enactment styles

As mentioned above, an important goal of the Ariadne project is to provide different enactment
styles for processes without having to change a procedure. This requires that we treat a procedure
as a functional specification of the rules to which the work done by human and computer actors
should conform. Phrased differently, the procedure should only describe legal actions and action
events. The operational issues of how a procedure is to be enacted are “policies” describing the
use of a procedure in a particular setting.

In our model they are handled by an evaluator which implements a particular enactment style.
Typical examples of such operational issues involve the interaction of the process support system
with the users: policies for finding a user to perform a role, notifying tem about a task they can
perform, reminding them of deadlines, sending managers notifications of task completions, etc.
The evaluator also processes events generated by users and tools, maps these to the actions
defined in the procedure and checks whether the results conform to the constraints defined there.
An eager evaluator will actively look for actors (users or tools) that can perform enabled actions
and ask them to do the work. A more passive evaluator will just handle events and check for
conformance. In a similar vein, the same procedure can be interpreted by evaluators that differ in
technical matters. A procedure that coordinates updates on a document, for example, could be
interpreted by an evaluator that handles asynchronous updates, but also by a synchronous one.



If a procedure is free of operational issues, we can see it as a definition of a set of legal action traces
(a trace space). An action trace is a set of actions each of which corresponds to a elementary piece
of work that can take place within the corresponding process. An action is characterized by
properties like the actor that performs it, the location where it is performed, the data object it
produced or the time at which it takes place. Furthermore, each action produces a data object,
which will be stored in the workspace for the process. All the valid action traces, and the trace
space as a whole, are subsets of the overall set of possible action sequences.

A process modelling language allows us to describe procedures. Clearly, it should allow for

different enactment styles and allow incremental conformance checking. To express action traces

[Boerboom94, Florijn94c], it should offer constructs to:

e define constraints on the result of an action, e.g. via a type definition for the data object

e constrain who can perform an action, e.g. by mentioning a specific actor, or by modelling
binding constraints among actions (e.g. an actor who performed one action is not allowed to
performed another action).

e define or constrain resources like the location (e.g. machine) where an action is performed

e define or constrain when work on actions can begin or end.

In addition, a practical process modelling language should:

be simple to use and lead to procedure definitions that are easily understood.

be extensible, so that new modelling constructs can be defined.

have a formal basis, so that analysis of procedures and processes can be provided.

make it easy to refine or adapt procedures, while offering coercion for existing processes.
provide abstraction mechanisms to organize a procedure.

offer means for instantiating constructs for a dynamically determined group of values.

1.5. Modelling processes as grammars

In the remainder of this paper we discuss the use of grammars encoded by functional parsers for
describing procedures and checking conformance. A procedure is modelled by defining parsers
that match individual actions and by glueing these together (using meta-constructs or parser
combinators) into more complex parsers. The grammar thus is encoded in a program that accepts
all legal action traces.

We assume in this paper that each (elementary or composite) action is associated directly with a
unique part of the process’ workspace. Elementary actions produce elementary values, while
composite actions map to composite values according to standard rules. This means that the
relationship between the procedure that coordinates the work and the workspace that contains the
results is very close. One way to view a process in this model therefore is as a data-object that is
created in a coordinated way.

Our main goals here are to explore the kinds of constructs that are needed, and to illustrate the
capabilities of this approach. We describe several non-trivial processes, including the ISPW
example [Heimbigner91]. To make this discussion concrete, we need a formalism to express
grammars/parsers and the values they produce. We use Gofer — a functional programming
language with lazy evaluation and strong typing — and express parsers through the use of parser-
combinators [Hutton92]. More specifically, we model parsers using monads [Wadler90,
Wadler92], because this allows us to abstract from the details of the implementation of the parsing,
and supports the use of monad-comprehensions, a syntactic shorthand offered by Gofer that
allows us to keep the examples simpler and more intuitive. In order to provide the necessary
background, we start with a brief introduction of parser combinators. This also introduces some of
the main characteristics of the Gofer language.



2. Parsing with combinators

A parser for a particular grammar can be seen as a function that takes a string of items and checks
whether this string is a valid sentence, i.e. one defined by the grammar that the parser
implements. We can associate semantic actions with the parser which are invoked during the

parse process. These allow us to make more useful applications, e.g. to let the parser construct a
parse-tree.

2.1. Parsers

In Gofer, we can define a parser as a function of the following type:

type Parser is a = is -> [( a, is )]

A parser takes a state denoted by is (typically, a list of tokens), and produces a list of tuples. Each
tuple represents a succesful parse, that is, a result value of type a together with the adapted state
(typically the remainder of the input that was not parsed). Note that this means that the grammar
that is parsed can be non-deterministic. The parser produce all possible parses on a given input.

Parsers are constructed by combining elementary parsers. Two of the basic parsers are: fail
which always fails, and okay which succeeds with a given value as its result. Another basic parser
is item. It matches the next item of the input, and fails if no input is left.

fail :: Parser is a okay :: a -> Parser is a
fail xs = [] okay v xs = [ (v,xs) ]

item :: Parser [a] a

item [] = fail []

item (i:is) = okay i is

Note that we assume here that the input state is modelled as a list of items of type a. The construct
(a:b) denotes a list whose head element is a and whose tail is the list denoted by b.

2.2. Combinators

Elementary parsers are combined using combinators. The first one discussed here is into which
performs a parser on the input and - if it was succesful — performs a second parser on the
remaining input. The second parser gets the result of the first parser as an argument. into
returns the result of the second parser. The second combinator is orelse. It applies both parsers
on the current input and returns the combined results

infixr 6 ‘into’

infixr 4 ‘orelse’

into :: Parser i a -> (a -> Parser i b) -> Parser i b

(p “into’ q) xs = [(r,xs'"') | (v.xs') <- p xs, (r, Xs'') <- g v xs'])
orelse :: Parser i a -> Parser i a -> Parser i a

(pl “orelse® p2) xs = pl xs ++ p2 xs

Note that into and orelse are used as infix operators, where into binds more strongly. As
follows from the definition, orelse concatenates (the ++ operator) the results of attempting both
alternatives, leading to the fact that a parser returns a list of sucesses. The definition of into uses
list-comprehension. The expression [r|v <- el, r <- e2 v, p r] denotes the list of r's
obtained by iterating v over the values returned by e1, binding r to the result of applying v to e2
and checking whether p v is true.

As another example we define satisfy. It succeeds when the next input item satisfies a given
predicate, and returns the input item if successful.



satisfy :: (a -> Bool) -> Parser [a] a
satisfy p xs = [ (r,xs’) | (r, xs’) <- item xXs, p r]

Now we can define 1iteral, which succeeds when the next item has a particular value, and seq,
which matches two argument parsers and returns their combined result. The definition of seq
uses the lambda abstraction (\arg -> expr) to define a new parser and return the correct result.

literal :: Eq i => [i] -> Parser [i] i
literal x = satisfy (==x)
seq :: Parser i a -> Parser i b -> Parser i (a,b)

pl “seq’ p2 = pl “into’ (\a -> p2 ‘into* \b -> okay (a,b))

The fact that parsers are functions means that we can combine them easily and write other higher
order functions that operate on them. For example, we can define the function oneof which
succeeds when one parser of a list of parsers suceeds and which returns the result of that match. It
means that we must insert the orelse operator between all the parsers. Again, the use of orelse
means that all possible successes are collected:

oneof :: [Parser a b] -> Parser a b
oneof 1 = foldrl orelse 1

2.3. Parsers as monads

Given our definitions we can define parsers as monads [Wadler92). Conceptually, monads allow
us to make a distinction between a value and the computation that produces that value.
Specifically, a monad m a denotes a computation of type m that, when evaluated, will produce a
value of type a. To define parsers as (various kinds of) monads we have to define a number of
functions. Using the monad constructor classes [Jones93] defined in Gofer, this results in:

instance Functor (Parser i) where

map £ p = p “into’ (okay.f)
instance Monad (Parser i) where

result = okay

bind = into

The main advantage of treating parsers as monads is that we can glue together parsers using the
functions bind and result. If we change the implementation of parsers, our definitions can
remain unchanged, as long as the new implementation can again be mapped to a monad by
defining implementations for bind and result. By adding a few more definitions, for a zero
element and for the concatenation:

instance Monad0 (Parser i) where
Zero = fajl

instance MonadPlus (Parser i) where
(++) = orelse

we can use monad-comprehensions to define our parsers. Monad comprehensions are similar to
list-comprehensions (in fact, the list is a monad). We illustrate the use monad comprehensions by
defining two auxiliary combinators. The first is serie which matches a list of parsers in sequence
and returns the combined results as a list. The second one is option, which matches the optional
construct. If the argument parser succeeds, its result is returned (in a list), otherwise the empty list
is returned. In fact, these functions operate on any monad of the given class.

serie :: Monad m => [m a) -> m [a)

serie [] = result []

serie (p:ps) = [ a:as | a <- p, as <- serie ps ]
option :: MonadPlus m => m a -> m [a]

option p = [ [x] | x <- p] ++ result []



3. Using parsers to model processes

The theme of this paper is to use parsers to model office processes. This means that the actions
performed by office workers are consumed by a parser which checks whether they correspond to a
legal sentence as defined by the grammar for the procedure. We start of by describing our
representation of actions. To illustrate the general idea we then give a small first example.

3.1. Parsers of actions

We represent an action as three-tuple. The first element is a label, which (uniquely) identifies an
action within a procedure. The second element is the value that was produced in the action. The
final element is a tuple of properties associated with this action. In this paper we assume that it
holds an actor field (identifying the actor that performed it) and a timestamp field, indicating the
time the action was performed or completed.

type Label String
type TimeStamp String
type Actor String

type Properties
type Action

(Actor, TimeStamp)
(Label, Value, Properties)

The value associated with an action can either be an elementary value (here we assume Text and
Numbers) or composite values, which are either sets of values (represented as lists) or a record,
which is a collection of name value pairs, in our case represented by actions. Note that in this
report we do not check whether a set-value is actually a set.

data Value = Number Int
| Text String
| set [Value]
| Rec [Action]

For simplicity, we define a couple of shorthands that extract (particular) values out of actions:

actval :: Action -> Value
actval (1,v,p) = v
setval (1, (Set v), p) = v

numval (1, (Number v), p) v
txtval (1, (Text v), p) =

recval (1, (Rec v}, p) = v

\4

Each elementary parser in our procedures is assumed to result in an action object that was parsed.
To parse input actions, we can use the existing combinators. For example, to define a new parser
that matches an action with a given label, we can define the following:

actl :: Label -> Parser [Action] Action
actl 1 = satisfy (\(x,d,(u,t)) -> x == 1)

Recall that satisfy is passed the next input item, which in this case is an action.

We assume henceforth that all of our parsers return action objects, so any parse function has a type
definition similar to act1 above. We glue the resulting action objects together to form the dossier
that is produced as a result. Composite parsers must thus also return action objects. To do this, we
define a few functions that turn lists of action objects into other action objects or create new ones:

tset,trec :: Label -> [Action] -> Action

tset 1 x = (1, (Set (map actval x)), ("system", "0"))
trec 1 x = (1, (Rec x), ("system", "0"))

tnum :: Label -> Int -> Action

tnum 1 i = (1, (Number i), (“system”, 0))



Note that the resulting action objects are provided with a default actor and a default time-stamp.
Of course it would also be possible to associate a set of actors with an action and collect the actors
from the constituent actions. The label can be anything, but in general it will correspond to the
name of the non-terminal that invokes it. This allows us to get a direct association between the
grammar-rules and the data-objects produced. We can turn these two “action constructors” into
action parsers as follows:

aset, arec :: Label -> [Parser [Action] Action] -> Parser [Action] [Action]
aset 1 acts [tset 1 v | v <- acts]
arec 1 acts [trec 1 v | v <- acts]

Now, for example, we can define a parser for some form which is composed of three fields that
have to be filled in in sequence:

form = arec “form” (seriel[fieldl, field2, field3])

It will return an action labelled with form and containing a record with the three actions
produced by the field parsers.

3.2. A first example: expense reimbursement

Consider a procedure for reimbursement of travel expenses. It is initiated by a user who has to
specify the details of the trip, and in particular of the money that was spent. This specification is
then sent to the user’s manager, who must approve the reimbursement but who may also refuse it.
If approval is obtained, the administration will transfer the money to the employee. Simplifying
somewhat we can model the top-level of this procedure as follows:

expenseclaim = arec vexpenseclaim”
(serie [expenseform, inspect, oneof [reimbursed, refused]l)
reimbursed = arec “reimbursed” (serie [approved, reimbursement])

Filling out the expense form means providing several pieces of information, broken down further
into personal information and information on the claim itself, such as the project for which the
expenses were made, the amount of travel expenses involved, the conference attendance fee and
other costs:

expenseform = arec vexpenseform” (serie [personal, claim])
personal = arec “personal” (serie [requester,department,bankaccount])
claim = arec “claim” (serie [project,travel,conference,other])

The other parsers in are modelled as elementary action parsers, i.e.

inspect = actl “inspect” approved = actl “approved”
refused = actl “refused” requester = actl “requester”
department = actl “department” bankaccount = actl “bankaccount”
project = actl “project” travel = actl “travel”
conference = actl “conference” other = actl “other”

reimbursement = actl “reimbursement”

Now we have completed the definition of our procedure, and using Gofer we can run this on
input lists of actions. If the action sequence is acceptable, the result will be a (composite) action
object holding the results.

4. Constraints and context sensitivity

The first example shows that a parser provides an intuitively appealing description of a
procedure. The structure of the process (in terms of ordering of actions) is immediately clear
through the use of combinators like serie and oneof. Furthermore, splitting up the parsing in
functions provide a straightforward decomposition mechanism to break the steps down into
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smaller ones.

Of course, our example is too simplified for any practical use. On the one hand, it is too strict. For
example, it does not allow situations where the form was filled in incorrectly, or where the
manager requires extra information. In this case, the requester should be asked to provide a new
(or adapted) form with the correct or additional information. This can be solved by adding a check
step and optional creation of a new form, e.g. as in:

checkedexpenseform
checkedform £

[ £ | x <- expenseform, f <- checkedform x]

[ n | ¢ <- review £, x <- expenseform, n <- checkedform
++

[ £ | _ <- accept f]
To mimic the flow of information - in this case the right version of the form — we use the capability
to pass results of parsers as argument to other parsers.

On the other hand, the grammar is too loose. It allows for actions and thus traces that should not
be allowed. First, the expenses in the claim should be numbers. This can be repaired easily by
adapting the elementary parsers to check for the type e.g. by using a parser like this:

numactl n = satisfy (\(1,v,p) -> 1 == n && nu v where nu (Number _) = True
nu _ = False)

Another issue is that approval of the claim should be done by the manager of the person who filed
the form. To do this, we must first of all pass the information about the requester to the parsers
that encode inspection and the approval or refusal. It means that the expenseform produced
earlier should be passed as an argument, e.g. like this:

expenseclaim = arec “expenseclaim’ [[e,i,h] |
e <- expenseform, i <- inspect e,
h <- oneof [reimbursed e, refused e}l

Now we can adapt as an example the parser for approval to check whether the action was
produced by the right person, i.e. the manager of the requester. It receives the expenseform
created earlier as an agument. We assume a function 1lookup that returns tan action object with a
particular label in another action object that is a record, and the function managerof which
returns the manager of a person.

approved £ = satisfy \(1l,v,(u,t)) -> 1 == "approve" && u == managerof r
where r = txtval (lookup f “requester”)

Obviously, this is a very trivial modelling of a “role-constraint”. But is also clear how more
complex constraints can be modelled using this basic idea. We can use some sort of organizational
database containing relations like “manager of”. This can then be exploited in more elaborate
conditions associated with the parser.

In essence, what we do here is make parsers context sensitive; whether or not the “approved”
action is accepted or not, not only depends on the order of the input, but also whether the actor
part matches a value obtained earlier in the parse process. A similar approach can be used to
handle other issues.

Suppose, for example, that we want to ensure that the total amount that is reimbursed matches the
total of the costs produced earlier. First, we have to add the different costs to a total and make it
part of the form. This can be done by modifying the parser for claim and extending it with a a
calculation of the total:

claim = arec “claim” [[p,t,c,o,tnum “total” (sum {map (numval [t,c,0])))] |
p <- project, t <- travel, ¢ <- conference, o <-other]
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Now, in the parsers that handle reimbursement, we can check whether the amount reimbursed
matches this total:

reimburse f = satisfy (\(1,v,p) -> 1 == “reimburse” && (nu v) == r where
nu (Number v) = v
r = numval (lookup f “total”)

In a similar vein, we can add constraints that check whether the whole procedure is handled
within a certain time frame, e.g. when a decision should be made within a specified amount of
time after the initiation. Tthe timestamp associated with the first field in the form can be used to
check whether the timestamp for the inspection is within the given limit.

5. Dynamic instantiation and permutations

In the previous section we have seen how grammars can model a simple reimbursement process,
and how using context sensitivity allows us to express (and check) role-constraints and time-
constraints. In this section we extend our formalism somewhat to handle more complex processes.

Suppose we want to model a voting process. A user can initiate a vote by defining the topic, the
list of participants that should vote and the list of choices from which they can choose. After this
has been done, the participants can cast their votes until some deadline is passed. The top-level
looks like this:

voting = arec "voting" [[p,v] | p <- prepare, v <- votes prl)
brepare = arec “prepare” (serie [topic,choices,parts,deadline])

We assume that topic and deadline are handled by elementary parsers. The other ingredients
of prepare are modelled as follows:

choices = aset "choices” (manyl (actl “choice”)
parts = aset "participants" (manyl (actl “‘participant”)

Here we use the combinator many1 which matches one or more occurences of a parser and returns
all results in a list:

many, manyl :: MonadPlus m => m a -> m [a]
many p = [ (f:r) | £ <- p, r <~ many pl] ++ result []
manyl p = [ (f:r) | £ <- p, r <- many p]

So far, this is similar to our previous example. It becomes different however, when we want to
model the casting of votes. The basic idea is that each participant should cast precisely one vote,
and that this vote should contain a choice defined in the set of choices defined initially. For the
time being we assume that voting is compulsory. We can do this by “generating” combinations of
parsers.

The elementary parser is vote which succeeds when a given choice is made by a given
participant:

vote p ¢ = satisfy (\(1,v,(u,t)) -> 1 == "yote" && P == u && v == c¢)

Obviously, this can be extended with a constraint on t if we want to enforce that all votes should
be received before the deadline. Assuming that £ holds the action object produced in preparation,
we get:

vote’ £ p ¢ = satisfy (\(1,v,(u,t)) -> 1 == "vote” && P ==u&k v ==¢C & t < 4l

where dl = txtval (lookup f “deadline”))
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Given a particular participant p and the action object £ produced during preparation, we can
generate a parser that accepts one of all possible choices as follows:

pvote £ p = [ v | v <- oneof [ vote’ f p ¢ | ¢ <- setval (lookup f “choices”)]]

Similarly, we can generate a series of parsers for the set of participants and thus define a first
version of the parser for votes:

votes’ f = aset "votes" [ v |
v <- serie [ pvote f (txtval p) lp <- setval (lookup f “participants) ]]

The problem with this definition is that we use the serie combinator. The votes by the
participants now are expected in a particular order. Of course, this is undesired: we want to accept
all possible permutations of votes [Cameron94].

We are looking for a new combinator unordered which will match a list of parsers occurring in
arbitrary order. The type of this combinator will be something like:

unordered :: [Parser s a] -> Parser s [a]

Defining unordered is conceptually simple. We generate all possible permutations of the list of
parsers, put each permutation in a serie, and combine the set of permutations as alternatives using
orelse. Lazy evaluation will take care of optimizing this for the particular case needed:

unordered ps = oneof (map serie (perms ps))

where gaps [] = []
gaps (x:xs) = xs:{(map (x:) (gaps xs))
perms [] = [[]]
perms 1 = [ x:p | (x,r) <- zip 1 (gaps 1), p <- perms r)

Note that there is one flaw in this solution: the order of the results is not fixed but depends on the
alternative actually found. To correct this, we must add functions to re-order each alternative once
it has been matched. We will not discuss this further here.

Using unordered in our example completes the definition of the votes procedure:

votes f = aset "votes" [ v |
v <- unordered [ pvote f (txtval p) |
P <- setval (lookup f “participants)]]

Removing the restriction on compulsory voting is simple. We make voting optional by using the
option construct:

votes f = aset "votes" [ concat v |

vV <- unordered [ option (pvote f (txtval p)) |
P <- setval (lookup f “participants)])

6. Parallel parsers

This voting procedure has shown how easily dynamic instantiation of particular parts of the
procedure can be encoded. Combined with the use of permutation parsing (unordered) this
seems to provide interesting opportunities. For example, it would seem that we can use this to
model a semi-structured conversation process where multiple discussion threads can be created in
response to a message.

The top-level of such a procedure could be something like this:

eéconv = arec "conversation" [[m,r) | m <- message, r <- reactions m]
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We assume that messages are represented by at least three actions, giving the subject, a unique
message identifier and a body (represented by elementary parsers):

message = arec "message" (serie [subject,id,body])

A reaction to a message is a message, which should refer to the message identifier of the original:

reply m = arec "message" (serie [subject, replyto m, id, body])
replyto m = satisfy \(l,v,p) -> 1 == "replyto" && v == actval (lookup m "id"})

Generalizing somewhat, we can say that each reaction to a message leads to a thread: an initial
reply and reactions to this reply:

thread m = arec "thread" [ [x,r] | x <- reply m, r <- reactions x]

Now the only thing left is the modelling of reactions. It is a parser that collects arbitrary
collection of reactions to a message, each of which may form a thread. A first attempt would be:

reactions m = aset "reactions" (many (thread m))

Recall that many matches zero or more occurrences of its argument parsers. While this is basically
correct (any message can lead to zero or more threads), the overall parser now has one basic flaw.
The threads have to occur in order. If we think of the resulting conversation structure as a tree, the
tree has to be provided in the input in a depth-first way. Of course, this is not the way in which a
conversation normally takes place. What we really want is that messages and threads can be
added to the conversation in any order. While one message may be part of a nested thread, the
following message may be a reaction to the initial message, etc.

The unordered combinator introduced does not provide us with a solution. It handles arbitrary
interleavings of its argument parsers, but not of their constituent parsers. This is however what is
needed here. What we need is real “parallellism”, so that threads can be built-up in arbitrary
order.

6.1. The parallel combinator

The problem to solve is to construct a combinator that will allow arbitrary interleavings of its
constituents, in a recursive fashion. In fact, we want to extend our formalism that has state and
non-determinism with parallellism. To do this, we have to change fundamentally the way in
which parsers work. Conceptually, we have to represent parsers as “processes”, and allow for
arbitrary interleavings of their executions.

We use resumptions to model this behaviour. A parser is a function that after performing one step
(e-g- match an input item) delivers a final result or a resumption, a process that can be restarted
later and then continues parsing. By using the merge operator we can generate all the possible
execution traces of these resumptions. The (free) merge in process-algebra is defined as follows
(where x and y represent composite processes and a represents a result):

x Il vy =xll_y+y|l_x
a [|[— x = ax

ax [l-y =a (x ||y

(x+y) ||_z =x||l_z+y ||_z

To represent parsers in a resumption style, we have to adapt their type definition:

type Parser s a
data PStat s a

s -> [PStat s a]
Done a s
| Pause s (Parser s a)

A parser operates on a state denoted by s, and produces a value of type a. The parser is a function
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that produces a set of resumptions of type PStat. Each resumption holds the resulting state. In
addition, a resumption indicates either that the processing is complete (Done) or that more work is
to be done (Pause). In the latter case, a new parser is delivered that should still be performed.

- We now can define the elementary parsers for this new scheme:

fail :: Parser a b okay :: a -> Parser b a
fail xs = [} okay v xs = [Done v xs]

pause :: Parser a b -> Parser a b

pause p r = [Pause r p]

Fail and okay are similar to before. The new elementary parser is pause which delivers a
resumption that can be continued later on.

Most of our other definitions do not have to be changed; they are expressed purely in terms of
fail and okay or are defined using monads. Since parsers with resumptions can also be defined
as monads (using the same definitions as given above), these present no problem. However,
combinators into and orelse have to be revised:

into :: Parser i a -> (a -> Parser i b) -> Parser i b
(pl “into’ p2) xs = [ bi | pi <- pl xs,
bi <- case pi of
Pause i' p' -> pause (p' ‘into’ p2) i°
Done a i' -> pause (p2 a) i' 1]

orelse :: Parser a i -> Parser a i -> Parser a i
(pl “orelse’ p2) xs = (pause pl xs ++ pause p2 xs)

The general idea here is that after one step is performed, the combinator will return a Pause
resumption, and when the whole parsing has been completed, it will return a Done resumption
with the final result.

We are now ready to define the parallel combinator. We want this combinator to return the results
of its constituents in an ordered fashion (in a tuple), so that we can use it as an operator, e.g.:

sample = nl ‘par’ n2 ‘par’ n3

This means that we have to alter the definition of the free merge slightly, to take the ordering of
results into account. The resulting definition of the par combinator and the auxiliary functions
lmerge and rmerge is given below:

par, lmerge,rmerge :: Parser s a -> Parser s b -> Parser s (a,b)
(pl “par’ p2) i = (pl ‘lmerge’ p2) i ++ (pl ‘rmerge' p2) i

(pl “lmerge® p2) xs = [ bi | pi <- pl xs,
bi <- case pi of
Pause i' p' -> pause (p' ‘par’ p2) i
Done a 1i' -> pause (p2 ‘into"
(\x s -> okay {(a,x) s)) i']

[ bi | pi <- p2 xs,
bi <- case pi of
Pause i' p' -> pause (pl ‘par” p') i’
Done a 1i' -> pause (pl ‘into’
(\x s -> okay (x,a) s)) i']

(pl “rmerge’ p2) xs

We also introduce a combinator par1 which provides parallellism for a list of parsers:

parl :: [Parser i al -> Parser i [a]
parl [] = result []
parl (p:ps) = map trf (p ‘par’ parl ps) where trf (a,as) = a:as
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Note that a parser is no longer a function that directly delivers the parse results. It returns a
resumption. This means that we need an auxiliary function to actually do the parsing and
transform the resulting resumptions into the real results:

flattend p xs = fflat (p xs)
where fflat [1 =11
fflat ((Done r s):ps)
fflat ((Pause s p):ps)

[Done r s] ++ fflat ps
(fflat (p s)) ++ fflat ps

parse :: Parser i a -> i -> [(a,i)]
parse p Xxs = map fres (flattend p xs)
where fres (Done r s) = (r,s)

Finally, we can use the definition of flattened in the definition of atomic, which allows us to
express that a parser cannot be interleaved with others:

atomic :: Parser i a -> Parser i a
atomic p = \xs -> flattend p xs

We can use atomic in our basic parsers. For example, it would be reasonable to claim that the
sub-steps of satisfy should not be interleaved with others, so that we can express satisfy (using
monads) as follows:

satisfy p = atomic ([s | s <- item, p s])
Also note that we can now create an operator variant of unordered as follows:
p ‘unord’ q = {atomic p) ‘parl’ (atomic q)

Obviously, unordered itself could now be expressed in terms of unord. However the original
definition has the advantage that it does not require the use of resumptions.

6.2. E-mail revisited

Returning to the example of electronic conversations, we can put the parallel combinator to use.
Recall that the main problem was to allow for arbitrary interleaving of the building up of threads
in reaction to a message. This can now be expressed as follows:

econv = arec "conversation" [[m,r] | m <- message, r <- reactions m]
reactions m = aset "reactions" (threads m)
threads m = [ ((torec “reaction” [x,rl):t) | =x <- reply m,

(r,t) <- reactions x “par’ threads m]
++  [[]]

The use of par forks the parallel parsers for arbitrary many threads. Finally, to ensure that
messages are still handled as units, we have to use atomic.

message = arec "message" (atomic (serie [subject,id,bodyl))
reply m = arec "message" (atomic (serie [subject, replyto m, id, bodyl))

Again, we note that the example can be extended easily in many ways. For example, we could
identify a group of people involved in the conversation, and enforce that only they can add
messages. Assuming that each of them can react at most once to each message, we could then
generate “reaction slots”, similarly to the voting process defined earlier.
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7. Shared state

The dynamic instantiation properties combined with the parallellism introduced above provide
new dimensions. For example, if we think of a software process model describing the organized
modification of a software system, we can imagine instantiating multiple parallel sub-tracks that
modifiy different modules. Each of these can be instantiated with a particular engineer and a
particular module.

In fact, such a process model has been defined as a test-case for software process modelling and
process programming environments (the ISPW-6 and ISPW-7 examples [Heimbigner91]). In this
section we will explore this example further, focusing on issues not addressed in previous
examples. Again our emphasis is on process modelling. The definition of the ISPW cases contains
many operational issues, such as the medium on which documents are represented or notifying
people of completion of certain steps. We will not consider these issues here.

The basic idea of the ISPW examples is to model the handling of a change request on a software
system. It begins with the assignment of tasks to engineers and the scheduling of activities in time.
The real work is done in steps that adapt and review the design, change and compile the code of a
module, adapt the test-plans and test package and that test the changed unit until the test results
are satisfactory. The definition of the case contains a lot of parallel activities. The adaptation of the
design may be performed in parallel with the adaptation of the code and the adaptation of the test
information. In parallel with the overall work-process there is an activity called “monitoring”
which can change the assignment of tasks to engineers and reschedule deadlines.

Modelling of the ISPW example requires one extension of our formalism. It involves the sharing
of information between parsers. If we have true parallellism, our existing approach of passing
results of one parser as arguments to others does not suffice to share information. For example, the
task assignment produced as part of the preparation phase may be changed on the fly in the
monitoring activity. So, we need to introduce a concept of “state” which can be shared
transparantly among all parsers.

7.1. Modelling a shared environment

Recall the type definition of a parser:

type Parser i a = i -> [(a,i)]

A parser is a function that transforms a state into a list of value, state pairs. Until now we have
implicitly assumed that the state is a list of items, but there is no reason why the state cannot be a
more complex entity, as long as it provides the means to get the next “item”. We thus abstract the
characteristics of the parsing state into a constructor class. Any type for which we can define the
two functions next and isempty can act as a parsing state:

class ParsingState s where
next :: s a -> (a,s a)
isempty :: s a -> Bool

Obviously, the list type can satisfy this requirement easily:

instance ParsingState [] where

isempty [] = True
isempty (i:is) = False
next (i:is) = (i,is)
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The only parser that really must change is item since it assumed a list to represent the state. Its
new definition is:

item :: ParsingState t => Parser (t a) a
item s = if (isempty s) then fail s else v (next s)
where v (x,ys) = okay x ys

Note that the type-definition of our other parsers will also change, to reflect that we assume a type
that satisfies ParsingState.

Now we introduce another class, which is a ParsingState but also holds an environment, a list
of associations between labels and values. For simplicity’s sake we use an Action object (with a
Record value) to represent such an association:

class ParsingState s => EnvParsingState s where

addenv :: s a -> Action -> s a
fndenv :: s a -> Label -> Value

A possible implementation of this class is:
data PEStat a = PES [a] Assoc

instance ParsingState PEStat where

next (PES (i:is) x) = (i, PES is x)
isempty (PES [] _) = True
isempty (PES x _) = False

instance EnvParsingState PEStat where
addenv (PES a (1, Rec v, props)) as = (PES a (1, Rec (as:v), props))
fndenv (PES x) 1 = lookup x 1

Defining parsers that operate on this type of parsing state provides us with shared state. But to
obtain access to the state, we have to add a few extra definitions. First, we introduce an elementary
parser called statep which takes a function that transforms the state and returns it, and a parser
stateq which succeeds when the state matches a certain predicate:

statep :: (t -> t) -> Parser t t
statep p s = let r = (p s) inokay r r

stateq :: (t -> Bool) -> Parser t t
stateq p s = if (p s) then okay s s else fail s

Now we can define functions to update the environment (eadd) and lookup values (elup). Also
we define a parser combinator aenv which applies a parser and stores the resulting action in the
environment.

elup :: EnvParsingState t => Label -> Parser (t a) Value

elup 1 = [fndenv x 1 | x <- statqg (\_ -> True) ]

eadd :: EnvParsingState t => Action -> Parser (t a) Value

eadd a = [ a | _ <~ statep (\s -> addenv s a) ]

aenv :: EnvParsingState t => Parser (t a) Assoc -> Parser (t a) Assoc
aenv p = [ a | a <- p, _ <- eadd al

With these definitions, we can write parsers that add an association to the environment which
other parsers can retrieve later on.

18



7.2. The ISPW example

Now we return to the ISPW example and illustrate how the mechanisms introduced above can be
put to use. The parsers that we see now have basically the following type:

type EnvActParser = Parser (PEStat Action) Action

The toplevel parser for the ISPW model can be defined as follows:

changeprocess = arec "changeprocess" [ [i,w,x,£] |
i <- prepare, [w,r] <- parl [work, monitor], f <- testedchange ]

Prepare deals with the initialization of the process. Conforming the example, it involves the
receipt of the arguments to the process (description of the change-request, authorization of the
configuration control board), the definition of the material involved (design document, source
module, test plan and package), the identification of the team members (manager, engineers), the
allocation of people to roles (design engineer responsible for the design and the coding, quality
engineer responsible for the test specifications, review team that will perform the design review)
and the scheduling of activities (date for review, date for termination).

The general outline of the definitions is as follows. For brevity we only list the definition of non-
terminal action parsers. We assume that the relevant “terminal” action parsers (e.g. code,
design, reviewdate, completiondate, etc.) store their results in the environment. Also
we have not included “role-checks” for these actions. Typically, the assignment and scheduling
will be done by the project manager and this should be checked.

prepare = arec "prepare" (serie [arguments,material, team, assign, schedulel)

arguments = arec "arguments" (parl [changerequest, authorization 1)

material = arec "material" (parl [design, code, testsplan, unittest])

team = arec "team" (parl [manager, engineers])

schedule = arec "schedule* (parl [reviewdate, completiondate])

assign = arec "assign" [d | 4 <- parl [designengineer,qaengineer,reviewteam],
_ <- checkroles]

engineers = aenv {(aset "engineers" (manyl engineer))

designengineer = bindengineer “designengineer”
gaengineer = bindengineer “quaengineer”

bindengineer role = atomic (aenv [ x |
ps <- (elup “engineers"),
x <- oneof [ satisfy (\(l,v,_) -> 1 == role && == p)
| p <- setval ps 11)

Note that we can easily express the fact that the two engineer roles should be assigned to members
of the team by generating alternative parsers. The parser checkroles has been added to the
definition of assign to model additional checks for role-bindings. Typically, we might want to
enforce that the quality engineer and the design engineer are different people, for example:

checkroles = [d | g <- elup “quaengineer", d <- elup "designengineer”, d /= q ]

The monitor activity runs in parallel with the actual work. Its main purpose is to facilitate
rescheduling of tasks and reassignment of roles. This can now be modelled very easily; it allows
for reoccurrence of some of the actions defined above at a later stage. Again, for simplicity’s sake
checks for the fact that the manager can only perform these actions have been excluded:

monitor = arec "monitor" (many (oneof [reassign, reschedule]))
reassign = [r | r <- oneof [designengineer, gaengineer, reviewteam],

_ <~ checkroles]
reschedule = oneof [reviewdate, completiondate]
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Since existing parsers add the actions to the environment, the results are available for other
parsers that run in parallel. Note that the binding of a role is an atomic action to prevent
interleaving between consumption of the action and the update of the environment.

Now we turn to the real work on the software system. It consists of three parallel activities:

work = arec "work' (parl [newdesign, newcode, newtest])

Production of the new design implies modification of the design document and a review. Once the
review has been completed sucessfully, the new design is accepted. Otherwise, modifications are
in order and a new review will occur. Again, for the sake of brevity, we have excluded issues like
time-checks (e.g. the fact that the review should occur on a given date). Note that the definitions
include the collection of statistics, e.g. the effort that was involved in the review.

newdesign = aenv [ £ | x <- editdesign, r <- review x, f <- revwddesign x]
revwddesign £ = [ n | _ <- revigse, n <- newdesign]

++

[ £ | _ <- accept]

editdesign = atomic [x| p <- elup “designengineer”,

x <- satisfy (\(1,v,(u,t)) -> 1 == “design” && u = txtval p)]
accept = arec "accept’ | [e] | a <~ actl "accept", e <- actl "effort"]
revise = arec ‘'revise" [ [c,d] | ¢ <- actl "comments", d <- actl "nrofdefects"]

Note that we use atomic in the definition of editdes ign. The reason for this is somewhat
intricate. Since looking up a value in the environment (e 1lup) is modelled as a separate parser, the
two parsers that make up editdesign may occur interleaved with the monitor parser that
captures reassignment. If atomic were not used, a reassignment that happens just before the
adaptation of the design might be missed. In particular, the elup parser would have succeeded,
returning the old binding of the role, the monitor parser would succeed, giving a new role
binding in the environment, and the design action (performed by the person just bound to the
role) would be refused, since satisfy expects an old value. The use of atomic prevents this, by
combining the environment lookup and the subsequent satisfy into one step. Because of a similar
argument, the binding of a person to a role is also performed atomically (see above).

The development of the source code is modelled similarly. It includes a compilation step, and only
if no errors during compilation occur will the new code be accepted. The results produced by the
compilation step can be quite elaborate (options, multiple object code modules for different
targets, etc).

newcode = aenv [ ¢ | x <- editcode, r <- compile, c <- compcode x]

editcode = [ x | p <- elup vdesignengineer”,
x <- satisfy (\(1,v,(u,t)) -> 1 == “code” && u = textval p)l
compcode ¢ = [ n | x <- compileerrors, n <- newcode]
++
[ trec “compiledcode” [c, rl | £ <- compiledprogram]

compiledprogrém = arec "compiled" (atomic (serie [options, objcode, compinfol))

The ISPW specification states that the development of new code cannot be completed until the
new design has been completed. This involves synchronization between parallel processes. While
this can be solved using the shared environment, we have excluded the definition here. The same
holds for the updating of the test package and the test plan, because they are similar to the
definitions above (but performed by the qaengineer).

We finish the example with the final step of the process, applying the new test to the new code.
The idea is to have a test-run and to check the results. These can indicate that the test set should be
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adapted (if coverage analysis shows that the coverage is less than 90 percent) and/or that the
program is not correct (test errors). If neither of these problems occur, the change has been
completed.

testedchange = arec "testedchange’ serie [runtest, handletest]
handletest = arec “revise” [ tc |
_ <- oneof [ serie [testfail, codefail, reviseboth 1,
serie [testok, codefail, newcodel,
serie [testfail, codeok, newtest]]
tc <- testedchangel
++ arec “success” (serie [testok, codeok])

reviseboth = arec “adapt” (parl [newtest, newcodel)

testfail = satisfy (\(l,v,p) -> 1 == "coverage" && (nv v) < 90)
testok = satisfy (\{1,v,p) -> 1 == "coverage" && (nv v) >= 90)
codeck = satisfy (\{l,v,p) -> 1 == "nrerrors” && (nv v} == 0)
codefail = satisfy (\{(1l,v,p) -> 1 == "nrerrors" && (nv v) > 0)

8. Conclusions and evaluation

This paper has presented some of the research into office process support in the Ariadne project at
Utrecht University. An important aspect of our appoach is to separate the operational issues
surrounding process enactment from the conceptual description of a process as a space of legal
actions or events. In our view, a process model should provide enough information to decide
whether a particular sequence of events that takes place is legal. It should not be “muddled” with
issues that describe how the actual performance of these activities is generated. We believe that
making this distinction is crucial to allow for different enactment styles that use the same process
description.

In the previous sections we have illustrated how functional parsers can be used to encode this
conceptual view of processes. We have applied parser combinators operating on strings of actions
to model several non-trivial processes. Starting with a simple model of parsers as non-determinstic
state transformers, we have increased the expressive power, partly by changing the underlying
semantics of parsers. The final version includes state, non-determinism and parallellism. The
examples show how these provisions, together with context-sensitivity, allow us to describe role-
and binding constraints, time- and value constraints, dynamic instantiation of parsers, and
permutations and parallel activities. A nice side effect of encoding these parsers in a functional
language is that the models are executable. All the examples are stylized and abbreviated versions
of Gofer programs that can be run on collections of actions. Also, it is easy to extend the set of
available constructs.

The resulting process models are reasonably simple and elegant despite the underlying
complexity (though it is arguable whether “naive end-users” will be able to use the model in its
current form). This is mainly due to the use of monads, which separate the value and the
computation that produces the value. The availability of function abstraction makes it possible to
collect complex sub-models and to reuse these in different places. Thereby we can structure the
process model and maintain an overview.

Due to the simplicity of the models, they are also relatively simple to adapt. For example, by
replacing a “terminal action” by a “non-terminal” we can refine the action decomposition.
Similarly we can add more constraints on the structure of the values that are produced. Note
however, that even if such structure is not imposed, the actual data itself can still be structured in
using the tree-like record structures that also encode actions.
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On the other hand, we can generalize a process model by removing constraints or discarding
detailed action descriptions. This may prove useful for exception handling. For example, the
simplest process model is something like this:

any = arec “any” manyl (satisfy (\x -> True})

It matches any action by any user at any time with any associated data. Note however, that this
model is not useless. It imposes an order on the actions that occur and collects the results in the
process’ data structure.

Obviously, we can add structure to such a model in several ways. For example, we can enforce
that all actions are performed by members of a group, or that they should produce values of a
certain type. In this way we can encode a turn taking protocol for a group working on a shared
object. In a similar vein, other semi-structured processes can be created incrementally.

8.1. Future work

Although the approach presented here is promising, there are some problems and open issues that
remain to be adressed. Here we indicate some of the points that we hope to investigate in the near
future.

e The fact that the the process modelling language is free from enactment issues means that other
facilities should encode these. What should these look like? Can we use processes as defined
here to encode these policies? For example can the binding of an action to an actor that should
perform it be modelled as a process? There may be a similarity here with the notions of abstract
syntax and concrete syntax used in certain generic language environments such as the
Synthesizer Generator.

¢ In principle, the parsers defined above could be used directly as “conformance checkers”. By
connecting a Gofer implementation to the outside world, we could translate events into actions
and let the parser handle them. However, currently the parsers expect the complete set of
actions to be available. In a real-life setting we would like to give feedback immediately, e.g. to
tell the user that a particular action is not acceptable. To do so, the parsers have to be
incremental, indicating whether there are any possible continuations after parsing one action,
and perhaps even indicating which actions should occur next.

e The parallel combinator introduces some new problems. One particular issue is
synchronization. In the ISPW example for instance, the fact that one parallel activity has
reached a certain state (the design is reviewed) is of relevance for another activity (code
development). One way in dealing with this is by using updates to the shared environment. A
slightly more elegant way may be to allow one activity (the design review in this case) to create
actions which are merged with the sequence of incoming events by users and parsed by the
other activities. Another alternative would be to create a parser which is part of both parsing
threads and which succeeds only when it finds the right input at the right time within both
threads. Clearly more research is needed to find a natural modelling of synchronization.

» While parse-results are handled nicely, the handling of arguments and state is not satisfactory.
The environment concept introduced in the previous section hides potential dependencies
among (parallel) parsers that actually should be visible e.g. in their interface definition. Also, it
is not possible yet to elegantly express constraints on parsers that propagate downwards, e.g.
when we want to state that all the actions involved in the modification of a source module
should be done by a specific actor. Clearly, a better notation that separates the viewpoints on a
process (e.g. data vs. actions) and that allows better expression of dependencies is needed. Of
course, this notation could be mapped to the parsers described above. Inspiration could be
taken from the inherited and synthesized attributes and the semantic functions in attribute



grammars or the description of events in LOTOS [Brinksma86]. The hierarchical and functional
process modelling language described by Katayama [Katayama89] provides a possible
approach to integrate attributes with functional processes.

¢ While the parsers provide an elegant framework for describing processes, we also want to be
able to analyse processes and reason about them. For example, we want to see whether a
process can terminate in time, or whether consistent role-bindings are possible. Some initial
work in this area has been done [Boerboom94, Florijn94c], but further study of the available
work on language and parsing theory and semantics is needed to provide definite clues as to
how and to what extent this can be done. For example, the relationship with two-level
grammars and context-sensitive languages remains to be explored.

e The fact that users can change procedures on the fly to handle exceptions may interfere with
our assumption that the actions that occurred in a process should conform to the procedure.
While a “re-parse” of all actions is clearly a trivial way to see whether old actions conform to a
new procedure, some more advanced support (mapping or collecting actions into other actions,
for example) will be needed. A formal notion of equivalence or bisimulation [Baeten90] is
similarly desired.

e The fact that we can add and remove structure along several dimension suggest a mechanism
for inheritance or specialization of process models. In a sub-model we can then add additional
constraints, while benefiting from the design already encoded in the “super-model”. In such a
case, exception handling may even be a matter of considering a process on a higher level of
abstraction, or in other words, as an instance of a super-class. A simple process like “any”
defined above could be the root of the hierarchy. While this idea seems viable, the technical
and conceptual effects remain to be explored.

e The use of monads in the implementation of parsers could be further extended. For example,
the fact that a parser produces a list of successes is but one instance of the more general case
where a parser can be parametrized with a monad:

type Parser s ma =s ->m (a, s)

In fact, a parser and a parsing state can be seen as specific instances of a more general “state-
transformer monad”. Modelling it as such may lead to further simplification.
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